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1 Introduction

A variety of studies document that there is a positive correlation between price volatility and

trading volume for most types of financial contracts including stocks, Treasury bills, currencies and

various futures contracts. Theoretically this can be explained by new information on asset values

acting as the driving force on both market prices and trading volume. However, for many types

of financial contracts, movements in prices seem much “too large” to be attributed to movements

in the fundamental values of the underlying securities.1 A suggested explanation of this puzzle is

that prices are not merely driven by changes in systematic risk factors and asset payoffs but also by

changes in the expectations of heterogeneous agents, possibly facing asymmetric information. We

contribute to this discussion by studying the relationship between the volume-volatility relation and

detailed characteristics of the order book, at the intra-day level as well as in a daily cross-sectional

time series setting.

The main theoretical explanations for the volume-volatility relation are summarized in two

hypotheses. “The mixture of distribution hypothesis” states that the daily price change and the

trading volume are both mixtures of independent normals with the same mixing variable. Harris

(1986) links the hypothesis to asset pricing theory, and suggests that the mixing variable is the

process that directs the rate of flow of information from systematic risk factors into prices and

trading volume. “The dispersion of beliefs hypothesis” states that the volume-volatility relation

will be stronger the greater the dispersion of beliefs about security values among investors. The

dispersion of beliefs hypothesis is based on an assumption of asymmetric information and strategic

investor behavior. Uninformed traders cannot distinguish informed trades from liquidity trades,

and by reacting to trades with no information content, they increase both volatility and volume

relative to equilibrium values. Intuitively, models based on the two hypotheses should complement

rather than substitute each other.

A problem in empirical studies of the volume-volatility relation is that it is hard to test the

theoretical explanations in a standard way. The mixture of distribution hypothesis merely states

that when trades reflect information, prices will adjust to new equilibria over time. It is hard

to set up an alternative hypothesis against which this statement can be tested. Nevertheless, a

reconciliation of the general ideas behind the mixture of distribution hypothesis with empirical

predictions from market microstructure models may provide a deeper understanding of the price
1A standard reference for the stock market is Shiller (1981).
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discovery dynamics in financial markets.

In this paper, we first establish that the the standard volume-volatility relation exists also in

a pure limit order driven market.2 We then try to disentangle how the volume-volatility relation

emerges by investigating the order placements of investors. In order to do this, we divide the order

placement strategies into four groups depending on their aggressiveness. An interesting finding is

that within the group of aggressive orders, the most aggressive ones are submitted at the beginning

of the trading day. Orders in the passive group, on the other hand, are relatively more passive

in the beginning of the trading day. This is systematic across sub-periods, market caps and tick-

sizes. Assuming that the aggressive/passive orders are mainly submitted by informed/uninformed

investors, we interpret this as reflecting that informational asymmetries are more pronounced at

the beginning of the trading day, that there is competition among informed traders, and that

uninformed traders require a compensation for the higher risk of trading with informed traders

at the beginning of the day. This explanation is also supported by a decrease in various spread

measures during the trading day.

A central part of our study centers around the shape of the order book which we argue consti-

tutes a reasonable proxy for the dispersion of beliefs about asset prices. To capture the shape, we

use the average elasticity (or slope) of the supply and demand schedules in the limit order book.

The higher the elasticity (steeper the slope)3, the less dispersed are the bid and ask prices in the

order book. Hence, if the slopes of the supply and demand schedules in the order book are steep, we

interpret this as an indication that there is a high degree of agreement among investors about the

fair value of the security. This because orders are submitted close to the prevailing midpoint price.

Similarly, if the the slopes are gentle, we interpret this as an indication that the investors disagree

about the value of the security. We notice that, in case of asymmetric information, order placement

strategies will also reflect traders’ fear of being ripped off by someone with superior information.

In addition, high volatility may induce investors to submit orders further away from the midpoint

to reduce the probability of incurring a loss when reversing their position. On the other hand, the

high volatility may itself reflect that there is a high degree of uncertainty related to the valuation
2Our analysis also indicates that the number of transactions (as a component of volume) is a good proxy for the

mixing variable assuming a mixture of distribution explanation of the relation. This part of the analysis is largely
based on Jones et al. (1994). Using daily data of Nasdaq-NMS securities over the 1986-1991 period, they find that the
average size of trades has no information content on volatility beyond that contained in the number of transactions.
This finding is interpreted as supportive of a mixture of distribution hypothesis where the number of trades is a proxy
for the mixing variable (daily information arrivals).

3This is in the case of direct demand and supply curves (prices on the x-axis and accumulated volume on the
y-axis). In the case of inverted demand and supply curves, the relationship would be opposite.
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of the stock.

By investigating how the slope of the order book depends on the types and the aggressiveness of

submitted orders, we show that the slope may capture both uninformed traders’ fear of being ripped

off by informed traders and the dispersion of beliefs among investors about asset valuation. The

first component seems more pronounced at an intraday level, while the latter component becomes

important across firms and time. We find that there is a systematic negative relation between the

average slope of the order book and the price volatility on an intraday level as well as in a daily

time series cross section analysis.

Section 2 surveys the literature on the volume-volatility relation and motivates our study. Sec-

tion 3 describes our data sample and provides results on the basic volume-volatility relation in the

Norwegian equity market. Section 4 provides some summary statistics for the order book and dis-

cusses how to use this information to proxy for the heterogeneity of investors. Section 5 examines

in detail the order flow and order book on a intra-daily basis. Section 6 provides estimation results

on the relationship between the shape of the order book and the volume-volatility relation. Section

7 concludes the paper.

2 Literature

The early research into the volume-volatility relation is reviewed in Karpoff (1987). The main theo-

retical explanation from this period is known as the “mixture of distribution hypothesis” (hereafter

the MDH). According to the MDH, there is a positive correlation between daily price changes and

trading volume because both variables are mixtures of independent normals with the same mixing

variable. Originally, the MDH was suggested by Clark (1973) as an alternative explanation for

the observed leptokurtosis in the distribution of log price changes.4 The basic idea underlying the

hypothesis is that prices and trading volume are driven by a time-varying arrival rate of informa-

tion.5 Let ∆pi,t and vi,t be respectively the intraday price change and volume of trade resulting

from information event number i on date t, and let nt be the total number of information events
4Mandelbrot (1963) and Fama (1963) showed that the return distributions of commodity and stock prices were

leptokurtic, and well approximated by symmetric stable distributions with characteristic exponents between 1 and
2 (the normal distribution has a characteristic exponent equal to 2). An examination of the stable distributions
hypothesis for the Norwegian market is provided in Skjeltorp (2000) who shows that a characteristic exponent
between 1.6 and 1.7 best characterizes the Norwegian data.

5Copeland (1976, 1977)’s “sequential arrival of information” model which is later extended by Jennings et al. (1981)
and Jennings and Barry (1983) also predicts a positive relationship between volume and absolute price changes. The
main feature of the model is that information is disseminated to only one traders at a time, and the main criticism
of the models is that traders cannot learn from the market prices as other traders become informed.
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during day t. Assume that (i) the number of events each day, nt, varies across days, and that (ii)

the intraday price changes, ∆p, and trading volumes, v, are jointly independently and identically

distributed with finite variances.6 The daily price change and trading volume are equal to the sum

of respectively the intraday price changes and trading volumes, i.e.

∆Pt =

nt∑
i=1

∆pi,t and Vt =

nt∑
i=1

vi,t (1)

where ∆Pt is the daily price change and Vt is the daily trading volume. Given equation (1), and

provided that nt is large, the joint distribution of the daily price change and volume of trade will be

approximately bivariate normal conditional on nt.7 The volume-volatility relation arises because

both price changes and trading volume are likely to be large when the number of information events

is large and small when the number of information events is small.8

The MDH simply states that price changes and trading volume are directed by the flow of new

information. It does not say anything about what type of information or how this information is

revealed to investors. Hence, an important limitation of the hypothesis is that it does not address

the role of economic agents or market structure for prices and trading volume. Later theoretical

work on the volume-volatility relation centers around these issues. Harris (1986) links the MDH to

asset pricing theory by suggesting that the mixing variable directs the rate of flow of information

from systematic risk factors. A problem with this interpretation is that the movements in prices

for many types of financial contracts seem much “too large” to be attributed to movements in the

fundamental values of the underlying securities only.9 This fact suggests that prices are not merely

driven by changes in systematic risk factors and asset payoffs but also by changes in the expectations

of heterogeneous agents. Figure 1 illustrates the information structure in a standard asset market

for the two main types of such models. Panel (a) in the figure describes a “differences in opinion”

model, while panel (b) describes a market microstructure model with asymmetric information.

In the “differences of opinion” model, investors are assumed to act differently on the same news,

i.e. trading is induced by differences of opinion about publicly available information. Beliefs are

updated using Bayes rule. All traders are rational, but they view others as having irrational models.
6Our explanation of the MDH is largely based on Harris (1987).
7See Harris (1987), page 129.
8The variation in the daily number of information events implies that the expectation of the unconditional distri-

bution is a weighted average (or “a mixture”) of the conditional distributions.
9A standard reference for the stock market is Shiller (1981).
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Figure 1: The Information Structure
The figure illustrates the assumed information structure in a “differences in opinion” model (panel a) and a market microstruc-

ture model (panel b). From the fundamental asset pricing equation, Pi,t = Et[
∑∞

j=0 Mt+jXi,t+j], we know that relevant

information about the price, P, of an asset, i, may come from either news about the stochastic discount factor, Mi, or news

about the payoff, Xi. In the “differences in opinion” model in panel a, all news arrives as public information. Some types of

information is immediately incorporated into the asset price. For other types of information, traders disagree on the effects

on the valuation of the underlying assets. Trading occurs whenever the cumulative information for a particular type of trader

switches from favourable to unfavourable. In the market microstructure model in panel b, new information arrives as either

public or private information. Public information is immediately incorporated into the asset price. Informed traders trade on

the basis of private information. Uninformed investors are either liquidity traders or speculators. The uninformed investors are

trying to infer the private information from the trades, Nt. However, they are not able to separate informed and uninformed

trades.

Price
Xt 

OptimistsPublic information

Nt

Mt

Pessimists

Price

Xt 

Recent trades 
and order flow

Informed trades

Uninformed Speculators
trades

Liquidity trades

Private information

Nt

Mt

(a)

(b)

Public information

Harris and Raviv (1993) explain the volume-volatility relation by a model of this kind. Two groups

of risk neutral speculators receive the same information but disagree on the extent to which it is

important. As long as one of the groups remain more optimistic than the other, there is no trading.

Trading occurs only and whenever the cumulative information for one of the trader groups switches

from favorable to unfavorable.

