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Abstract

Smoothness in aggregate capital accumulation is a necessary condition

for New-Keynesian (NK) models to imply a quantitatively relevant mone-

tary transmission mechanism (see, e.g., Woodford 2005). Can that aggregate

smoothness be entertained in the context of an NK model featuring lumpy

plant-level investment? Our answer is yes. Imperfect competition in goods

markets and/or sticky prices are identi�ed as economic mechanisms which

render lumpy investment relevant in general equilibrium.
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1 Introduction

Does New-Keynesian (NK) theory imply a quantitatively relevant monetary trans-

mission mechanism?1 Woodford (2005) argues that the answer is yes if aggregate

capital accumulation is smooth.2 This motivates the following question: Can the

required smoothness of aggregate capital accumulation be rationalized under the

empirically plausible assumption of lumpy plant-level investment? Our answer is

yes. This is surprising given the result obtained by Thomas (2002) in the context

of a real business cycle (RBC) model with perfect competition and fully �exible

prices. Her analysis implies that the equilibrium dynamics with lumpy plant-level

investment are strikingly similar to the ones associated with a speci�cation where

investment at the plant level is frictionless.3 In the present paper it is shown that the

smoothness of aggregate capital accumulation which is needed for our NK model to

imply a quantitatively relevant monetary transmission mechanism can be reconciled

with lumpy plant-level investment.

Let us put that result into perspective. Taken at face value Thomas (2002)

appears to imply that earlier results stressing the relevance of lumpy investment

for aggregate dynamics (see, e.g., Caballero and Engel 1999 and Caballero 1999)

hinge somewhat on the use of partial equilibrium frameworks. This is, however, the

controversial issue of an ongoing debate. While Khan and Thomas (2004) provide

additional robustness analysis in favor of the Thomas (2002) result, Bachmann et

al. (2006) and Gourio and Kashyap (2007) argue that lumpy investment matters

for aggregate dynamics in the context of RBC models if the latter are calibrated

1This is a revised version of Norges Bank Working Paper 2005/6, June 16.
2Woodford (2005) obtains smoothness of aggregate capital accumulation from postulating a

convex capital adjustment cost at the �rm level. Other authors have preferred to engineer aggregate
smoothness by assuming a convex investment adjustment cost. See, e.g., Christiano et al. (2005)
and Smets and Wouters (2003). See also the discussion in Casares and McCallum (2000), which
argues that NK models featuring frictionless endogenous capital accumulation cannot explain the
dynamic e¤ects of monetary policy shocks.

3A similar quasi-irrelevance result has been obtained in Veracierto (2002). However, the focus
of his analysis is the role of plant-level irreversibility in investment for aggregate �uctuations.
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in the ways they advocate. The focus of our analysis is di¤erent. It is shown that

the presence of monopolistic competition and/or sticky prices in goods markets can

alter the irrelevance result in Thomas (2002). Our model is used to disentangle the

respective roles of these two economic features for the aggregate relevance of lumpy

investment in general equilibrium.

The remainder of the paper is organized as follows. Section 2 lays out a simple

theoretical framework for the analysis of the monetary transmission mechanism and,

in section 3, our model is used to explain the aggregate consequences of lumpy

investment in general equilibrium. Section 4 concludes.

2 Theoretical Framework

Our baseline NK model features lumpy investment. Bernoulli draws are employed

both for modeling price stickiness, as is standard in a large body of literature follow-

ing the lead of Calvo (1983), and for modeling lumpiness in investment, as originally

proposed by Kiyotaki and Moore (1997). This way the fact is captured that �rms

change prices and adjust their capital stocks only infrequently.4 Next, a bench-

mark speci�cation featuring a convex capital adjustment cost at the �rm level, as

in Woodford (2005), is laid out. Our main result regarding the monetary transmis-

sion mechanism holds for any source of aggregate uncertainty and regardless of the

particular rule assumed for the conduct of monetary policy. These two aspects of

our model are therefore left unspeci�ed.

