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Abstract

We study selection contests in which the strategic variable is degree of risk rather

than amount of e¤ort. The selection e¢ciency of such contests is examined. We show

that the selection e¢ciency of a contest may be improved by limiting the competition in

two ways; a) by having a small number of contestants, and b) by restricting contestant

quality. The results may contribute to our understanding of such diverse phenomena

as promotion processes in …rms, selection of fund managers and research tournaments.
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1 Introduction

In a contest or a tournament, rewards are based on the relative performance of the con-

testants. Contests serve two di¤erent purposes. First, tournaments among workers can

mitigate incentive problems when the e¤ort of workers is unobservable. Second, tourna-

ments serve as a selection mechanism. For example, since employers do not necessarily

know which workers are the most able, promotions are often based on a comparison of the

observed productivity of the workers; the …rm promotes the top-ranked worker.

In this paper we focus on the selection aspect of contests, in the case where risk taking

is the strategic variable of the contestants. Employees involved in a promotion process or

tenure process, for example, may choose tasks that di¤er in risk pro…le to show o¤ their

abilities.1 Another example is fund managers’ competition for new investors. Empirical

studies show that fund managers with the highest rate of return one year capture the lion’s

share of subsequent years’ investments. Furthermore, these studies show that competition

for prospective investments has impact on fund managers’ risk taking.2 Consequently,

workers competing for promotion and fund managers competing for the ‡ow of investors

may be viewed as taking part in a selection contest in which risk taking is an important

strategic variable.

We investigate the selection e¢ciency of contests in which the contestants optimize

their choice of risk, given the risk taking of others. Who will come out on top, bad types

or good types? In what way will the selection e¢ciency depend on, for example, the quality

of the contestant pool? We view answering such questions as important to understanding

1Or even simpler, the task may be …xed but employees choose between a ’safe’ working method (e.g.,
working thoroughly) and a ’risky’ working method (e.g., working hastily).

2For example see Chevalier and Ellison (1997) and Brown et al. (1996).
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the e¢ciency of promotion processes in large …rms and the e¢ciency of fund manager

selection in …nancial markets.

Although the case where agents choose both risk and e¤ort seems realistic for many

applications, for tractability we con…ne ourselves to the case where risk taking is the only

strategic variable. Moreover, we restrict ourselves to the case where there is only one prize

to be won. From that this starting point, we investigate the selection e¢ciency of contests

along two dimensions: the number of contestants and the quality of the pool of contestants.

Two natural conjectures are the following: Selection e¢ciency improves with the quality

of the contestant pool, and selection e¢ciency improves with the number of contestants.

Tougher competition makes tougher winners. Our two main results are negative; we show

that, in our simple model, neither conjectures necessarily holds true.

The model we work with has two types of agents, a low type and a high type, each

with two possible pure strategies, safe and risky. The risky strategy induces a (not

necessarily mean preserving) spread in the probability distribution of individual output

compared to the safe strategy. For a given risk level, the high type has a higher expected

output than the low type. The output space is discrete. The latter assumption is fairly

restrictive, and in Appendix A we use numerical techniques to show that the main results

from the discrete model also apply in continuous models.

We focus on what seems to be the most natural measure of selection e¢ciency of a

contest; the probability of a high type agent winning it. We denote this probability by ¦.

We show that ¦ may decrease with a pool of agents of higher quality, i.e., an increase in

the share of high ability agents in the pool. To see the underlying intuition, notice that

increasing the quality of the pool has two e¤ects. The …rst is the statistical e¤ect: a higher
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quality of the pool increases ¦, holding the strategies of the types …xed. The second e¤ect

is the equilibrium e¤ect: increasing the quality of the pool shifts the equilibrium of the

game to one with increased risk taking. The latter e¤ect may decrease ¦. Thus we show

that the statistical e¤ect’s positive in‡uence on ¦ may be dominated by the equilibrium

e¤ect’s negative in‡uence on ¦. A surprising implication is that a …rm may discriminate

against agents who are likely to be highly skilled by not allowing them to take part in the

contest.3

A similar intuition can be applied to our discussion of the e¤ect on ¦ of increasing the

number of contestants. Suppose that the number of contestants increases. In that case,

the probability of a high type agent being included in the contest obviously increases (a

positive statistical e¤ect). However, increasing the number of contestants also implies more

risk taking in equilibrium (the equilibrium e¤ect), which may harm to selection e¢ciency.

We show that the positive statistical e¤ect of increasing the number of contestants may be

weaker than the negative equilibrium e¤ect. Thus a …rm may improve selection e¢ciency

by limiting competition for higher-rank positions.