In the standard asset pricing models, prices adjust immediately as a result of new information,

and the trading process itself does not convey incremental information which is relevant to price

determination. This is a plausible assumption for some kind of news. Other types of news are

likely to be dispersed and not immediately available to all investors in aggregated form. Evidence

of the existence of dispersed news is given in French and Roll (1986) who document empirically

that asset prices are much more volatile during exchange trading hours than during non-trading
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hours. This phenomenon cannot be reconciled with a standard asset pricing model unless there is

a systematic tendency for price relevant information to arrive during normal business hours only.

Modelling dispersed information is the essential feature in the market microstructure models illus-

trated in panel (b). In these models, there is a group of investors who trade on the basis of private

information. The market maker and the uninformed investors can only infer this information from

trades and order flows. The room for strategic behavior among agents differ in different models.10

Shalen (1993) use a market microstructure model to study the volume-volatility relation. In the

model, both trading volume and price volatility increases with the dispersion of traders’ expecta-

tions about fundamental values. This is called the “dispersion of beliefs hypothesis”(hereafter the

DBH). The dispersion of beliefs about the value of a security is assumed to be wider the larger

the share of the traders in the security that consists of uninformed investors. Uninformed traders

cannot distinguish informed trades from hedgers’ liquidity trades. Instead they react as if all trades

were informative, and thus they increases both volatility and volume relative to equilibrium values.

Harris (1986) finds both empirical support for the MDH based on cross sectional tests of common

stocks continuously traded on the NYSE or one of the regional exchanges in the period 1976-1977.

The critical assumption behind the tests is that the distribution of the mixing variable is not

identical for all securities. Assuming that transactions take place at a uniform rate in event time,

Harris (1987) find both theoretical motivation and empirical support for the use of the daily number

of transactions as a proxy for the time-varying unobserved information evolution rate.11 However,

since the arrival rate of new information is unobservable, we do not know whether parts of the

volume-volatility relation is a result of the actions of heterogeneous traders. If trading is self-

generating, the daily number of transactions would be the true mixing variable rather than a proxy

for the unobserved information evolution rate.

The problem caused by a lack of ability to interpret the mixing variable can be illustrated

by looking at the study of Jones et al. (1994). Using a simple regression approach on daily data

of Nasdaq-NMS securities over the 1986-1991 period, they find that both volatility and trading

volume are positively correlated with the number of daily transactions. However, the average size
10In Kyle (1985), informed investors attempt to camouflage their trades by spreading them over time. Kyle’s model

implies that larger volumes support more informed traders. In Admati and Pfleiderer (1988), a certain amount of the
uninformed investors are allowed to act strategically by having the discretion to time their trading. This is shown
to imply that within-day trading becomes concentrated. Hence, price changes and transactions are bunched in time,
and the effect of volume on price movements will depend on recent volume levels.

11Harris (1987) derives and tests several implications of the MDH for transactions data on a sample of 50 NYSE
stocks that traded between December 1, 1981 and January 31, 1983. The results from the tests are supportive of the
MDH.
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of trades contain no additional information about volatility beyond that contained in the number

of transactions. If the number of transactions is a good proxy for the mixing variable, this result

is supportive of a pure MDH; “..volatility and volume are positively correlated only because both

are positively related to the number of daily information arrivals (the mixing variable).” However,

trade size would also be unimportant if informed traders camouflage their information, for example

by splitting their orders into medium size trades as suggested by the “stealth trading hypothesis”

of Barclay and Warner (1993). In this case, the number of daily transactions would be the true

mixing variable and the results in Jones et al. (1994) would also support an explanation of the

volume-volatility relation based on heterogeneous traders.12

Daigler and Wiley (1999) perform an indirect test of the DBH. Using the argument that there

is a greater dispersion of beliefs among uninformed traders than among informed traders, and

facilitating the possibility of distinguishing traders with different types of information in the futures

markets, they test whether uninformed traders contribute to volatility. The results of their study

supports the DB-hypothesis: “..uninformed traders who cannot differentiate liquidity demand from

fundamental value increase volatility.”13

3 The Norwegian equity market

3.1 The Oslo Stock Exchange

Our data set is from the the Oslo Stock Exchange (OSE) in Norway.14 Norway is a member of

the European Economic Area, and its equity market is among the 30 largest world equity markets

by market capitalization.15 Table 1 report some general statistics for all the companies listed on

the OSE. At the end of 2001, 190 firms were listed on the exchange with a total market value of

about 657 mill NOK. 29 percent of this value was owned by foreign investors. The OSE is the
12In addition, in order driven markets, a large order is often automatically executed against many smaller orders

by the automatic matching system. Thus, even though the original order is large, it may show up as many small
trades as it is matched against several smaller orders rendering the average daily trade size unimportant in explaining
volatility.

13In a similar study, Bessembinder and Seguin (1993) examine the volume-volatility relation and the contribution
to volatility from market depth (proxied by open interest) in eight physical and financial futures markets in the
1982-1990 period. Unexpected volume is found to have a larger effect on volatility than expected volume, and large
open interest is found to mitigate volatility.

14We obtained the data directly from the exchange’s surveillance system. The SMARTS c© system is the core of
the exchange’s surveillance operations. Through access to the SMARTS c© database, we obtained all the information
on orders and trades in the market

15Source is FIBV (International Federation of Stock exchanges). Notable Norwegian listings include Norsk Hydro,
Telenor, and Statoil.
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only regulated market place for securities trading in Norway. Since January 1999, it has operated

as a fully computerized centralized limit order book system similar to the public limit order book

systems in e.g. Paris, Toronto, Stockholm and Hong Kong.

The OSE allows the use of limit orders, market orders, and various customary order specifi-

cations.16 As is normal in most electronic order driven markets, the order handling rule follows

a strict price-time priority.17 All orders are submitted at prices constrained by the minimum tick

size for the respective stocks which is determined by the price level of the stock.18

The trading day at the OSE comprises of two sessions; the “pre-trade” session starting at 9:30

and ending with an opening auction at 10:00, and the “continuous trading” session from 10:00

until the trading closes at 16:00.19 During the pre-trade session, brokers can register trades that

were executed after the close on the previous day as well as new orders. The pre-trade session is

ended with an opening auction, when all the orders registered in the order book are automatically

matched if the prices are crossing or equal. The quoted opening price is thus the price that clears

the market. During the continuous trading session, electronic matching of orders with crossing or

equal price generates transactions. Orders without a limit price (market orders) have automatic

price priority and are immediately executed at the best available prices. At the OSE, market orders

are allowed to “walk the book” until it is fully executed. Any remaining part left of the market

order is removed from the order book. This is different from the treatment of market orders at

e.g. the Paris Bourse, where any remaining part of an unfilled order is automatically converted to

a limit order at the current quote.20

3.2 The data sample

The data set consists of every order and trade that occurred at the OSE in the period from February

1999 through June 2001.
16Participants can also submit hidden orders. When an order is submitted as a hidden order, only a specified

fraction of the underlying order is visible to the market.
17When a visible part of a hidden order is executed, the next part of the hidden order looses its time priority and

is placed at the back of the queue at the respective price level.
18For prices lower than NOK 9.99 (Norwegian kroner) the tick size is NOK 0.01, between NOK 10 and NOK 49.9

the tick size is NOK 0.1, between NOK 50 and NOK 999.5 the tick size is NOK 0.5 and for prices above NOK 1000
the tick size is NOK 1.

19Prior to February 14 2003, the closing price of the market was the price of the last official transaction. From 14
February 2003, the OSE has started to close the market through a closing auction similar to the opening auction to
improve the quality of the official closing price. The closing auction is conducted from 16:00 until 16:10. This change
does not affect our sample, since our sample stops in July 2001.

20The difference implies that market orders at OSE are more aggressive than market orders at the Paris Bourse.
At the Paris Bourse, market orders are essentially marketable limit orders.
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Table 1: Oslo Stock Exchange (OSE) - general statistics
All numbers in the table are official statistics obtained from the OSE annual reports.

1999 2000 2001

Number of registered firms 195 192 190

Market capitalization (mill. NOK) 531.65 618.36 656.69
NOK/USD exchange ratea 7.81 8.81 8.99
Turnover velocityb 88.6 96.7 85.9
Total dividends (mill. NOK) 11427 9365 10444

Ownership structure
Number of shareholders (individuals) 351062 394304 426739
-norwegians 350485 393645 426183
-foreigners 577 659 556
Foreign ownership (% share capital) 25.43 % 31.46 % 25.49 %
Foreign ownership (% market capitalization) 32.01 % 35.66 % 29.04 %

Market development
Market index level (TOTX) 1153.74 1366.05 933.22
OSE benchmark index 189.76 195.79 167.18
OSE benchmark index return (%) 48.45 3.18 -14.61

aAverage midpoint rate for the respective year. bTurnover velocity: Average of annualized turnover per month divided by
market value at the end of each month. Only capital registered in the VPS.

The trade data contain, for all trades, quantity transacted, a time stamp, brokerage house ID

on each side, and an ID for the house initiated the trade as well as whether the house was the buyer

or a seller in the transaction. Every trade is linked to the underlying orders through the order ID.

Thus, if a large order is executed against many smaller orders resulting in several smaller trades,

we can trace each executed part back to the initial order. There are also additional flags attached

to each trade that identify special features of the trade such as whether it was an odd-lot trade, an

off-exchange trade, a cross (within the same or different brokerage houses), and whether a trade

results from a market order or a limit order. The order book data contain all entered orders and

all deletions and amendments of orders already in the order book. The order book is described in

more detailed in section 4.

In table 2 we provide some descriptive statistics of the trade data throughout our sample

period. A large part of the listed firms are traded quite infrequently. Since we examine intraday

data, including infrequently traded firms would introduce a large amount of noise into our analysis.

We therefore filter the firms based on trading activity through the sample period. The first filtering

criterion is that the firm must have been traded in at least 400 out of 597 days, or about 70% of

the trading days, and the second criterion is that the firm must have an average of 5 trades per day
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to be included in our sample. Once the first criterion is applied, the second criterion only removes

a few companies from our sample. After the filtering we are left with 108 firms. Note that there

were 195, 192 and 190 listed firms at the end of 1999, 2000 and 2001 respectively. The numbers in

table 2 are daily cross-sectional averages across the filtered firms.

The table shows that there has been increasing trading activity in the sample period with the

total number of trades having tripled and the volume in Norwegian kroner (NOK) having doubled.