2.1 Households

Households have access to a complete set of �nancial securities and supply labor

in a perfectly competitive market. A representative household maximizes expected

4We are going to refer to the production unit as a �rm. There is no distinction between a �rm
and a plant in the context of our theoretical framework.
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discounted utility
1X
k=0

�kEt fU (Ct+k; Nt+k)g ; (1)

where Et denotes an expectation that is conditional on information available through

time t. Period utility is denoted U (�), while Ct is a Dixit-Stiglitz composite con-

sumption index, and Nt are hours worked. Throughout, a t subscript is meant to

indicate that the corresponding variable is dated as of that time. The period utility

function is assumed to be given by

U (Ct; Nt) =
C1��t

1� �
� N1+�

t

1 + �
; (2)

where parameters � and � are, respectively, the inverse of the household�s intertem-

poral elasticity of substitution and the inverse of the household�s labor supply elas-

ticity. The consumption aggregate is de�ned as follows:

Ct �
�Z 1

0

Ct (i)
"�1
" di

� "
"�1

for i 2 [0; 1] ; (3)

where parameter " > 1 measures the elasticity of substitution between the di¤erent

types of goods, Ct (i).

The household�s maximization is subject to a sequence of budget constraints

which take the following form

Z 1

0

Pt (i)Ct (i) di+ Et fQt;t+1Dt+1g � Dt +WtNt + Tt: (4)

Here Pt (i) is the price of good i, while Qt;t+1 denotes the stochastic discount factor

for random nominal payments and Dt+1 gives the nominal payo¤ associated with

the portfolio held at the end of period t. We have also used the notation Wt for the

nominal wage and Tt for dividends resulting from ownership of �rms.

Optimizing behavior on the part of households implies the following consumption
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demand function for each type of good

Cd
t (i) =

�
Pt (i)

Pt

��"
Ct; (5)

where Pt �
�R 1

0
Pt (i)

1�" di
� 1
1�"

is the price index.

The remaining �rst order conditions read as follows:

C�
t N

�
t =

Wt

Pt
; (6)

�

�
Ct+1
Ct

��� �
Pt
Pt+1

�
= Qt;t+1: (7)

The �rst equation is the labor supply equation, whereas the second is a standard

intertemporal optimality condition. Let us �nally mention the equilibrium relation-

ship between the gross nominal interest rate, Rt, and the stochastic discount factor:

Rt =
1

EtfQt;t+1g .

2.2 Firms

There is a continuum of �rms indexed on the unit interval.5 Each �rm i 2 [0; 1] is

assumed to produce a di¤erentiated good, Yt (i), using the following Cobb-Douglas

production function

Yt (i) = Nt (i)
1��Kt (i)

� ; (8)

where � 2 [0; 1] is the capital share. The variables Nt (i) and Kt (i) denote, re-

spectively, hours used and capital holdings of �rm i. The assumption of constant

returns to scale is used in order to isolate the respective roles of price stickiness

and the market power of �rms in explaining the aggregate consequences of lumpy

5The fact that entry or exit is not modeled facilitates the calibration since empirical studies
of establishment-level investment generally focus on continuing establishments, as Thomas (2002)
notes.
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investment at the micro level.6 The investment good is a Dixit-Stiglitz aggregate

of all the goods in the economy with the same constant elasticity of substitution as

in the consumption aggregate. Given �rm i�s capital stock, Kt (i), the amount of

the composite good, It (i), that has to be purchased by that �rm in order to have a

capital stock Kt+1 (i) in place in the next period is given by

It (i) = Kt+1 (i)� (1� �)Kt (i) ; (9)

where parameter � denotes the depreciation rate. Cost minimization by �rms and

households implies that demand for each individual good i can be written as follows:

Y d
t (i) =

�
Pt (i)

Pt

��"
Y d
t ; (10)

where Y d
t denotes aggregate demand, which is given by

Y d
t = Ct + It; (11)

and It �
R 1
0
It (i) di de�nes aggregate investment.

Each period a measure (1� �p) of randomly selected �rms change their prices

and the remaining �rms keep their prices constant. Lumpy investment is modeled

in an analogous way. In order to capture the fact that �rms adjust their capital

stocks infrequently, it is assumed that each of them invests in any given period

with probability (1� �k), which is independent of the time elapsed since the last

investment. To simplify the analysis two additional assumptions are made. First,

the two Bernoulli draws are independent, and, second, the investment lottery is

drawn after the price-setting lottery. Hence, �rms have to post their prices before

6It is worth noting that Thomas (2002) assumes that production units have access to a decreas-
ing returns to scale technology. This economic feature makes her quasi-irrelevance result surprising
and interesting.
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they get to know the outcome of the investment lottery.

Let us now consider a price setter�s problem. Given its capital stock, Kt (i), a

price setter i chooses contingent plans for
�
P �t+j(i); K

�
t+j+1(i); Nt+j(i)

	1
j=0

in order

to maximize the following:7

1X
j=0

Et
�
Qt;t+j

�
Y d
t+j(i)Pt+j(i)�Wt+jNt+j(i)� Pt+j (Kt+j+1 (i)� (1� �)Kt+j (i))

�	
s.t.