Although it has often been argued that contests serve both motivation and selection

functions (see e.g., Lazear and Rosen (1981), Schlicht (1988)), the tournament literature

has mostly focused on the case with homogenous agents, where selection problems in the

sense discussed here do not arise.4 Papers that do consider the case with heterogeneous

agents restrict the discussion to how a tournament reward structure may motivate agents to

3Baye et al. (1993) reports a related exclusion result in a complete information setup for
all-pay auctions. Auction revenue may increase if agents with high valuations are excluded.

4 In the case with homogenous agents and e¤ort as a strategic variable, Nti (1997) showed that increasing
the number of workers competing for a prize may result in a decline in the overall level of e¤ort. Thus our
results on the gains from limiting competition has its counterpart in the received literature.
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work hard. An exception is Rosen (1986) (section V), which considers both the motivation

function and the selection function of contests. The present paper complements Rosen

(1986) in considering selection e¢ciency under risk taking instead of under ”e¤ort taking”.

Also, since Rosen con…nes attention to the case where there is no private information about

own type, our aim is, in that sense, broader in scope.

Harrington (1999, 1998) consider a promotion game where agents with the highest

output are promoted to a higher level in an organization. If agents are endowed with simple

behavior rules, Harrington (1998) shows that agents that are unresponsive to changes in

the environment reach the top of the organization. Harrington (1999), on the other hand,

allows agents to act strategically and shows that the ”rigidity” result of Harrington (1998)

can be reversed. While Harrington (1998) does not consider strategic actions

and Harrington (1999) assumes that agents are homogenous, the present

paper considers heterogenous agents that act strategically.5

The e¢ciency of various selection procedures is a main topic in the statistical decision

theory (see e.g., Gibbons et al. (1977)). By focusing on selection e¢ciency as the measure of

the success of a contest, instead of e.g., aggregate output, our work is in that sense closer to

statistical decision theory than to the tournament literature. In contrast to the statistical

decision theory, the present paper considers the selection e¢ciency of a contest when agents

act strategically. The strategic element makes the noise in the selection process we study

5Using tools from evolutionary game theory Dekel and Scotchmer (1999) …nd an evolutionary pressure
towards risk loving preferences provided that those who breed in a population is determined by a contest
(and where a child inherits the risk preferences of its parents). The focus of Dekel and Scotchmer (1999)
is very di¤erent from our focus (there is e.g., no discussion of selection e¢ciency in Dekel and Scotchmer
(1999)), but the models applied are similar.
A patent race is a kind of contest in which there is only one prize – the patent. Risk taking in such

contests has been carefully analyzed in e.g. Klette and de Meza (1986), Cabral (1997), and Dasgupta and
Maskin (1987). However, selection issues do not arise in these papers – only the date of innovation matters.
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endogenous, while the noise in the selection processes studied by statistical decision theory

is exogenous. Thus, the statistical decision theory literature only considers statistical

e¤ects, while we consider the interaction between statistical e¤ects and equilibrium e¤ects.

The remainder of the paper is organized as follows. In Part 2 we describe the model.

In Part 3 we performe the ananlysis. Part 4 concludes. In Appendix A we use numerical

techniques to see whether our basic insights from Part 3 are robust to making the model

more continuous. All proofs are relegated to Appendix B.

2 The Model

Consider a setting in which a principal arranges a contest in order to identify a talented

agent. We assume that the principal can only observe the rank of the agents, and awards

a prize to the agent with the highest rank, or ouput.6 There are n risk-neutral agents

competing for the prize, whose value is normalized to 1.7 The individual output space Z

is …nite and consists of four elements; Z := fz1; z2; z3; z4g, where z1 < z2 < z3 < z4 (tied

winners have an equal chance of obtaining the prize). There are two types of agents, low

and high, with µ denoting the share of the high type in the pool from which the n agents

are drawn. Both types have an opportunity cost of participation equal to zero, and hence

6As pointed by e.g., ..., cases where the principal mainly has ordinal information on individual output,
or where only ordinal information is veri…able (Malcomson (1984)), are common in practice. If cardinal
information on individual output is available and veri…able, an interesting question, that goes beyond the
aims of the present paper, is whether such cardinal information can make schemes where the prize goes
to an agent with an output in the ’middle’ optimal. (Notice that such non-monotonic schemes have the
weakness that they give agents incentives to dispose with parts of their output in equilibrium. For example,
fund managers have an incentive to in‡ate trading costs.)