Further, the average number of daily trades across firms has more than doubled from 32 in the first

half of 1999 to 79 in the first half of 2001.21 The increase in activity has also been accompanied by

a decrease in the average percentage spread. To give a better picture of the diversity of the sample,

we divide the sample into four portfolios based on their market capitalization value.22 The general

picture is that the number of trades, the trading volume (both in shares and NOK), the prices

and the quoted spread increase across firm size portfolios, while the average daily volatility23, the

average trade size and the quoted percentage spread decrease.

We also report the average correlations between the trading volume, the trade size and the

number of transactions. The correlation structure in our sample is quite similar to the one docu-

mented for the US market in Jones et al. (1994). The correlation between the average trade size

and the number of trades is low, and both the average trade size and the number of trades have

high positive correlations with share volume. Hence, the two components of share volume seem

to contain different information about volume. The same structure is evident when we calculate

correlations over sub-periods of half a year. Note, however, that the correlation between share

volume and average trade size has decreased from around 62 percent in the first half year of 1999

to around 20 percent in the first half of 2001.

3.3 The volume-volatility relation

To investigate if there is a volume-volatility relation in our data sample, we follow the regression

approach in Jones et al. (1994). First, we measure the daily return volatility using the standard

procedure in similar empirical studies,24 by running the following regression for each firm i,
21At the same time, the average trade size has gone down from 3429 shares to 2648 shares. This decline is most

likely related to the introduction and growth of online trading in the sample period, since these traders generate a
lot of trades of small sizes. During our period, the fraction of total trades coming from pure online brokerage houses
has increased from 0% to almost 10%.

22The firms are assigned to a market capitalization portfolio based on their market capitalization value at the
beginning of each year.

23The volatility measure is discussed in detail the next section.
24See Schwert (1990), Bessembinder and Seguin (1993), Jones et al. (1994), and Daigler and Wiley (1999).
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Table 2: Descriptive statistics and correlations across subperiods and size portfolios
The table shows some descriptive statistics for the whole sample period as well as for sub-periods of half years. The market

cap groups are resorted at the beginning of each year to account for large changes in market cap for some firms across years.

Groups 1 consists of the 25% smallest firms while group 4 is the 25% largest firms. The Pearson correlation coefficients between

the trading activity variables are also reported. Market values are reported in mill. NOK. The number of trades (N) is the

average number of daily trades across all firms. The share volume (V) is the average daily share volume (in 1000 shares) across

all firms. The average trade size (AV) is the average number of shares in each trade averaged across all firms for the sample

period. The quoted spread is calculated as a percent of the spread midpoint. Effective spread is calculated as the difference

between the execution price and the spread midpoint (in per cent of the spread midpoint) multiplied by two.

Sub-periods (half years) Market Capitalization groups
Whole
sample 1999.1 1999.2 2000.1 2000.2 2001.1 1 2 3 4

Aggregate statistics:
Number of firms 108 107 108 108 108 104 27 27 27 27
Trades (in thousands) 3724 328 545 946 953 953 390 522 504 2309
Shares traded (mill.) 9585 1339 2300 2027 2072 1847 1707 1922 919 5037
NOK volume (bill.NOK) 648 67 131 152 153 146 21 44 68 516

Cross-sectional
averages:
Market cap (mill.NOK) 5259 4120 4714 5507 6127 5836 354 938 2339 13978
Price 88.4 71.8 82.7 102.7 102.3 81.9 23.34 62.43 105.66 150.73
Daily volatility (%) 2.71 % 2.64 % 2.89 % 2.98 % 2.48 % 2.57 % 3.49 % 2.98 % 2.30 % 2.29 %
Shares traded (thousands) 151 130 167 155 151 153 116 171 78 288
Trades 58 32 40 72 69 79 28 41 41 148
Tradesize (AV) in shares 2890 3429 3365 2453 2551 2648 4859 2684 1549 1912
Quoted spread (NOK) 1.65 1.55 1.62 1.79 1.78 1.50 0.94 1.63 2.11 1.57
Effective spread (NOK) 1.22 1.12 1.14 1.34 1.36 1.13 0.68 1.20 1.59 1.16
Quoted % spread (midpt.) 3.04 % 3.66 % 3.49 % 2.62 % 2.55 % 2.89 % 4.74 % 2.77 % 2.40 % 1.34 %
Effective % spread (midpt.) 2.22 % 2.67 % 2.48 % 1.92 % 1.89 % 2.15 % 3.38 % 2.03 % 1.85 % 0.99 %

Correlations:
Corr(AV,N) -0.061 0.045 0.051 -0.091 -0.085 -0.084 -0.116 0.280 0.172 -0.066
Corr(V,N) 0.525 0.660 0.591 0.724 0.568 0.442 0.690 0.480 0.847 0.365
Corr(V,AV) 0.330 0.358 0.438 0.290 0.288 0.201 0.393 0.932 0.504 0.759
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Ri,t =

5∑
k=1

αi,kDk,t +

12∑
j=1

βi,jRi,t−j + ε̂i,t (2)

where Ri,t is the return of security i on day t, and Dk,t is a day-of-the-week dummy for day k.

To avoid measurement errors due to the bid-ask bounce, we calculate returns from the average

of bid-ask prices at the close. The 12 lagged return regressors estimate short-term movements in

conditional expected returns. The residual, ε̂i,t, is an estimate of the unexpected return of security

i on date t. Next, we estimate the regression equations suggested in Jones et al. (1994) to determine

the relative effects of number of trades (N) and trade-size (AV) for volatility,

Model I: |ε̂t,i| = αi + αi,mMt + βiAVi,t +

12∑
j=1

ρi,j|ε̂i,t−j| + ηi,t (3)

Model II: |ε̂t,i| = αi + αi,mMt + γiNi,t +

12∑
j=1

ρi,j|ε̂i,t−j| + ηi,t (4)

Model III: |ε̂t,i| = αi + αi,mMt + βiAVi,t + γiNi, t +

12∑
j=1

ρi,j|ε̂i,t−j| + ηi,t (5)

The ρi,j’s measures the persistence in volatility across 12 lags. Mt is a dummy variable that is

equal to 1 for Mondays and 0 otherwise, AVi,t is the average trade size (total number of shares

traded divided by the number of transactions for stock i on date t), and Ni,t is the number of

transactions in security i on date t. The regressions are run for each firm and then the parameter

estimates are averaged across firms.

The first part of table 3 provides the results from the estimation of regression equations 3-5

using daily returns for all companies in our filtered sample. Overall, our results are very much in

line with the results in Jones et al. (1994). The explanatory power of model 2 (with respect to the

adjusted R-squared), where volume is measured by the average number of daily trades, is almost

the double of the explanatory power of the model 1, where volume is measured by the average

trade size. Moreover, the average trade size has little marginal explanatory power when volatility

is conditioned on number of transactions in model 3. These results are further supported by the

characteristics of the sampling distributions of individual-firm coefficients and t-statistics of the

two variables. In model 3, 95.4 percent of the coefficients for the average number of trades are

statistically significant, and 99.1 percent of the average number of trades coefficients were greater

than zero. Similar numbers for the average trade size were respectively 24.1 percent and 57.4
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percent.

As a robustness check we also estimate the equations for sub-periods of half years. The results

from the whole sample regression are confirmed in the sub-sample regressions (not shown in the

paper). Most notably, the γ̂ estimates of the effect of trades (N), as well as their distributional

properties, are very stable across sub-periods. The β̂ estimates, however, vary considerably across

sub-periods and are less significant than γ̂ when for model 1 relative to model 3.

Jones et al. (1994) find that trade size has some information content for some of the smaller

Nasdaq-NMS firms. This finding is interpreted as supportive of the notion that private-information

based trading is important only for the smallest firms on the stock market. To check for similar

features in our data sample, we re-estimate the three regression models on the four size portfolios.

The results from these estimations are presented in the second part of table 3. Generally, the results

from running separate regressions for each size portfolios follow the same pattern as the results from

running the regression for the whole sample. However, while Jones et al. (1994) find that trade size

has stronger explanatory power for the small firms, we find the opposite result that the explanatory

power of trade size is the strongest for the largest firms. On the other hand, only about half of the

trade size estimates from the single firm regressions are greater than zero indicating that the effect

may not be very systematic cross-sectionally.

4 Characteristics of the order book

In this section we provide some descriptive statistics of the order book and discuss how to use order

book information to investigate the heterogeneity of investors in the market.

Our order data are extraordinarily rich. For each order, we have a time stamp, a unique order

id, the disclosed/undisclosed quantity as well as flags indicating whether the order was a buy or

sell order, whether the order is a new order, a deletion of an order or an amendment to an existing

order (price change and/or volume change). In addition, a unique brokerage house ID is attached

to each order. Moreover, compared to the Paris Bourse data in Biais et al. (1995), our data are

not restricted to include placements, amendments and deletions of orders within the 5 best quotes.

We have access to all orders and are able to reconstruct the full order book at any point of time.

The descriptive statistics discussed in this section are based on 6 hourly spaced snapshots of the

entire order book during each trading day for each listed company during our sample period25. The
25The order book is rebuilt at 10:30, 11:30, 12:30, 13:30, 14:30 and 15:30 each trading day for each firm. We
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Table 3: Regression results - whole sample and size portfolios
The table show the results from the estimation of three regression models of the volume/trade size -volatility relation across

market capitalization portfolios as suggested in Jones et al. (1994):

Model I: |ε̂t,i| = αi + αi,mMt + βiAVi,t +
12∑

j=1

ρi,j|ε̂i,t−j| + ηi,t

Model II: |ε̂t,i| = αi + αi,mMt + γiNi,t +
12∑

j=1

ρi,j|ε̂i,t−j| + ηi,t

Model III: |ε̂t,i| = αi + αi,mMt + βiAVi,t + γiNi, t +

12∑
j=1

ρi,j|ε̂i,t−j| + ηi,t

Using the Jones et al. (1994)’s notation we have that “|εt,i| is the absolute value of the return of security i in period t, conditional

on its own 12 lags and day-of-week dummies, Mt is a dummy variable that is equal to 1 for Mondays and 0 otherwise, AVi,t is

the average trade size, Ni,t is the number of transactions for security i on day t, and the coefficients ρi,t measure the persistence

in volatility.” Column 3-5 show parameter estimates averaged across all individual firm regression equations, while column 6-9

show the parameter distribution. β̂ is the average parameter estimate for the average trade size variable (AV), γ̂ is the average

parameter estimate for the number of trades variable (N). In the distribution of estimates column we report, respectively, the

percentage of β̂ and γ̂ estimates over all single firm regression equations that are significant (has a t-value greater than 2). In

the last two columns we report the percentage of parameter estimates that are greater than zero. The first part of the table

shows the results from running the regression equations over the whole sample. The second part of the table shows the similar

results when we split the sample into four size portfolios.

