"How does monetary policy change? Evidence on inflation targeting countries"

by Jaromir Baxa, Roman Horvath and Borek Vasicek

Discussion by Øyvind Eitrheim, Norges Bank

Presentation at the 7th Norges Bank Monetary Policy Conference 24-25 June 2010

Disclaimer: The views expressed are those of the discussant and do not necessarily reflect those of my colleagues or the official views of Norges Bank

24 June 2010

⊗NB≫ NORGES BANK

Brief recap of the Taylor rule literature

- $\bullet\ r_t$ depend on a small set of observable variables
- Generalized TR type function with constant parameters:
- $r_t = (1 \rho) [\alpha + \beta (\pi_{t+i} \pi^*) + \gamma y_t + \delta x_t] + \rho r_{t-1} + \varepsilon_t$ • $\alpha = \pi^* + rr^*$
- data uncertainty (latent variables, measurement errors), e.g. π^{core}_t?, y_t?, x_t?
- model uncertainty (specification issues), functional form, parameter space $\theta = [\alpha, \beta, \gamma, \delta, \rho]$, e.g. degree of interest rate smoothing ρ ?
- parameter uncertainty (estimation issues), e.g. endogeneity of π_{t+i} , y_t ?
- identifiability and determinacy under discretion and commitment ?
- implications of (Knightian) uncertainty for monetary policy ?

Key research questions in BHV's paper

- Have monetary policy rules changed over the past two decades?
- In particular, has the degree of interest rate smoothing (ρ) changed?
- Do interest rate responses to inflation (β) change over time? And how?
- Focus on five pioneering IT countries NZ, CAN, UK, SWE, AUS from 1990 to 2010

The strategy of the paper

- Adopts the TVP approach proposed by Nelson and Kim (2006, JME) NK hereafter, BUT with a different estimation method:
- $r_t = (1 \rho_t) [\alpha_t + \beta_t(\pi_{t+i}) + \gamma_t y_t + \delta_t x_t] + \rho_t r_{t-1} + \varepsilon_t$
- where $\theta = \theta_t = [\alpha_t, \beta_t, \gamma_t, \delta_t, \rho_t]$ are independent RW processes,
- \bullet and endogenous regressors π_{t+i}, y_t are handled using instruments Z_t
- $\pi_{t+i} = \xi_{\pi,t} Z_t + \eta_{\pi,t}$
- $y_t = \xi_{y,t} Z_t + \eta_{y,t}$

The strategy of the paper (cont'd)

- Recap of NK (2006, JME) on US monetary policy 1970-2000:
 - ► allows for nonlinearity $(\rho_t = 1/(1 + \exp(-\xi_t)))$ as well as heteroscedasticity (GARCH(1,1)) in ε_t
 - Step I: MLE using Harvey et al's (1992) modified Kalman filter
 - Step II: MLE estimation of an extended (bias corrected) Taylor rule via the Kalman filter controlling for (standardized) residuals η^{*}_{π,t}, η^{*}_{u,t}
 - ensuring that orthogonality conditions hold

NK's main findings

- monetary policy in the US has indeed changed over time
- handling endogeneity matters
- three distinct subperiods (the 1970s, the 1980s, and 1990s)
 - 1970s FED mainly focused on stabilizing the real economy (misperceiving the output gap) (β_t around 1.3, γ_t around 0.5)
 - 1980s FED mainly focused on stabilizing inflation (higher β around 1.5, lower γ_t around 0.2)
 - 1990s FED could (again) pay more attention to stabilizing real economic activity (γ_t increases to 1)
- All periods High degree of interest rate smoothing (high ρ around 0.8 (except mid-70s))

BHV's main findings

- Note: Parameters are estimated using the two-step method with a Varying Coefficients method (Schlicht and Ludsteck, 2006) minimizing a weighted sum of squared residuals with weights inversely proportional to to the variance of the innovations to the RW processes
- monetary policy in the five IT countries has indeed changed over time
- handling endogeneity matters
 - NZ β_t fluctuates below 1, (insign) γ_t around 0, low ρ_t
 - AUS β_t rising then declining below 0.5, (insign) γ_t around 0, low ρ_t
 - CAN β_t rising then declining to 0.8, γ_t around 0.4, low ρ_t around 0
 - UK β_t declines in 1990s towards 0, low (insign) γ_t around 0.2, low ρ_t around 0.3
 - SWE β_t declines in 1990s, low (insign) γ_t , higher ρ_t around 0.5

Questions and Comments

- Can we trust these estimates of the central banks' reaction pattern?
- Are the results robust ?
 - Q1 Change due the estimation method ? \rightarrow compare with Nelson and Kim on US data ?
 - Q2 Generally low estimates β_t , discuss *active* vs *passive* interest rate rule (Taylor's principle)?
 - Q3 What explains the lower degree of interest rate smoothing in BHV vs NK (who report ρ_t around 0.8 for US) ?
 - Q4 Are results robust to different specifications, e.g. different conditioning sets?
 - Q5 Unclear argument about committee structure and the degree of interest rate smoothing ? Is the Riksbank as collegial as claimed ?
 - Q6 What can we infer from these exercises? Limited insights about structure (may be)? What about predictive performance (a better mousetrap)?

Wrapping up

- This is a nice, yet somewhat unpolished paper with useful empirical evidence about topics of relevance for policymakers,
- providing convincing evidence that monetary policy has indeed changed over time.
- Differences between the results reported in BHV and NK need some clarification, claims about committee differences need to be substantiated,
- the jury is (still) out on pinning down how we can reconcile the empirical findings with the actual conduct of central banks and
- many questions remain for future research
- Thank you for your attention!