Y d
t+j(i) =

�
Pt+j(i)

Pt+j

��"
Y d
t+j;

Y d
t+j (i) � Nt+j (i)

1��Kt+j (i)
� ;

It+j (i) = Kt+j+1 (i)� (1� �)Kt+j (i) ;

Pt+j+1(i) =

8<: P �t+j+1(i) with prob. (1� �p) ;

Pt+j(i) with prob. �p;

Kt+j+1(i) =

8<: K�
t+j+1(i) with prob. (1� �k) ;

Kt+j(i) with prob. �k:

The last restriction re�ects our assumption regarding the timing of the two lotteries

for price-setting and for investment. Moreover, it is implicit in this formulation

that a �rm which is not allowed to make an investment decision in a given period

is nevertheless assumed to keep its capital constant by paying for the depreciation.

This way the fact is captured that �rms appear to engage continuously in some small

maintenance investment, as Doms and Dunne (1998) report for the U.S. economy.

Finally, let us emphasize that, given this structure, a �rm�s newly set price, P �t+j(i),

will depend on that particular �rm�s capital stock, Kt+j(i), and similarly K�
t+j+1(i)

will depend on Pt+j(i).

7A �rm j that cannot change its price at time t solves the same problem, except for the fact
that it takes Pt(j) as given.
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The �rst order condition for price-setting is given by

1X
j=0

�jpE
p
t

�
Qt;t+jY

d
t+j (i) [P

�
t (i)� �Pt+jMCt+j (i)]

	
= 0; (12)

where � � "
"�1 denotes the frictionless mark-up over marginal costs and E

p
t is meant

to indicate an expectation that is conditional on the time t state of the world, but

integrating only over those future states in which the �rm has not reset its price

since period t. Finally, MCt (i) denotes the real marginal cost of �rm i in period t.

The latter is given by

MCt (i) =
Wt=Pt

MPLt (i)
; (13)

where MPLt (i) denotes the marginal product of labor of �rm i. Equation (12)

re�ects that prices are chosen in a forward-looking manner, i.e., taking into account

not only current but also future expected marginal costs over the expected lifetime

of the chosen price. The only non-standard feature in equation (12) is that capital

a¤ects labor productivity and hence a �rm�s marginal cost.

The �rst order condition for capital accumulation reads as follows:

1X
j=0

�jkE
k
t fQt;t+j [Pt+j �Qt+j;t+j+1Pt+j+1 (MSt+j+1 (i) + (1� �))]g = 0; (14)

where Ek
t indicates an expectation that is conditional on the time t state of the

world, but integrating only over those future states in which the �rm�s capital stock

is still at the level that was chosen in period t. Finally, MSt(i) denotes �rm i�s real

marginal return to capital. It is measured in terms of �rm i�s savings in real labor

cost associated with having one additional unit of capital in place. The following

relationship holds true

MSt (i) =
Wt

Pt

MPKt (i)

MPLt (i)
; (15)

where MPKt (i) denotes the marginal product of capital of �rm i. The intuition
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behind equation (14) is simple and analogous to the one behind the �rst order

condition for price-setting. Firms invest in a forward-looking manner, i.e., by taking

into account their future marginal returns to capital over the expected lifetime of

the chosen capital stock.

2.3 Market Clearing

Clearing of the labor market requires that hours worked, Nt, are given by the fol-

lowing equation, which holds for all t

Nt =

Z 1

0

Nt (i) di: (16)

Finally, market clearing for each variety i requires at each point in time that

Yt (i) = Y d
t (i) : (17)

2.4 Linearized Equilibrium Conditions

A linear approximation to the equilibrium dynamics around a zero in�ation steady

state is derived. Throughout, lowercase letters denote log-deviations of the original

variables from their steady-state values, except for the nominal interest rate, it �

logRt, and in�ation, �t � log
�

Pt
Pt�1

�
.

2.4.1 Households

The household�s problem implies a consumption Euler equation and a labor supply

equation. They read as follows:

ct = Et fct+1g �
1

�
(it � Et f�t+1g � �) ; (18)

!t = �nt + �ct; (19)
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where parameter � � � log � is the time discount rate, and 
t � Wt

Pt
is the real wage.