Parameter estimates Distribution of estimates

Model Firms β̂ (AV) γ̂ (N) adj. R2 % t(β̂)>2 % t(γ̂)>2 % β̂ >0 % γ̂ >0

Model I: Tradesize (AV) 108 0.145 - 0.057 26.9 % - 81.5 % -
Model II: Trades (N) 108 - 0.031 0.145 - 95.4 % - 100.0 %
Model III: Both (AV,N) 108 0.053 0.031 0.149 22.2 % 94.4 % 58.3 % 100.0 %

Model I: Tradesize (AV)
1 (small) 27 0.145 - 0.080 16.2 % - 78.4 % -
2 27 0.219 - 0.055 18.2 % - 77.3 % -
3 27 0.274 - 0.048 19.0 % - 64.3 % -
4 (large) 27 1.021 - 0.038 30.8 % - 79.5 % -

Model II: Trades (N)
1 (small) 27 - 0.052 0.174 - 89.2 % - 97.3 %
2 27 - 0.028 0.147 - 75.0 % - 95.5 %
3 27 - 0.036 0.136 - 81.0 % - 95.2 %
4 (large) 27 - 0.014 0.174 - 79.5 % - 92.3 %

Model III: Both (AV,N)
1 (small) 27 0.079 0.053 0.175 10.8 % 86.5 % 64.9 % 97.3 %
2 27 0.076 0.030 0.148 4.5 % 75.0 % 54.5 % 95.5 %
3 27 0.075 0.036 0.140 16.7 % 78.6 % 45.2 % 95.2 %
4 (large) 27 0.237 0.014 0.179 30.8 % 82.1 % 35.9 % 94.9 %
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sample period consists of a total of 597 trading days.

4.1 Composition of orders

In a limit order market, participants either demand liquidity through market orders or supply

liquidity through limit orders to buy or sell. Whether an investor choose to use a market order

or a limit order will depend on his or her motivation for the trade and how pre-committed he

or she is to execute it. In the market microstructure literature, one typically makes a distinction

between informed investors and uninformed investors (or liquidity traders). An uninformed investor

perceives the current market prices as the correct price, and hence, is mainly concerned about

minimizing transaction costs given the degree of trade urgency. The more quickly a liquidity trader

needs to trade, the more aggressive order he or she has to submit to obtain price and time priority.

Liquidity traders who need to buy or sell large amounts of shares will typically try to minimize

the price impact from their trades by following different order splitting strategies or by using

hidden orders conditional on current market conditions. Informed traders want to exploit their

information advantage. Typically, the information concerns asset payoffs.26 If the information is

“short lived”, informed traders prefer aggressive order placement strategies to extract the profits

of their information as quickly as possible before it becomes common knowledge. Especially if the

private valuation is far away from the current market price. If the information is “long lived”, it

may be more profitable to work the orders into the market through orders of average sizes over

time (”stealth trading”) or by hidden orders. Hence, both informed and uninformed traders may

act to minimize the price impact from their trades to reduce execution costs, but the underlying

motivation for their trading is different. After the trades have been executed, only the trades of

informed investors should have a permanent price effect contributing to price discovery.

Price formation in a limit order market was first modeled by Glosten (1994). In this model,

privately informed investors are assumed to submit market orders while uninformed investors are

assumed to submit limit orders. Hence, the choice between market orders and limit orders is not

explicitly modelled. Handa and Schwartz (1996) analyze the rationale for limit order trading based

on an analytical framework where traders face a trade off between the gains from supplying liquidity

exclude order volume above/below 100 ticks away from the inner quotes. For a stock trading at NOK 100 with a
minimum tick size of NOK 0.5 this would mean that orders above NOK 150 and below NOK 50 is excluded from our
calculations. Our sample period stretches from February 1999 through May 2001.

26The information advantage may also concern the likelihood of an information event or the exposure to informed
trading, cf Harris and Hasbrouck (1996) and Foucault et al. (2003b).
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and the losses from trading with informed investors. Based on a simple empirical test they find

that limit orders seem to be better than market orders for traders with relatively well-balanced

portfolios. Harris and Hasbrouck (1996) analyze empirically the tradeoffs involved in the choice

between market orders and limit orders by computing several order performance measures for a

sample of NYSE SuperDOT orders. Their main findings are that limit orders placed at or better

than the best quotes generally perform better than market orders, and that passive limit order

traders cannot profitably operate as quasi-dealers in competition with the specialists. Foucault

(1999) use a game theoretic model to study price formation and order placement decisions in a

limit order market. By using limit orders, traders get better execution prices at the cost of non-

execution risk and a winners curse problem. Both Handa and Schwartz (1996) and Foucault (1999)

predict a positive relation between the proportion of limit orders in the market and price volatility.

More specifically, in Handa and Schwartz (1996), increased volatility makes the gains from supplying

liquidity exceed the loss from trading with informed investors, and in Foucault (1999) increased

volatility makes market orders more costly relative to limit orders. In addition, Foucault et al.

(2003a) model a limit order market where traders are characterized by different impatience and

choose between market orders and limit orders in order to minimize their transaction costs. In

equilibrium, the less patient traders are likely to demand liquidity while the more patient traders

are likely to provide it.

We group the orders in our sample into four types based on their trading aggressiveness. “Market

orders” are orders with no limit price. “Aggressive limit orders” are orders that are placed at the

opposite quote (marketable limit order) or at a price further away from the best quote on the

opposite side.27 “Quote improving orders” are orders that are placed in between the inner quotes,

and “Passive orders” are orders that are placed at the best (same side) quote or further away from

the market. Panel A in table 4 shows the composition of orders and the order book activity for

our data sample. The numbers in the table are daily cross sectional time series averages of order

volumes (in shares), and the number of orders submitted. The numbers are averaged over each of

the three years in the sample as well as over market capitalization quartiles.28

From the table, we can see that there is a great deal of heterogeneity in order placements among the

traders in the market. The use of market orders is modest, however, market orders and aggressive
27A marketable limit order is submitted at the opposite quote. If the volume at the opposite quote is greater than

the order size, a marketable limit order is essentially a market order.
28Each firm is assigned to a market capitalization quartile at the beginning of each year.
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Table 4: Order types, order sizes and order book distribution
Panel A in the table shows daily cross sectional averages for different groups of orders. Limit orders are classified into three

different types based on their aggressiveness. Market orders (MO) constitute a separate group. Passive orders are orders

that are submitted at the best (same side) quote or further away from the market. Quote improving orders are orders that

are submitted in between the inner quotes prevailing at order submission, and aggressive orders (Aggr.) are orders that are

submitted at the opposite quote (marketable limit order) or at a price further away from the market on the opposite side. Panel

A also provide statistics on the average order size (in shares) for each order class. The statistics are calculated across all firms

as well as market capitalization quartiles with yearly sorting. The numbers in parantheses are each order class’ fraction of total

orders. Panel B shows the daily average fraction of accumulated volume in the order book (both bid and ask side) averaged

across all firms. The statistics is calculated across all firms, across minimum tick sizes and market capitalizations.

PANEL A: Order types and order sizes

Submitted orders Order sizes

Total Quote Quote
Firms orders Passive impr. Aggr. MO Passive impr. Aggr. MO

All firms 108 94 42 (0.44) 15 (0.16) 34 (0.36) 4 (0.04) 6428 7063 5882 1715

Market capitalization quartiles

1 (small) 27 45 22 (0.45) 10 (0.21) 14 (0.31) 3 (0.06) 10708 11501 9824 4341
2 27 52 23 (0.43) 10 (0.19) 18 (0.34) 3 (0.05) 6244 7460 5634 1382
3 27 53 22 (0.41) 10 (0.19) 19 (0.37) 3 (0.05) 3437 3900 3038 531
4 (large) 27 224 100 (0.45) 31 (0.14) 87 (0.39) 7 (0.03) 5324 5392 5032 605

PANEL B: Order book volume distribution (normalized)

Minimum tick size ATQ +/- 1 tick +/- 5 tick +/- 10 tick +/- 20 tick +/-50 tick +/-100 tick

All firms 20.9 % 34.7 % 56.8 % 69.4 % 78.4 % 88.6 % 100.0 %

Minimum tick size

0.01 20.2 % 30.8 % 37.8 % 49.0 % 60.1 % 82.2 % 100.0 %
0.1 22.2 % 34.2 % 53.2 % 67.4 % 79.4 % 91.7 % 100.0 %
0.5 22.3 % 39.1 % 65.8 % 78.4 % 88.1 % 95.5 % 100.0 %

1 7.0 % 10.7 % 17.6 % 25.1 % 38.8 % 70.0 % 100.0 %

Market capitalization quartiles

1 (small) 19.1 % 29.7 % 45.2 % 56.6 % 68.2 % 84.0 % 100.0 %
2 21.6 % 34.9 % 56.3 % 69.6 % 79.9 % 91.1 % 100.0 %
3 23.6 % 38.3 % 62.7 % 75.5 % 83.8 % 92.6 % 100.0 %
4 (large) 19.3 % 34.6 % 62.9 % 75.9 % 84.3 % 91.0 % 100.0 %
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limit orders together constitute around 40 percent of the average daily number of submitted orders.

Measured in number of shares, there are quite large variation in the size of the submitted orders

across order classifications.29 Quote improving orders are the largest for the entire sample as well

as within market capitalization groups, while market orders are the smallest. This pattern is also

systematic across sub periods (not shown in the table). Measured over the whole sample, on average

94 orders are submitted during a trading day for a firm. The activity is considerably higher for the

largest firms than for firms in the other groups. The average daily number of orders submitted in

this category was 224, while the similar average for the three other groups ranged from 45 to 53.

For comparison, Biais et al. (1995) report an average of 160 orders for the Paris Bourse in 1995.

In Panel B in table 4, we show the distribution of volume in the order book averaged across all

firms and dates. At each tick level, the fraction of total shares in the order book is averaged over the

6 order book snapshots.30 The table shows the order book distribution across minimum tick sizes

and market capitalization quartiles.31 Around 35 percent of the order book depth is concentrated

at the quotes or plus/minus one tick from the quotes. This is quite stable both across tick sizes

and across market cap quartiles. Note that the depth within +/- 5 ticks, which is what Biais et al.

(1995) investigate, only includes 56 percent of the total order book depth in our sample. There

does not seem to be large differences in order depth across market capitalization quartiles. The

largest tick size category is special in that it only contains one, highly volatile and very actively

traded, company (as much as 30 percent of the order depth lies between 50 and 100 ticks away

from the quotes).