7As there are no costs associated with risk taking in our model, the size of the prize has no e¤ect on
equilibria. Notice that the freedom with respect to the size of the prize makes the model consistent with
any degree of bargaining power between the …rm and the contestants.
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the group of contestants is a true random sample from the pool.8 Agents of each type have

two pure strategies, safe and risky. If a low type agent chooses safe then her output is

z2 with certainty. If a high agent chooses safe then her output is z3 with certainty. If

a low type agent chooses risky then her output is z1 with probability 1¡ x, and z4 with

probability x. If a high type agent plays risky then her output is z1 with probability 1¡y,

and z4 with probability y, where y > x. We do not exclude mixed strategies, and thus the

(mixed) strategy space has the usual continuity properties. Outputs are assumed to be

statistically independent. Expected utility for an agent equals her win probability, since

we assume that there are no costs associated with risk taking. Alternative approaches are

discussed in a footnote.9

A special case of the model is the case where expected output is constant across projects

of a given type, i.e., the case when the distribution of output under the risky strategy is

a mean preserving spread (MPS) of the distribution of output under the safe strategy.

In the numerical analysis we explicitly assume that risky strategies induce a MPS of the

distribution of output under the safe strategy. Notice, however, that the model is not

restricted to the MPS case.

8A model with self-selection into di¤erent contests (in the spirit of Bhattacharya and Guasch (1988)) is
a possible extension of the present work. For example, it might be possible to construct a pair of contests
(with di¤erent degrees of possible risk taking), in which the low (high) type individuals self-select into the
contest with the high (low) level of potential risk taking.

9Our model is a straightforward multi-type extension of the models in Lambert (1986) and Diamond
(1998) (who study a single agent principal agent problem). We decided to use this model after doing
several attempts on other, presumably richer, models. Let us give an example. A natural formulation is
to let individual output be normally distributed with …xed mean (interpreted as type) and endogenous
variance (risk taking). The unrestricted version of this model (no costs or limits to increasing variance)
gives the unsatisfactory conclusion that the low type’s variance approaches in…nity, securing a 1

n chance of
winning, regardless of the action of the high type. Thus the outcome of the contest is random in a strict
sense, i.e., ¦ = µ. Recall that an agent’s type is simply his mean and notice that this conclusion holds for
any …nite distance between the high type and the low type. Less obviously, the result holds for any number
of types. These annoying results can be avoided by assuming a (possibly U-shaped) cost to risk taking.
Unfortunately, we found such models too di¢cult to solve analytically, except cases with very restrictive
assumptions about the cost function.
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3 Equilibrium Analysis

We now consider the incomplete information game ¡(n; µ), where an agent does not know

the type of the other contestants, but she knows n and µ and her own type. A strategy

is a mapping from the type space T , where T := flow; highg, to the action space C,

where C := fsafe; riskyg. We denote the set of symmetric pure strategies S, where S :=

f(safe; safe), (safe; risky), (risky; safe), (risky; risky)g, with the low type’s action

written …rst. The key endogenous variable is the probability of a high type agent winning

the prize, denoted ¦(¡).10 We con…ne our attention to (symmetric) Bayes-Nash equilibria

(BNE), i.e., strategy tuples where all agents maximize their probability of winning given

the strategy of the other agents, and where all agents of the same type play the same

strategy.

3.1 Quality of Contestant Pool

To see the e¤ect of increasing the quality of the contestant pool, we consider the case of

n = 2.11 Straightforward calculations reveal that there are unique equilibria, and moreover

that all four elements of S can be equilibrium strategies depending on the values of the

parameters (µ, x, y).12

Proposition 1 All four pure strategy combinations are possible symmetric BNE of ¡(2; µ).

Furthermore, if there exists a symmetric pure strategy BNE, then it is unique.

10 In the case of multiple equilibria, ¦ depends not only on n and on µ, but also on which equilibrium is
being played.
11Analogous results can easily be veri…ed for n = 3. For increasing n, it becomes increasingly di¢cult

to solve explicitly the polynomial equations that characterize equilibria, since the polynomials are of the
order n.
12The win probabilities for the di¤erent pure strategy combinations are given in the Appendix.
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Proof. See Appendix B.

Figure 1 illustrates equilibria for varying x and y combinations given n = 2 and µ = 1
2 .
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Figure 1: Equilibria for µ = 1
2 .

Recall that x(y) is the probability of a low(high) agent obtaining the highest outcome

if she plays risky. With both x and y large, (risky; risky) is the equilibrium, which is

natural. In the case where both x and y are small, (safe; safe) is the equilibrium. That

seems counterintuitive since in that equilibrium a low agent loses with certainty if the

other agent is a high type. The intuition behind the (safe; safe) equilibrium is that the

probability of a low type winning against a high type (by playing risky) is su¢ciently

small for the low type to rather care about her best chance of winning were she to play

against another low type agent.13

13Of course, this equilibrium disappears as µ goes to zero.
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In some cases it is possible to improve the average ability of the pool of contestants.