2.4.2 Firms

The method developed in Woodford (2005) is used to derive the law of motion of

aggregate capital and the in�ation equation implied by our model. They are given

by

�kt+1 = �Et f�kt+2g+
1

�l
Et f� (�+ �)mst+1 � (it � �t+1 � �)g ; (20)

�t = �Et f�t+1g+ �l mct; (21)

where � is the �rst-di¤erence operator and �l and �l are parameters which are

computed numerically. Moreover, MSt �
R 1
0
MSt (i) di denotes the average real

marginal return to capital and MCt �
R 1
0
MCt (i) di is the average real marginal

cost.8

Aggregating and log-linearizing the production functions of individual �rms (8)

results in

yt = (1� �)nt + �kt; (22)

where Yt � N1��
t K�

t is aggregate production, up to the �rst order.

2.4.3 Market clearing

Aggregating and log-linearizing the goods market clearing condition for each variety

(17), and invoking (8), (10), and (11), one obtains

yt = �ct +
1� �

�
[kt+1 � (1� �) kt] ; (23)

8For a derivation of the last two equations in the text, see Appendix A.
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where � � 1 � ��
�(�+�)

denotes the steady-state consumption-to-output ratio, and
(1��)
�

is the steady-state capital-to-output ratio.

2.5 The Convex Capital Adjustment Cost Case

In what follows a benchmark model featuring a convex capital adjustment cost at

the �rm level, as in Woodford (2005), is considered.9 He assumes the following

restriction on capital accumulation

It (i) = I

�
Kt+1 (i)

Kt (i)

�
Kt (i) ; (24)

where It (i) denotes the amount of the composite good which needs to be purchased

by �rm i in order to change its capital stock from Kt (i) to Kt+1 (i) in the next

period.10 Moreover, function I(�) is assumed to be increasing and convex. It is

also assumed that this function satis�es the following: I(1) = �, I 0(1) = 1, and

I 00(1) = �c. Parameter �c > 0 measures the convex capital adjustment cost in a

log-linear approximation to the equilibrium dynamics.

The linearized equilibrium conditions implied by the benchmark model are iden-

tical to the ones associated with the lumpy investment model, except for the in�ation

equation and the law of motion of capital. The latter two equations read

�kt+1 = �Et f�kt+2g+
1

�c
Et f� (�+ �)mst+1 � (it � �t+1 � �)g ; (25)

�t = �Et f�t+1g+ �c mct; (26)

where �c is computed numerically.11

9The desirability of modeling �rm-speci�c capital accumulation for the analysis of the monetary
transmission mechanism is also emphasized by Woodford (2003, Ch. 5).
10As in our baseline model, it is assumed that the investment good is a Dixit-Stiglitz aggregate

of all of the goods in the economy with the same constant elasticity of substitution as in the
consumption aggregate.
11Deriving the last two equations is a straightforward application of Woodford�s (2005) method.
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A comparison of the last two equations with their counterparts (20) and (21)

in the lumpy investment model reveals that a model featuring a convex capital

adjustment cost at the �rm level is observationally equivalent (up to the �rst order)

to our speci�cation with lumpy investment: For any given value of the convex

adjustment cost parameter, �c, there exists a value of the lumpiness parameter, �k,

such that the two laws of motion of capital implied by the two models are identical.

Moreover, the two associated in�ation equations coincide for this choice of �k.12 This

makes it possible to compare our lumpy investment baseline model with the convex

capital adjustment cost benchmark case in a particularly clean way. One possible

interpretation of this �nding is that it generalizes the well known equivalence result

in Rotemberg (1987) to a setting in which two decisions are made simultaneously

at the �rm level. Interestingly, our analysis reveals that the particular value of �k

for which the above mentioned equivalence obtains depends on the price stickiness

parameter, �, and on the elasticity of substitution between goods, �, as will be

discussed below.

3 Numerical Results

The period length is one quarter. Table 1 shows the baseline parameter values for

the lumpy investment model.

Table 1: Baseline Parameter Values

� " � � � �p �k

2 11 0.36 0.99 1 0.75 0.92

For details see Sveen and Weinke (2005).
12For a formal proof see Appendix B.
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The values assigned to parameters �, ", �, �, �, and �p are standard.13 The

baseline value of the lumpiness parameter, �k, is 0:92. This appears to be in line

with the micro evidence on plant-level investment reported by Doms and Dunne

(1998). They use U.S. data on 13; 700 manufacturing plants over the 17 year period

1972 to 1988. For each plant they establish a rank distribution of capital growth

rates and compute the associated mean and median over all �rms for each rank.