4.2 Heterogeneity of investors

In section 3 we established that there exists a similar volume-volatility relation in the Norwegian

equity market as has been found for the US by e.g. Jones et al. (1994) and in the UK by Huang

and Masulis (2003). If we interpret the number of trades as a proxy for the mixing variable, our

results also support the MDH.
29A part of this variation can probably be explained by differences in the price level of the stocks, both over time

and over market capitalizations.
30For instance, at the ask side of the book for one company/snapshot, we divide the aggregate number of shares

at each tick by the total number of shares supplied (offered) at that time/snapshot. We do this for each snapshot,
and average across all snapshots on the particular date to obtain the average fraction supplied on each tick for the
security. Since we limit the order book to orders within +/- 100 ticks from the bid ask midpoint, the fraction of
aggregate volume at +/- 100 ticks is 100%. The limit on 100 +/- ticks result in that we disregard less than 5 percent
of our sample.

31If a firm trades across two minimum tick sizes on the same day, we remove that company for that day from the
sample. The results do not change if we include these observations.
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The limit order book reflects aggregated buy and sell interests at various prices. Each ask (bid)

price reflects the lowest (highest) price at which different investors are willing to sell (buy) the

security, given their motivations for the trade and their beliefs and information about the value

of the company at a particular point in time.32 Hence, the shape of the order book should make

a reasonable proxy for the dispersion of beliefs about asset prices.33 At the same time, if there

is private information in the market, order placement strategies will also reflect traders’ fear of

being ripped off by someone with superior information. Foucault et al. (2003b) model a limit order

market where liquidity suppliers have asymmetric information on the “rip off risk”, and show that

this affects the shape of the order book.34 Empirical regularities found in intraday transactions

data indicate that there are intraday variations in the rip off risk. If so, we should expect the rip

off risk to be reflected in intraday variations in the shape of the order book.

Generally, no group of investors is likely to have access to perfect information about either

future asset payoffs or the extent of informed trading. Significant differences in the daily average

of the shape of the order book across different companies and/or over time should therefore also

reflect differences in investors beliefs about underlying asset values. Figure 2, may help to illustrate

this point.

The figure shows the average order books for two companies listed on the OSE. The order books are

averaged over the five last days in May 2001, and are normalized in the sense that they show the

percentage of orders within an increasing/decreasing number of ticks away from the quotes (zero in

the figure is the best quote on each side of the market). The upper picture shows the average order

book for Norsk Hydro (NHY) while the lower picture shows the average order book for Opticom

(OPC). Both companies are among the most liquid at the exchange.35 Norsk Hydro is a leading
32Biais et al. (1995) note that the shape of the order book may reflect the competition among buyers/sellers as

well as the correlation in their valuations. If the supply and demand curves are inelastic and volume is concentrated
around the inner quotes, this may reflect that the valuations among various investors are correlated on each side of
the market relative to the case where the valuations are more dispersed and the order book is more elastic.

33The order book does not necessarily reflect all trading interest. Some orders are used by investors to protect
themselves against losses when markets move rapidly. One such type of orders are “stop orders” which are orders
that are activated when the market price reaches a specific level. These orders are essentially instructions to the
broker who monitors the market on behalf of the investor and submit the (limit or market) order when the price
level reaches the stop price, i.e. they are not already activated orders such as limit orders. In addition, Biais et al.
(1995) find evidence, at the Paris Bourse, that there is potential liquidity supply outside the book from traders that
monitor the book searching for favourable trading opportunities.

34When the book is thin, uninformed liquidity traders will be reluctant to add depth because it may be an indication
of high rip-off risk. The informed liquidity traders exploit this by bidding less aggressively than in the case where
the liquidity traders have symmetric information.

35During the period illustrated in the figure, both companies traded in prices around NOK 400-500 and had a tick
size of NOK 0.5. For Norsk Hydro the calculated average order book is based on around 2000 orders with a share
volume of around 400 000 shares. For Opticom the similar calculations are based on around 4000 orders with a share
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Figure 2: Average order books
The figure illustrates the order book for two different companies listed on the OSE. The upper picture shows the order book

for Norsk Hydro, a large Norwegian blue chip company, and the lower picture shows the order book for Opticom, a Norwegian

IT company. The order books are averaged over the last five days of May 2001. The picture shows the percentage of orders

within ticks away from the quotes. Zero represents the best quote on each side of the market.
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energy, aluminium and fertilizer company, based in Norway. It has 50,000 employees in 60 countries

worldwide. The company’s operations are well known and there is a a large amount of current

available information about the company, including experts analysis. Opticom, on the other hand,

is a relatively new IT company which currently has under 100 employees. The company describes

its business concept as pioneering research and development in new technology in electronics. The

company has no cash flow and very uncertain future income possibilities. Hence, a major difference

between the two companies is related to valuation uncertainty. Investors’ opinions about the

underlying value of the two companies should be much more dispersed for Opticom than for Norsk

Hydro. This is exactly what the pictures of the order books of the companies indicate: while on

average about 50 percent of the orders for Norsk Hydro has limit prices which lie within 5 ticks

from the quoted spread, the similar percentage for Opticom is only about 10 percent.

This difference in the average shape of the order book results from the fact that traders sys-

tematically submit orders further away from the midpoint in Opticom than in Norsk Hydro. One

plausible reason for this is that investors are more uncertain about the true value of Opticom

than Norsk Hydro, and that this higher dispersion of beliefs in Opticom is reflected in orders that

are submitted across a wider range of prices than in Norsk Hydro. The difference in the order

book shape may also come from pick off risk, inducing investors to submit orders at prices with a

compensation for the risk of trading with an informed trader. Probably both effects contribute to

explaining the pictures we see in figure 2. However, while it is obvious that there are huge differ-

ences in valuation uncertainty between the two companies, it is not so obvious that there should

be such a big difference in pick off risk. More importantly, it is mainly orders submitted close to

the midpoint that are exposed to pick off risk, not orders submitted further away from the market.

Thus, pick off risk should affect the spread and volumes at the inner ticks, not the distribution of

orders across the the entire order book. Nontheless, it is important to note that we do not attempt

to differentiate between the two effects in this analysis.

To capture the shape of the order book, we propose to use the average elasticity/slopes of the

supply and demand schedules in the order book. The more gentle (steeper) the slope, the more

widely distributed (concentrated) are the bid and ask prices in the order book. Hence, if the slopes

of the supply and demand curves in the order book are gentle, that is, if the volume in the order

book is distributed across a wide range of prices, we interpret this as an indication that the investors

disagree about the value of the security. Similarly, if the slopes are steep, that is, if a large fraction

volume of around 200 000 shares.
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of the order book volume is concentrated around the inner quotes, we interpret this as an indication

that there is a high degree of agreement among investors about the fair value of the security.36 We

calculate our slope/elasticity estimate for each company and for each of the generated snapshots

of the order book in the following steps:

1. First, for each side of the order book, we accumulate the aggregate number of shares sup-

plied/demanded at each price level, such that at each price level we get the total volume

supplied (demanded) at that price or lower (higher).

2. Next, we normalize the accumulated shares at each tick level (on the ask and bid side sep-

arately) relative to the total number of shares supplied/demanded at the relevant snapshot.

Thus, the percentage of the shares in the order book supplied (demanded) at the highest

(lowest) ask (bid) price/tick is 100 per cent.

3. Next, we calculate the “local” elasticity at each price level (explained in equation 10 and

equation 11 in the appendix).

4. Next, we average across all price levels to obtain an average elasticity/slope for the bid and

ask side for that snapshot.

5. Finally, we take the average of the bid and ask slope to get one slope measure for the snapshot.

We normalize the order book because we want to take into account that there is a close relationship

between our slope measure and the liquidity of the underlying stock. Less liquid firms generally

have a higher volatility since the order book does not contain enough volume to absorb large trades

without moving prices to much. In addition, less liquid stocks generally have a higher spread since

investors require a discount when buying and a premium when selling the stock. Thus, a positive

relationship between order book elasticity and volatility is expected a priori. By normalizing the

order book, we get the fraction of total shares supplied/demanded at each price level. In addition,

we calculate slope measures based on two different weighting schemes. In the first we equally weight

each local slope, and in the latter, we weight each local slope by its distance (in ticks) from the

inner quote. In addition, we also calculate a “non-normalized” version of the slopes by using the

absolute volume (in shares) at each order book level.
36Disagreement about the value of the firm may be a function of the degree to which the company releases infor-

mation to the market, the number of analysts covering the stock etc.
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Figure 3: Calculating the demand and supply elasticities
The figure illustrates how the local slopes/elasticities of the bid and ask side of the order book is calculated for one ”snapshot”

time on one date for one company. The figure illustrates this for a case where there are only 4 price levels on both side of the

book. On the left y-axis we have the fraction of aggregate share volume for the demand (bid) side of the order book at each

tick level, and on the right y-axis we have the fraction of aggregate share volume for the supply (ask) side of the order book

at each tick level. The solid step-line is the supply (right) and demand (left) curves across the various price levels. On the

x-axis, we have the various price levels, where pM is the bid ask midpoint, and prices greater than pM are ask prices and prices

below pM are bid prices. The difference between pB
1 (best bid) and pA

1 (best ask) is the quoted spread. In addition, the dotted

line-segments connecting each level of the order book has slopes denoted by ∆s, which are the normalized local elasticities of

the demand and supply curves calculated in eq.10 and eq.11.

�

Y1

Fraction of
bid volume Fraction of

ask volume

Price at
tick level

�

1∆

�

2∆

�

3∆

�

4∆

�

1∆

�

2∆

�

3∆

�

4∆

�

S1

	

S2




S3

	

S4

�

S4

�

S3




S2

�

S1

�

Y2

�

Y3

14 =
�

Y

�

Y1

�

Y2

�

Y3

14 =
�

Y

�

S

24



Figure 3 illustrates how the local elasticities, ∆A
τ and ∆B

τ , are calculated. For illustrative purposes,

the order book in the figure stretches only across 4 price levels on each side. In the figure, pA
1 is

the best available ask-price (inner ask quote) with volume fraction of vA
1 supplied at that ask price.

The volume fraction at the next tick level (vA
2 ) is thus the accumulated volume supplied at price

pA
1 and pA

2 relative to the total volume in the order book at each side. The local elasticity of the

supply curve at pA
1 would thus be the slope ∆A

2 in the figure. A more specific explanation of the

calculation is provided in the appendix.

5 Intraday analysis of the order book

In this section, we present intraday statistics of the limit order book.

Table 4 showed that the use of market orders was quite modest in our data sample. Hence, to

describe the composition of orders in the book we focus on the aggressiveness of the limit orders. To

facilitate this, we calculate a separate index reflecting limit order aggressiveness. The aggressiveness

of an order is measured by the average number of ticks away from the best quote (on the same side)

that the order is placed.37 Thus an index number of zero means that the average order is placed at

the quote, a positive index number means that the order is placed above (below) the bid (ask), and

a negative number means that the average order is placed below (above) the bid (ask).38 Formally,

for an order of type k, the aggressiveness of a buy order with a limit price pB is calculated as,

λ
buy
k = (pB − bid)/ticksize (6)

Similarly, a sell order with a limit price pS is calculated as,

λsell
k = (ask − pS)/ticksize (7)

where bid and ask is the best bid quote and best ask quote, respectively, when the order is

submitted.

Table 5 shows intraday statistics for our slope measure (calculated at the end of each time

interval), the price volatility (measured as the absolute hourly return between trade prices closest

to the end of each time interval), the quoted and the effective spread, the number of trades executed
37Our measure is similar to the measure of limit order aggressiveness proposed by Harris and Hasbrouck (1996).
38We cannot calculate the aggressiveness for market orders since these orders do not have a price limit.
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Table 5: Intraday statistics
The table shows intraday statistics for our slope measure, the volatility (the absolute hourly return between trade prices closest

to the end of each interval), the quoted spread, the effective spread, the number of trades executed during the time interval,

the trade size (in shares), the number of orders submitted during the time interval and the order size (in shares). All numbers

are daily averages across all firms in the sample. Note that the first and last time windows are half an hour while the rest of

the time windows are hourly. In addition, the slope is calculated at the end of each interval.

Time window
10:00 to 10:30 to 11:30 to 12:30 to 13:30 to 14:30 to 15:30 to

10:30 11:30 12:30 13:30 14:30 15:30 16:00

Slope (end of time-window) 30.51 34.37 35.78 36.34 36.80 36.97
Volatility (absolute return) - 1.34 % 0.81 % 0.72 % 0.74 % 0.88 % 0.86 %
Quoted spread 2.36 1.73 1.47 1.37 1.33 1.31 1.39
Effective spread 1.79 1.27 1.05 1.00 0.95 0.95 1.05

Trades 10.38 11.81 9.38 9.05 9.52 10.81 10.40
Trade size (shares) 2314 2653 2759 2774 2834 3027 3123
Orders 15.45 18.16 13.10 12.36 12.47 14.02 11.66
Order size (shares) 6858 6385 5723 5818 5795 6383 6706

during the time interval, the trade and order sizes measured in shares, and the number of orders

submitted during the time interval. All numbers are daily averages across all firms in the sample.

Notable characteristics of the intraday statistics in table 5 are

• The quoted and the effective spread both have a U-shape, with the highest spread at the

beginning of the day.

• The average trade size is smallest at the beginning of the day, and increasing throughout the

trading day.

• The average number of orders and trades both have a U shaped, with less orders being placed

and trades being executed in the middle of the day, and most orders being placed and trades

being executed at the beginning of the day.

These regularities are also systematic across sub periods.39 Similar systematic intraday regularities

have been found in other markets (e.g. US, France, Hong Kong). The main explanation suggested

for these findings is that the probability of trading with informed traders is largest at the beginning

of the trading day and then diminish during the day. If this explanation is correct, a patient liquidity

trader who fears to be picked off by informed investors at the beginning of the day has two main

options. If she believes that the probability of trading with informed traders will diminish during
39We calculate the statistics across sub periods of years, half years and quarters and find that the results are both

qualitatively and quantitatively the same.

26



the day, she can act strategically and delay her trading, as suggested by Admati and Pfleiderer

(1988). Alternatively, she can submit her orders at the beginning of the day and take account

of the increased probability of incurring a loss by placing them at prices including a discount

(buys) or a premium (sells). This can explain the higher spread at the beginning of the trading

day.40 Assuming that the informed traders are trying not to reveal their information too quickly,

we would also expect to see a higher number of small trades at the beginning of the trading day

(stealth trading strategies).

Our data sample enables us to investigate the stylized facts documented in the earlier literature

and in table 5 in more detail. Table 6 shows intraday changes in order aggressiveness, average

number of orders, fraction of order types, and order sizes. Figure 4 illustrate graphically the

intraday patterns in order aggressiveness, order size, order book slope, quoted and effective spread,

and fraction of order types.

If uninformed investors believe that there is more asymmetric information at the beginning of the

trading day, we would expect to see that they place orders at limit prices further away from the

midpoint price at the beginning of the trading day, and then, closer to the midpoint prices later in

the day, as the market price adjusts to the private information. Moreover, we would expect that

the orders placed by better informed investors were most aggressive in the beginning of the day,

especially if informed investors are competing to extract profits from the same information. This is

exactly what is indicated in our data sample. There are systematic differences in the aggressiveness

of different types of orders during the course of the day. “Away from market” orders, which make

up a large part of the order book, is placed relatively much further away from the inner quotes

at the beginning than at the end of the day. If this type of orders are mainly submitted by

uninformed traders, it indicates that they require a higher compensation for trading early in the

day relative to later in the day.41 Furthermore, orders that are more aggressive, and likely to stem

from better informed investors or pre-committed liquidity traders, are relatively more aggressive at

the beginning of the day than later in the day. At the end of the trading day all types of orders are

submitted closer to the inner quotes, indicating that most of the private information is incorporated

into the prices.
40The increase in spreads towards the end of the day is due to higher liquidity demand and possibly more cancellation

of orders just before the close.
41Another interpretation is that uninformed traders have not yet processed all publicly available information (e.g.

newspapers, new analyses, gossip etc.), and are more passive when submitting their orders before they have been
able to read and interpret this information.
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Table 6: Intraday statistics and aggressiveness of orders
In the table we decomposes all submitted orders within each time interval into groups based on the aggressiveness of the orders.

The least aggressive orders, ”away from market”, are orders placed at or away from the quote on the same side of the book.

This would be e.g. a buy order with a price (bid) equal to or lower than the current best bid, or a sell order with a price (ask)

equal to or higher than the best ask price. The second type of orders, ”quote improving orders”, are orders that improve the

best quotes. This would be e.g. a buy order with a price higher than the current best bid, but lower than the best ask quote.

The third type of orders are ”aggressive orders” are orders placed at the opposite quote or higher(buys)/lower(sells). In the

table we calculate the average number of orders of each type placed within each time window, the percentage fraction of all

orders of each type, and the average order size in shares and NOK. For each type of order we also calculate an aggressiveness

index equal to the average number of ticks away from the best quote (on the same side) that an order is submitted. Thus an

index number of zero means that the average order is placed at the quote, a positive index number means that the order is

placed above/below the bid/ask, and a negative index number means that the average order is placedbelow/above the bid/ask.

We do not calculate the aggressiveness for market orders since these by definition do not have any limit price. Note that the

first and last time window are half an hour while the rest of the time windows are hourly.

Time window

10:00 to 10:30 to 11:30 to 12:30 to 13:30 to 14:30 to 15:30 to
Order type 10:30 11:30 12:30 13:30 14:30 15:30 16:00

Aggressiveness
(avg. ticks away from best quote)

Passive orders -12.81 -9.96 -8.45 -8.02 -7.44 -6.90 -5.87
Quote improving orders 6.90 5.30 4.65 4.17 4.16 3.94 3.96
Aggressive orders 9.36 7.46 6.82 6.68 6.17 6.29 6.29
Average aggressiveness (weighted) -1.69 -1.00 -0.25 -0.06 0.20 0.52 1.11

Average number of orders

Passive orders 8.2 9.1 6.4 5.9 5.7 6.2 5.0
Quote improving orders 3.3 3.4 2.7 2.6 2.7 3.0 2.5
Aggressive orders 5.4 6.9 5.5 5.3 5.5 6.3 5.6
Market orders 1.6 1.6 1.4 1.4 1.4 1.4 1.3

% fraction of orders of type

Passive orders 44.2 % 43.4 % 39.9 % 38.7 % 37.2 % 36.7 % 34.6 %
Quote improving orders 17.7 % 16.3 % 17.1 % 17.3 % 17.6 % 17.7 % 17.4 %
Aggressive orders 29.4 % 32.9 % 34.2 % 34.7 % 36.2 % 37.3 % 39.0 %
Market orders 8.6 % 7.4 % 8.8 % 9.3 % 9.0 % 8.3 % 8.9 %

Order size (shares)

Passive orders 7202 6548 5716 5557 5938 6370 7317
Quote improving orders 7793 6568 6486 6470 6561 6915 7294
Aggressive orders 5461 5301 5498 6008 5649 6569 7239
Market orders 1412 1576 1855 1751 1795 1678 2281

Order size (1000 NOK)

Passive orders 275 235 222 221 242 267 346
Quote improving orders 274 253 258 265 274 290 328
Aggressive orders 188 204 204 214 227 376 307
Market orders 36 39 46 42 40 43 69
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Figure 4: Intraday characteristics
The figures shows cross sectional averages across 7 intraday windows for various measures. The windows and numbers correspond

to those in tables 5 and 6. Note that window 1 and 7 are half hour intervals from 10:00 to 10:30 and 15:30 to 16:00 respectively,

while windows 2 to 6 are hourly intervals starting every half hour. Figure (a) shows the average aggressiveness of different order

types. The first type of orders, ”passive orders”, are placed at or away from the quote on the same side of the book. This would

be e.g. a buy order with a price (bid) equal to or lower than the current best bid, or a sell order with a price (ask) equal to or

higher than the best ask price. The second type of orders, ”quote improving orders”, are orders that improve the best quote

(on the same side). This would be e.g. a buy order with a price higher than the current best bid, but lower than the best ask

quote. The third type of orders are ”aggressive orders” are orders placed at the opposite quote or higher(buys)/lower(sells).

Figure (b) shows the average order size within each limit order group and the average order size of market orders. Figure (c)

show the average slope on the left axis and the average quoted and effective spreads on the right axis. Note that the slope is

calculated from the order book snapshot taken at the end of each window. Figure (d) shows the fraction of each order category

which is placed within each window.