They �nd that �many plants experience a few periods of intense capital growth

and many periods of relatively small capital adjustment: of the 16 capital growth

rate ranks, 12 possess means or medians between -10 and +10%.�Moreover they

report that plants choose to change their capital holdings by at least 5% on average

every second year. The empirically plausible range for the lumpiness parameter, �k,

is therefore taken to be the interval (0:88; 0:94). Values in that range imply that

production units invest on average about every 2 to 4 years. Our baseline value

for the lumpiness parameter simply corresponds to the midpoint of that range, i.e.,

it implies about 3 years for the average expected time between investments at the

plant level.14

These preparations allow us to address the main question which is asked in the

present paper: Can lumpy investment at the micro level be reconciled, under em-

pirically plausible assumptions, with the degree of smoothness in aggregate capital

accumulation which is needed to render NK models capable of explaining the dy-

namic e¤ects of monetary policy shocks? Our answer is yes. A value of about 3

for parameter �l is needed in order to account for the smooth response of aggregate

demand in response to monetary policy shocks, as Woodford (2005) argues in the

context of a model featuring a convex capital adjustment cost at the �rm level.

Given the equivalence between the convex adjustment cost model and our speci�-

13See, e.g., Sveen and Weinke (2005) and the references therein.
14This means that the �relatively small capital adjustment�is interpreted as variation in main-

tenance. Variation in maintenance could be entertained in our theoretical model by allowing the
rate of depreciation to be stochastic.
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cation with lumpy investment it can be asked what is the corresponding value of

the lumpiness parameter needed to entertain this level of aggregate smoothness of

capital accumulation and whether or not this value falls within the interval that

is considered to be empirically plausible. The result is shown in Figure 1: Wood-

ford�s preferred calibration of the smoothness in aggregate capital accumulation falls

well within the empirically plausible range. Speci�cally, �l = 3 is associated with

�k = 0:924 if the remaining parameters are held constant at their baseline values.

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95
0

1

2

3

4

5

6

θ k

η
l

Figure 1: Firm-level lumpiness and aggregate smoothness of capital accumulation.

The result illustrated in Figure 1 is in stark contrast with the �ndings in Thomas

(2002). In the context of her model the implied equilibrium dynamics with lumpy

investment are strikingly similar to the ones associated with a speci�cation where

investment at the level of the production unit is frictionless. What is the economic

reason for this di¤erence in the predictions of RBC and NK theory? The answer is

14



that price stickiness and the market power of �rms, two features that are absent in

Thomas�s RBC model, a¤ect the smoothness of aggregate capital accumulation with

lumpy investment. Our intuition is as follows. With lumpy investment the dynamics

of aggregate capital accumulation are driven by the decisions of only a fraction of

�rms. These �rms internalize the consequences of their investment decisions for their

future expected real returns to capital. In particular, an investing �rm foresees

that an increase in its capital stock is associated with a decrease in its expected

future real return. This means that in response to an increase in the average real

return to capital, an investing �rm will choose to limit the size of its investment

if the associated decrease in its own real return is large.15 The extent to which

an investing �rm�s real marginal return to capital decreases if the capital stock is

increased depends in turn on price-setting behavior. The latter is a¤ected by price

stickiness and the market power of �rms.

First, the role of price stickiness is analyzed under the assumption that the

remaining parameters are held constant at their baseline values. The results are

shown in Figure 2.

15The intuition is similar to the one developed by Sbordone (2002) and Galí et al. (2001) for
the di¤erence in price-setting behavior under constant and decreasing returns to scale.
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Figure 2: Price stickiness and aggregate smoothness of capital accumulation.

A decrease in the value assigned to parameter �p results in a decrease in the

smoothness of aggregate capital accumulation, as measured by the associated change

in the value of parameter �l. The intuition is simple. With more �exible prices a

�rm currently choosing to increase its capital stock is more likely to be able to create

additional demand (by decreasing its price) over the expected lifetime of the chosen

capital stock. This increases its marginal return to capital and hence an investing

�rm is more willing to increase its capital stock in response to an increase in the

average real return.

Second, the role of monopolistic competition is analyzed under the assumption

of perfectly �exible prices.16 Again, all the remaining parameters are held constant

at their baseline values. The results are shown in Figure 3.

16See Hornstein (1993) for an early analysis of the role of monopolistic competition for equilib-
rium dynamics in the context of an RBC model featuring increasing returns to scale.
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Figure 3: Market power and aggregate smoothness of capital accumulation.