�D��2UGHU�DJJUHVVLYHQHVV

-13.00

-11.00

-9.00

-7.00

-5.00

-3.00

-1.00

1.00

3.00

5.00

7.00

9.00

11.00

1 2 3 4 5 6 7

Time window

A
gg

re
ss

iv
en

es
s 

(t
ic

ks
 a

w
ay

 fr
om

 b
es

t q
uo

te
)

Passive orders

Quote improving orders

Aggressive orders

�F��6ORSH�DQG�VSUHDGV

25.0

27.0

29.0

31.0

33.0

35.0

37.0

39.0

1 2 3 4 5 6 7

Time window

A
ve

ra
ge

 s
lo

pe

0.00

0.50

1.00

1.50

2.00

2.50

A
verage spread (N

O
K

)

Slope

Quoted spread

Effective spread

�E��2UGHUVL]HV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7

Time window

A
ve

ra
ge

 o
rd

er
si

ze
 (s

ha
re

s)

Passive orders

Quote improving orders

Aggressive orders

Market orders

�G��)UDFWLRQ�RI�RUGHUW\SHV

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

50 %

1 2 3 4 5 6 7

Time window

Fr
ac

ti
on

 o
f o

rd
er

s 
(%

)

Passive orders

Quote improving orders

Aggressive orders

Market orders

29



The average number of passive orders (“away from market”) decreases throughout the day, while

the average number of quote improving orders and aggressive orders has a U-shape. The number

of submitted market orders decreases throughout the trading day.42 The intraday pattern in the

relative fraction of each order type indicates that more orders are submitted closer to the midpoint

at the end of the day. When examining the average order sizes across the different order types,

“away from the market” orders are the largest at the open and close, while the most aggressive

limit orders and market orders are the smallest and increase in size throughout the day. If informed

investors mainly use aggressive limit orders and market orders, this may indicate that they submit

smaller orders when their information is the most valuable (stealth trading).

Given that there is more asymmetric information at the beginning of the trading day, the

intraday pattern of our slope estimate captures asymmetric information about stock values during

the trading day quite well. The slope increases (at a diminishing rate) across the day, with a

minimum at the beginning of the day and a maximum at the end of the day. This indicates that

the order book is more dispersed in the morning relative to later in the day. In other words, a

larger fraction of the order volume is submitted further from the inner quotes just after the open

compared to later in the day. Recall that the average slope is calculated from the normalized order

book, so that the slope does not just reflect that there are less orders in the order book early in the

day.43 Across time windows, the average slope increases at a diminishing rate and becomes more

concentrated and elastic at the end of the day.

6 The Volume-Volatility-Order Book Relation

In section 4, we argued that our estimate of the average daily slope of the order book could be

used as a proxy for the dispersion of beliefs among investors about asset values. In this section, we

provide some descriptive statistics of the estimated daily slope and investigate whether this variable

can explain the contemporaneous market volatility in addition to the variables suggested by Jones

et al. (1994).

Panel A in table 7 shows the correlations between the different versions of our daily slope

measure which we outlined in section 4. As can be seen from the table, the slope estimates are
42Note that the first and last windows in the table are half-hour intervals, while all other windows are hourly

intervals.
43A lower average slope reflects that the order book is more elastic which implies that a lower fraction of the order

volume is close to the inner quotes relative to further out in the book.
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Table 7: Variable correlations
Panel A shows the correlation between different slope measures. ”Volume slope” is the average slope calculated from the order

book without normalizing the volume at each tick relative to the total share volume in the book. ”Weighted volume slope” is the

weighted version of ”volume slope”, where we weight each local slope by the distance in ticks from the best quote. ”Normalized

slope” is when we at each snapshot normalizes the volume at each tick relative to the total number of shares in the book (on

the respective side), and ”Weighted normalized slope” is the tick weighted version of the ”Normalized slope”. Panel B shows

the correlations between various activity and liquidity variables as well as our elasticity variable (SLOPE).

PANEL A: Correlation between slope measures

Volume Weighted Normalized
slope volume slope slope (SLOPE)

Weighted volume slope 1.00
Normalized slope (SLOPE) 0.72 0.72
Weighted normalized slope 0.72 0.72 0.98

PANEL B: Variable correlations

Trade size
Trades (N) shares (AV) MCAP SPREAD SLOPE Ordervol. (OV)

Tradesize shares (AV) -0.02
MCAP 0.25 -0.04
SPREAD -0.20 0.16 -0.17
SLOPE 0.13 -0.08 0.44 -0.32
Order volume shares (OV) 0.19 0.16 0.06 -0.06 0.04
Trade volume shares (V) 0.43 0.33 0.14 -0.13 0.08 0.45

highly correlated. However, the variance of the weighted slope estimate is higher. This is mainly

due to the high variation in order book volume across firms and time.

Table 8 provides some distributional statistics for the slope estimate over the whole sample, for the

separate years, and for our four size portfolios.44

As one would expect, the slope increases with market capitalization. Thus, larger and more liquid

stocks have a higher fraction of the order book volume concentrated at or around the best quotes,

while smaller firms have more dispersed order books. Another feature to note about the table is

that the average/median slope decreases across market capitalizations. A possible reason for this

is that large companies are generally easier to price than small companies due to more available

information and more frequent analysis by financial experts.

Figure 5 illustrates the relationship between the daily equally weighted slope estimate and the

contemporaneous daily volatility, measured as the average daily absolute return over the trading
44We report results from the use of the equally weighted normalized slope estimates only. When we weight the

local slopes by the distance from the best tick, the results are quantitatively similar.
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Table 8: Distribution of equally weighted slope estimates
The table shows the distribution of the slope estimates for the case where each local slope is equally weighted and each side

of the order book is normalized with respect to the total number of shares on each side. Panel A report the estimates for the

entire sample and across minimum tick sizes. Panel B report the estimates across market capitalization portfolios and years.

In this case each company is assigned to a market capitalization portfolio each trading day instead of yearly (as used before).

This is because the slope estimates can vary widely across days so that a yearly sorting would not capture the differences across

market capitalizations to the same degree. Thus, N reflects the number of firm/date observations.

PANEL A

Distribution of slope estimates
N MCAP Price P5 P10 P25 Median Mean P75 P90 P95

All firms 51015 7294 145 9.1 11.9 18.3 29.2 37.2 46.7 70.9 91.5
1999 16968 5948 110 9.4 12.6 20.3 33.2 41.4 53.0 79.2 101.3
2000 23853 7737 180 9.6 12.2 18.0 27.6 35.3 43.5 66.3 86.0
2001 10194 8498 122 7.8 10.6 16.5 27.0 34.7 43.4 65.2 85.7

PANEL B

Distribution of slope estimates
N MCAP Price P5 P10 P25 Median Mean P75 P90 P95

MCAP Q1 (small) 12532 259 21 5.7 7.4 11.4 17.2 20.9 25.9 38.2 47.9
1999 4163 213 19 5.9 7.5 11.4 17.5 21.2 26.7 39.3 48.2
2000 5864 282 22 6.3 8.2 12.1 17.6 20.9 25.7 36.6 45.9
2001 2505 283 22 4.6 6.0 10.0 15.9 20.5 25.2 40.4 50.9

MCAP Q2 12828 1005 64 10.6 12.9 18.1 26.3 31.8 39.0 56.4 70.9
1999 4264 869 50 11.3 14.0 19.7 28.8 34.0 41.8 59.3 74.4
2000 5999 1035 69 10.7 12.8 17.7 25.1 30.2 36.9 53.1 66.8
2001 2565 1158 76 9.8 12.0 16.9 25.2 31.8 39.2 57.8 73.2

MCAP Q3 12672 2786 121 12.0 15.3 22.2 32.5 39.0 48.1 69.9 87.2
1999 4210 2289 106 15.3 19.1 26.5 38.1 45.2 55.8 78.9 98.1
2000 5934 2914 133 11.6 14.7 21.1 30.4 36.5 44.3 65.0 82.4
2001 2528 3315 121 10.6 13.1 19.5 28.9 34.5 43.0 61.3 75.8

MCAP Q4 (large) 12983 24698 369 18.0 22.1 31.6 47.1 56.5 69.4 101.6 128.8
1999 4331 20016 261 23.0 28.2 38.9 55.7 64.2 79.0 111.6 136.6
2000 6056 26320 491 16.7 21.0 29.2 44.0 53.1 64.6 94.6 120.3
2001 2596 28727 263 15.7 19.9 27.8 41.1 51.5 61.5 96.6 125.9
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day. Both variables are averaged over all securities which are traded during the respective days.

Figure 5: Average slope and volatility
The figure illustrates the relationship between the estimate of the average daily slope of the order book and the contemporaneous

daily price changes. The left axis measures the price change calculated as the average daily absolute return. The right axis

measures the slope estimate calculated as the daily equally weighted slope, averaged over all companies that were traded during

the trading day.
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The figure indicates that there is a negative relationship between the variables at a very aggregate

level, i.e. the price volatility seems to be high (low) when the average daily slope of the order book

is low (high). To examine more formally whether dispersion of investors’ beliefs can explain the

contemporaneous volatility across firms and time, we estimate modified versions of the volume-

volatility regression equations in section 3.3. Since our proxy for dispersion of beliefs may also

proxy for liquidity, it is important that we control for other liquidity measures such as the market

capitalization, spread and order book volume. As can be seen in table 7, the SLOPE variable is

positively correlated with market capitalization (MCAP) and the spread. However, it is not highly

correlated with the order book volume (OV) or any of the other variables. The correlation between

SLOPE and N is only about 13 percent.

Our model is estimated as a panel regression with one-way fixed effects. Since not all firms are
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traded every day,45 our sample is unbalanced.46 We estimate 3 models with varying explanatory

variables. Model 1 is the same as in the previous analysis, but with the SLOPE variable and the

other liquidity variables (market capitalization (MCAP), quoted inner spread (SPR) and order book

volume (OV)) as additional variables. In model 2, we do not control for other liquidity variables,

and in model 3 we exclude the trading activity (mixing) variables. We also estimate the same

regression equations across 3-month sub-periods.

The results from our final estimations are provided in table 9. Generally, the estimated models

can thus be written out as,

| εit |=

K∑
k=1

Xitkβk + ηit (8)

where | εit | is the daily volatility estimate, Xitk is the matrix of explanatory variables (k) across

time (t) for each company (i) and ηi,t = νi + εi, t defines the error structure with νi as the

non-random fixed, firm specific, effect. Our model can be written as,

| εi,t |= β0Mi,t + β1Ni,t + β2AVi,tβ3MCAPi,t + β4SPRi,t+

β5OVi,t + β6SLOPEi,t +

12∑
j=1

ρi,j | ε̂i,t−j | +ηi,t.
(9)

The first thing to note in Panel A in table 9 is that the dispersion of beliefs variable (SLOPE)

is highly significant and negative. Thus, the more dispersed beliefs about the value of the firm, the

greater the volatility. This is an indication that a larger dispersion of prices in the order book is

linked to more “noise trading”.47 The result could also be related to rip off risk: if some liquidity

suppliers are informed about the volatility, as in the Foucault et al. (2003b) model, they may find

it optimal to bid less aggressively when they know that the volatility is large.

The partial R2 indicates that the SLOPE variable is significant compared to the other variables.

In model 2, when the liquidity proxies are removed, we see that the partial R2 for SLOPE increases.48

This indicates that the slope variable is also proxying for liquidity. However, the parameter estimate
45Recall that we filtered out firms with less than 400 trading days throughout our sample period of 597 days.
46We also estimate all models on a balanced sample, reducing our sample to 25 firms when filtering out all firms

that are not traded every day in the sample. The estimates and tests are quantitatively similar.
47A problem could be that a steeper slope implies a less pronounced bid-ask bounce, and thus a lower volatility.

However, as outlined in section 3.3, we try to avoid measurement errors due to the bid-ask bounce by calculating
returns using the average of bid-ask prices at the close.

48The partial R2 is calculated as the average partial R2 across single firm regressions.
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is stable across the three models. Another interesting thing to note is that the number of trades (N)

has a much larger contribution to R2 than the trade size (AV) which has a significant parameter,

but a negligible R2 contribution. Thus, the Jones et al. (1994) result is also evident in the panel

analysis. Furthermore, we run the Hausman specification test to determine whether a random

effects model would be more appropriate than the one-way fixed effects model. The Hausman test

compares an inefficient but consistent estimator (the fixed effects case) to an efficient estimator

(the random effects case).49 In all of the regressions we reject, at the 1% level, the hypothesis that

a random effects model would be more appropriate.

It is also interesting to note the stability and significance of the dispersion proxy also across

sub-samples, shown in panel B in table 9. The SLOPE variable is significant at the 1% level within

each sub-sample. Also when performing an F-test for fixed effects, we reject the null of no fixed

effects at the 1% level within each sub-period regression. We interpret our results as supportive for

models where strategic trading and dispersion of beliefs among uninformed investors increase both

volatility and volume, and that this can be captured by the characteristics of the limit order book.

49Thus, the Hausman test is a test of H0, that random effects would be consistent and efficient, versus H1, that
random effects would be inconsistent. Rejecting H0 would suggest that we should use a fixed effects specification.
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Table 9: Panel regression with slope as explanatory variable across whole sample
The table shows the results from the panel regression with one-way fixed effects (least squares dummy variable estimation) for
the whole sample (Panel A) and for sub-periods of 3 month periods (Panel B). The estimated model (model 1) is,

| εi,t |= β0Mi,t + β1Ni,t + β2AVi,tβ3MCAPi,t + β4SPRi,t+

β5OVi,t + β6SLOPEi,t +

12∑
j=1

ρi,j | ε̂i,t−j | +ηi,t.

where ηi,t = νi + εi, t defines the error structure with νi as the non-random fixed, firm specific, effects. | εi,t | is the absolute
return adjusted for day of week effects and autocorrelation in returns. M is a dummy variable for Monday, N is the number
of transactions, AV is the average trade size in shares, MCAP is the market capitalization SPR is the relative spread (quoted
spread in % of the midpoint price), OV is the total number of shares in the order book (sum of all orders on bid and ask side
of the order book) and SLOPE is the average slope of the bid and offer side of the order book. Panel A, shows the parameter
estimates for 3 variations of the full model (model 1). In model 2, we do not control for other liquidity variables (MCAP,
SPR, OV), and in model 3 we exclude the trading activity (N) and trade size (AV) variables. The table shows the associated
t-values as well as the adjusted R2 for each portfolio regression. The autoregressive estimates have been excluded from the
table. ∗∗ denotes significance at the 1% level. Panel B, shows the sub-period estimates for model 1 for the SLOPE, N and AV
variables with associated t-values in parenthesis, and the partial R-squared. For each period, the model R-squared, F-test for
fixed effects, and number of cross sectional observations (N) and number of time series observations (T) are reported in the last
four rows of the table.

PANEL A: Whole sample regression

MODEL 1 MODEL 2 MODEL 3

Variables Estimate Partial R2 Estimate Partial R2 Estimate Partial R2

M 0.023 0.00 % 0.039 0.00 % -0.010 0.00 %
Trades (N) 0.005∗∗ 4.17 % 0.005∗∗ 4.17 % - -
Trade size shares (AV) 0.020∗∗ 0.80 % 0.018∗∗ 0.80 % - -
MCAP -0.015∗∗ 1.97 % - - -0.001 0.82 %
Spread 0.234∗∗ 1.04 % - - 0.182∗∗ 0.63 %
Avg.slope -0.007∗∗ 2.17 % -0.009∗∗ 3.95 % -0.008∗∗ 2.25 %
Order book volume (shares) 0.026∗∗ 0.11 % 0.025∗∗ 0.09 % 0.052∗∗ 0.85 %

Adj.R2 21.5 % 20.5 % 18.3 %
N (cross section obs.) 98 98 98
T (time series obs.) 572 572 572
F-test fixed effects 16.34∗∗ 14.04∗∗ 10.80∗∗

PANEL B: Sub-period regression

SLOPE Trades (N) Trade size shares (AV)

F test
Quarter β6 (t-value) part.R2 β1 (t-value) part.R2 β2 (t-value) part.R2 adj.R2 fixed eff. N T

1999.1 -0.007 (-1.4) 2.13 % 0.016 ( 4.9) 0.79 % 0.074 (1.5) 2.48 % 37.6 % 2.6∗∗ 61 14
1999.2 -0.005 (-2.7) 2.65 % 0.013 (11.0) 0.41 % 0.049 (3.0) 4.93 % 26.6 % 4.3∗∗ 87 59
1999.3 -0.005 (-3.2) 2.78 % 0.011 (11.2) 0.79 % 0.059 (4.0) 5.06 % 36.7 % 7.7∗∗ 96 66
1999.4 -0.006 (-2.8) 3.16 % 0.014 (16.0) 1.94 % 0.033 (2.9) 1.65 % 27.5 % 5.5∗∗ 97 64
2000.1 -0.007 (-3.1) 2.17 % 0.013 (26.4) 7.75 % 0.027 (1.7) 0.48 % 31.0 % 8.0∗∗ 98 65
2000.2 -0.006 (-3.0) 2.90 % 0.012 (18.9) 10.44 % 0.025 (1.1) 1.11 % 30.7 % 5.2∗∗ 98 58
2000.3 -0.007 (-4.3) 1.89 % 0.009 (20.9) 7.87 % 0.006 (0.5) 0.12 % 29.6 % 6.4∗∗ 98 65
2000.4 -0.009 (-4.5) 3.30 % 0.008 (16.2) 6.01 % 0.023 (2.1) 0.33 % 21.6 % 4.1∗∗ 97 63
2001.1 -0.009 (-4.6) 1.71 % 0.003 ( 6.3) 7.93 % 0.001 (0.5) 0.59 % 25.6 % 5.2∗∗ 93 64
2001.2 -0.008 (-4.6) 1.86 % 0.002 ( 8.9) 3.47 % 0.030 (2.1) 0.21 % 25.9 % 4.7∗∗ 88 54

Average -0.007 (-3.4) 2.46 % 0.010 (14.1) 4.74 % 0.033 (1.8) 1.70 % 29.3 %

36



7 Conclusions

A positive correlation between price volatility and trading volume has been documented in a variety

of studies. However, the explanations for the phenomenon is still not well understood. Finding

plausible explanations for the relation is important in that it can enhance our understanding of

how information is disseminated into market prices. There are two, mainly complementary, expla-

nations. The mixture of distribution hypothesis states that the volume-volatility relation is driven

by a directing process that can be interpreted as the flow of information. More specifically, the

daily price change and the trading volume are thought to be mixtures of independent normals with

the same mixing variable. The dispersion of beliefs hypothesis states that the volume-volatility

relation is stronger the greater the dispersion of beliefs about security values is among investors.

The explanation behind this statement is based on asymmetric information and strategic investor

behavior. Uninformed traders cannot distinguish informed trades from liquidity trades, and by

reacting to trades with no information content, they increases both volatility and volume relative

to equilibrium values in a situation with symmetric information.

We examine the volume-volatility relation empirically using a very detailed data set from the

Oslo Stock Exchange (OSE). We first show that the result in Jones et al. (1994) that average size

of trades has little marginal explanatory power when volatility is conditioned on trade frequency

also applies in a pure limit order driven market. A unique feature of our data sample is that we can

rebuild the whole order book at any time during the trading day. This enables us to investigate

the intraday pattern of the order flows and to test a version of the distribution of beliefs hypothesis

where we measure dispersion of beliefs by the slope of the demand and supply schedules of the

order book. Our intraday analysis supports the notion that there is more asymmetric information

early in the trading day, and that this is captured by the slope of the order book. We also find that

there is a significant negative relationship between our proxy for the dispersion of beliefs among

investors and the contemporaneous market volatility which also is stable across sub-periods.
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A Calculating slope measures

To explain the slope calculation more specifically, let NA and NB be respectively the total number

of ask and bid prices (tick levels) containing orders. Let τ denote the tick level, and let τ = 1

represent the inner quote. Furthermore, let pB
1 and pA

1 be respectively the best bid- and ask prices,

and let pM denote the bid-ask midpoint (which is the average of pB
1 and pA

1 ). Let vB
τ and vA

τ be

respectively the percentage of total volume at each tick level on the bid and ask side of the book.

Finally, let ωB
τ and ωA

τ denote the weight of the local slope calculated at tick level τ for respectively

the bid and the ask side of the book. The average elasticity for the supply curve, SE, on day t at

snapshot time s ∈ [1..6] for company i can then be represented as,

SEs
i,t =

{
vA

1

pA
1 /pM − 1

ωA
i,1 +

NA∑
τ=1

vA
τ+1 − vA

τ

pA
τ+1/pA

τ − 1
ωA

i,τ

}
(10)

Similarly, the demand curve, DE, can be represented as,

DEs
i,t =

{
vB

1

| pB
1 /pM − 1 |

ωB
i,1 +

NB∑
τ=1

vB
τ−1 − vB

τ

| pB
τ−1/pB

τ − 1 |
ωB

i,τ

}
(11)

The first term of both equations expresses the slope between the bid-ask midpoint and the best bid

and ask prices, while the second term of both equations expresses the sum of the local elasticities

for the rest of the order book. The average elasticity in the order book at snapshot s is just the

average of SEs
i,t and DEs

i,t,

SLOPEs
i,t =

SEs
i,t + DEs

i,t

2
(12)

If we based our estimates of daily elasticities on one snapshot only, they could easily be biased

due to large trades having temporarily reduced the liquidity of one side of the book or systematic

time of day effects. To obtain a less noisy representation of the average daily supply and demand

curves for each firm on each date, we therefore average the slopes across the 6 snapshots, i.e.

SLOPEi,t =
1

6

6∑
s=1

SLOPEs
i,t (13)
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