An increase in the value assigned to parameter ", which is inversely related to

the market power of �rms, is associated with a decrease in parameter �l. In a more

competitive economy a smaller price change is needed to bring about any given

increase in a �rm�s demand. This makes an investing �rm less reluctant to change

its capital stock in response to an increase in the average real marginal return to

capital.

Finally, the features of price stickiness and monopolistic competition are turned

o¤ in our model. In their absence the linearized equilibrium dynamics of our lumpy

investment model are identical to the ones implied by a frictionless investment econ-

omy. This can be seen by inspecting the reduced form parameter �l in the �exible
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price case. It is given by

�l =
�k

(1� �k) (1� ��k)

1� � (1� �)

1� �+ "�
:

Clearly, in the limit as "!1, �l approaches zero.

4 Conclusion

Viewed through the lens of an RBC model, plant-level lumpy investment appears to

be irrelevant for business cycle dynamics: The implied equilibrium dynamics are al-

most identical to the ones associated with the alternative assumption of frictionless

investment. This is the main result in Thomas (2002). However, in the NK literature

it is typically assumed that aggregate capital accumulation is smoother than would

be the case if investment was frictionless. Woodford (2005) argues that this assump-

tion is crucial, for otherwise NK models could not account for the dynamic e¤ects

of monetary policy shocks. In the present paper the following question is therefore

addressed: Can the required smoothness of aggregate capital accumulation be ratio-

nalized under the empirically plausible assumption of lumpy plant-level investment?

Our answer is yes. In fact, our NK model with lumpy investment is equivalent to its

counterpart featuring a convex capital adjustment cost at the level of the production

unit. Importantly, the lumpy investment model implies that empirically plausible

parameter values result in aggregate smoothness of capital accumulation of the kind

which is needed to render NK models capable of explaining the dynamic e¤ects of

monetary policy shocks.

In our current framework, �rms get an opportunity to invest (and to re-optimize

their prices) independently of the deviations of their own capital stocks (and posted

prices) from their optimal values. It would therefore be interesting to investigate

how the implications of lumpy investment for aggregate dynamics would be a¤ected,
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if investment and price-setting was undertaken in a state-contingent fashion. Under

those circumstances, investment and price-setting would be conducted mostly by

�rms whose capital and/or price is most out of line and this in turn might lead to

some changes in the quantitative results. This caveat implied by the simplicity of our

model notwithstanding, the results in the current paper show that price stickiness

and/or the monopoly power of �rms can lead to relevance of lumpy investment for

the determination of aggregate macroeconomic variables in general equilibrium. We

conjecture that these two economic mechanisms will play a quantitatively dominant

role in any model featuring forward-looking price-setting and investment. Clearly,

this warrants future research.
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Appendix A

In order to �nd the in�ation equation and the law of motion of the aggregate

capital stock for our lumpy investment model the method developed in Woodford

(2005) is employed. First, equation (12) is combined with (13) and equation (14)

with (15). Log-linearizing and rearranging the resulting expressions gives

bp�t (i) = Ep
t

( 1X
j=1

(��p)
j �t+j +

(1� ��p) (1� �)

1� �+ "�

1X
j=0

(��p)
jmct+j

� (1� ��p)�

1� �+ "�

1X
j=0

(��p)
j bkt+j (i)) ; (A1)

bk�t+1 (i) = Ek
t

( 1X
j=1

(��k)
j �kt+j+1 � (1� ��k) "

1X
j=0

(��k)
j bpt+j+1 (i)

+ (1� �) (1� ��k)
1X
j=0

(��k)
jmst+j+1

� (1� �) (1� ��k)

1� � (1� �)

1X
j=0

(��k)
j (it+j � �t+j+1 � �)

)
; (A2)

where bPt (i) � Pt(i)
Pt

and bKt (i) � Kt(i)
Kt

denote, respectively, �rm i�s relative price and

relative to average capital stock, and the de�nitions bP �t (i) � P �t (i)
Pt

and bK�
t (i) �

K�
t (i)

Kt

have also been used. Second, rules for price-setting and for investment are posited

bp�t (i) = bp�t � � 1bkt (i) ; (A3)bk�t+1 (i) = bk�t+1 � � 2bpt (i) ; (A4)

where � 1 and � 2 are unknown parameters and bP �t and bK�
t+1 denote, respectively, the

average newly set relative price and the average newly chosen relative capital stock.

Third, the Bernoulli assumption for the price-setting lottery is used and combined
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with the de�nition of the price index. This results in

�t =
1� �p
�p

bp�t : (A5)

Fourth, the Bernoulli assumption for the investment lottery is invoked and combined

with the de�nition of aggregate capital, which allows us to write

kt+1 = kt +
1� �k
�k

bk�t+1: (A6)

Hence 24 eEtbpt+1 (i)eEtbkt+1 (i)
35 = A

24 bpt (i)bkt (i)
35 ;

where

A �

24 1 � 1 (1� �p)

0 1

35�1 24 �p 0

� (1� �k) � 2 �k

35 ;
and eEt is meant to indicate that the expected value is taken before the �rm gets

to know whether or not it will be able to invest in period t. Stability requires that

both roots of A are inside the unit circle. Next, the remaining conditions for the

unknown coe¢ cients are determined.

Law of motion of aggregate capital

The price-setting rule (A3) is used to substitute for the term
P1

j=0 (��k)
j Ek

t bpt+j+1 (i)
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in (A2). The result is shown in the next equation

 bk�t+1 (i) =  
1X
j=1

(��k)
j Et f�kt+j+1g �

�p (1� ��k) "

1� ��p�k
bpt (i)

+ (1� �) (1� ��k)

1X
j=0

(��k)
j Et fmst+j+1g

�(1� �) (1� ��k)

1� � (1� �)

1X
j=0

(��k)
j Et (it+j � �t+j+1 � �) ; (A7)

where  � 1 � �1(1��p)"
1���p�k . Averaging the last equation over all investing �rms and

subtracting the resulting equation from (A7) it is possible to write bk�t+1 (i) as a
function of bk�t+1 and bpt (i), as in the investment rule (A4). This allows us to impose
the following restriction on parameter � 2

� 2 =
�p (1� ��k) "

1� ��p�k � � 1 (1� �p) "
: (A8)

In order to derive the law of motion of capital, equation (A7) is aggregated over

all investing �rms and the resulting expression is combined with equation (A6). This

allows us to write

�kt+1 = �Et f�kt+2g+
1

�l
[(1� � (1� �))Et fmst+1g � (it � Et f�t+1g � �)] ;

(A9)

where ��1l = (1��k)(1���k)
�k

1��
1��(1��)

1
 
.

In�ation equation

The in�ation equation is derived in an analogous manner. Combining the log-

linearized �rst-order condition for price-setting (A1) with the investment rule (A4)
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gives

�bp�t (i) = �

1X
j=1

(��p)
j Et f�t+jg+

(1� ��p) (1� �)

1� �+ "�

1X
j=0

(��p)
j Et fmct+jg

�(1� ��p)�

1� �+ "�

1

1� ��p�k
bkt (i) ; (A10)

where � � 1 � �(1��k)��p�2
(1��+"�)(1���p�k) . Next, the last equation is averaged over all price

setters and the resulting expression is subtracted from (A10). After invoking the

price-setting rule (A3), the following restriction can be imposed on parameter � 1

� 1 =
(1� ��p)�

(1� �+ "�) (1� ��p�k)� � (1� �k) ��p� 2
: (A11)

Equations (A8) and (A11), when combined with the two stability conditions, de-

termine the two unknown parameters � 1 and � 2. Last, the in�ation equation is

obtained by averaging (A10) over price-setters and using (A5). This results in

�t = �Et f�t+1g+ �l mct; (A12)

where �l � (1��p)(1���p)
�p

1��
1��+"�

1
�
.
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Appendix B

Claim:

Fix �c and suppose that �k is chosen in such a way that we have �c = �l, i.e.

the two laws of motion of capital implied by the lumpy investment model and the

convex adjustment cost benchmark case coincide. This implies �l = �c, i.e. the two

in�ation equations implied by the two models are also identical. The two models

are therefore observationally equivalent, up to the �rst order.

Proof:

The strategy of the proof is as follows. First, it is observed that �l is equal to �c

if the respective values of two coe¢ cients in the two models are identical. Second,

it is shown that the respective sets of restrictions pinning down these coe¢ cients in

the two models are in fact identical, if the assumption of our claim is met. In what

follows these two steps are developed.

Step 1

Our starting point is the convex adjustment cost model. In that model parameter

�c is determined in the following way (see, Sveen and Weinke 2005)

�c =
(1� �p) (1� ��p)

�p

1� �

1� �+ �"

1

�c
; (B1)

where �c � 1 +
���p�2

(1��+�")(1���p�1) and parameters �1 and �2 are non-linear functions

of the structural parameters, as discussed below.17

17It should be noted that there is a typo in the de�nition of parameter � (which corresponds to
�c in the present paper) on page 38 in the appendix of Sveen and Weinke (2005). Coe¢ cient !
entering that de�nition should read 1 + �"

1�� +
��3
1��

��
1����2 . The mistake occurred, however, only

in the text. All the computations conducted in that paper are correct, to our best knowledge.
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The corresponding parameter in the lumpy investment economy, �l, is given by:

�l =
(1� �p) (1� ��p)

�p

1� �

1� �+ �"

1

�
; (B2)

where � � 1� ���p(1��k)�2
(1��+"�)(1���p�k) . Let �1 denote the particular value of the lumpiness

parameter which implies that we have �c = �l,
18 and also de�ne �2 � � (1� �1) � 2.

For this parameter choice we have � = 1+ ���p�2
(1��+"�)(1���p�1) , which shows that para-

meters �l and �c would take identical values, if we had �1 = �1 and �2 = �2.

Step 2

In order to show that we have �1 = �1 and �2 = �2, if the assumption of our

claim is met, we analyze the respective sets of restrictions which pin down the values

of these parameters in the two models. Our starting point is once again the convex

adjustment cost case. In that model parameters �1 and �2 are determined (jointly

with parameter ') by the following three non-linear equations and by two stability

conditions, which will be considered later:

' =
(1� ��p)�

(1� �+ �") (1� ��p�1) + ���p�2
; (B3)

�2 =
��p�1

��p�1 � 1
; (B4)

0 = ���2 + ��1�2 + ��2�p � (1� �p)' (��2 � �)�2 � ��p; (B5)

where � � 1 + � + �
"
and � � [1��(1��)]"

�c(1��)
.

Next, the lumpy investment model is analyzed. Parameters �1 and �2 are deter-

mined (jointly with parameter � 1) by three non-linear equations and by two stability

conditions, which will be considered later. Using the assumption of our claim, i.e.

setting �l = �c, allows us to write these three non-linear equations in the following

18This value is uniquely pinned down, as we are going to see.
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way:

� 1 =
(1� ��p)�

(1� �+ "�) (1� ��p�1) + ���p�2
; (B6)

�2 = � (1� �1) �p (1� ��1) "

1� ��p�1 � � 1 (1� �p) "
; (B7)

�c =
�1

(1� �1) (1� ��1)

1� � (1� �)

(1� �)

�
1� � 1 (1� �p) "

1� ��p�1

�
: (B8)

Finally, it is shown that parameters ', �1 and �2 and parameters � 1, �1, and �2 are

pinned down by two identical sets of restrictions under the assumption of our claim.

First, it is clear that equation (B6) takes the same form as its counterpart (B3).

Second, equation (B8) is rewritten in the following way:

1

1� ��p�1 � � 1 (1� �p) "
=

�1
(1� �1) (1� ��1)

1� � (1� �)

�c (1� �)

1

1� ��p�1
:

Substituting the last equation into (B7) allows us to write:

�2 =
��p�1

��p�1 � 1
;

which takes the same form as restriction (B4) above. Third, (B8) can be written as:

0 = �"+ "�1 + "��1 � "��21 + "��p�1 � "��p�
2
1 � "�2�p�

2
1

+"�2�p�
3
1 + �1�� ��p�

2
1�� "�1� 1� + "�p�1� 1�:

Substituting (B4) for �2 in equation (B5) and simplifying gives:

0 = �"+ "�1 + "��1 � "��21 + "��p�1 � "��p�
2
1 � "�2�p�

2
1

+"�2�p�
3
1 + �1�� ��p�

2
1�� "�1'� + "�p�1'�;

which shows that the two restrictions (B8) and (B5) take the same form as well.
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It still remains to be shown that the two stability conditions implied by the two

models are also identical under the assumption of our claim. But this can easily be

seen to be true. Since we know already that the candidate values for the relevant

parameters must be identical under our assumption, i.e. �1 = �1, �2 = �2 and

' = � 1 must hold for each candidate, we might rewrite matrix A in the appendix

in the following way:

A �

24 1 ' (1� �p)

0 1

35�1 24 �p 0

�2 �1

35 :
But this is exactly the matrix, which is used to check stability in the convex ad-

justment cost model. Under the assumption of our claim the two sets of conditions

determining the relevant coe¢ cients are therefore identical in the two models.
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