For example, a …rm can hire entry level employees from an Ivy League University rather

than from a Minor League University, or an investor can use a professional evaluation …rm

in order to hire more highly skilled fund managers.14 A …rst guess might be that it is

advantageous to improve the expected ability of the contestants (i.e. to increase µ), as

long as there are no intrinsic costs associated with doing it. However, Proposition 2 shows

that this conjecture can be false if increased ability among the contestants induces more

risk-taking.

Proposition 2 Limited Contestant Quality. ¦ may decrease as µ increases.

Proof. See Appendix B.

¦ increases with the probability that an arbitrary contestant is of the high ability type

if we keep the amount of risk taking …xed. This is the statistical e¤ect. However, there is

the equilibrium e¤ect also: an increase in µ may result in a shift to an equilibrium with

more risk taking, and consequently create more noise in the selection process. This may

reduce selection e¢ciency. The statistical e¤ect may be dominated by the equilibrium

e¤ect, and thus ¦ may increase with a decrease in µ.

When is the equilibrium e¤ect likely to outset the statistical e¤ect? First, an increase

in µ may increase the risk taking of the low type, and hence introduce more noise in the

selection process and thereby reduce ¦. However, ¦ may also decrease in µ in cases where

there is no e¤ect on the low type’s equilibrium strategy from increasing µ (i.e., when only

the high type plays a more risky strategy after µ is increased). The intuition is that a

14Almost all large investors pay professional …rms to evaluate mutual fund managers (Heinkel and
Stoughton (1994)).
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high type agent ignores the negative externality imposed on other high types’ probability

of winning by choosing a riskier strategy.

In cases in which expected output depends on the risk of the project (i.e., the non-MPS

case), selection e¢ciency as well as aggregate output may be of importance for a principal.

Our analysis can straightforwardly be extended to analyze the trade o¤ between aggregate

output and selection e¢ciency. Furthermore, examples in which both selection e¢ciency

and aggregate output decrease in µ can easily be constructed. Hence our non-monotonicity

result is robust to making the principal’s preferences more general.

3.2 Number of Contestants

To improve ¦, it seems natural to increase the number of contestants in order to increase

the probability of a good agent participating. For example, if an investor is uncertain about

the investment skill of various potential mutual fund managers, it might be tempting to

invite a large number to engage in themanagement of its investment portfolio. However,

Proposition 3 shows that increased competition, in the sense of increasing the number

of contestants, can be a two-edged sword, because increased competition may alter the

amount of risk taking in equilibrium.

Proposition 3 Limited Competition. ¦ may decrease when the number of contestants

increases from 2 to 3.

Proof. See Appendix B.

Proposition 3 shows that the increase in noise may in fact harm the selection process

more than the bene…ts of the greater likelihood of having at least one high ability agent
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participating in the contest. The equilibrium e¤ect may dominate the statistical e¤ect.15

Note also that if a switch from a safe to a risky strategy yields a su¢ciently large

reduction in expected output, an increase in the number of contestants (which induce

more risk taking) may reduce expected aggregated output.

When the number of agents is already large, then adding a player presumably has

no equilibrium e¤ect since both types play risky already. An intuition therefore goes that

although ¦may be decreasing for a small increase in n, ¦must increase for a large increase

in n. In other words, although an intermediate number of contestants may be worse than

a few, a very large number of contestants must be better than a few.16 But, as Proposition

4 shows, this intuition is false. The proposition builds on a very useful result from Dekel

and Scotchmer (1999).

Proposition 4 ¦ may be larger for 2 contestants than for an in…nite number of contes-

tants.

Proof. See Appendix B.

4 Conclusion

Contests are used both to induce to work hard and to solve selection problems. It is

therefore surprising that the tournament literature has almost exclusively considered the

15Notice that in contrast to the case of increasing µ, the statistical e¤ect on ¦ of increasing n is am-
biguous. To see why, assume that the (risky; safe) equilibrium is played for some n. Then, keeping the
strategies …xed, ¦ clearly approaches zero as n increases, and thus the statistical e¤ect is negative for
the (risky; safe) equilibrium. On the other hand, the statistical e¤ect on ¦ of increasing n, given the
(safe; risky) equilibrium, is clearly positive. Thus the statistical e¤ect on ¦ of increasing n is ambiguous,
since it depends on the equilibrium strategies played.
16Notice that this intuition holds for the quality of contestants. A very high contestant pool quality (µ

close to 1) certainly gives at least as good value of ¦ as low values of µ.
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former function. In this paper, however, we have mainly considered how well contests

select talented agents, when risk taking is the decision variable of the agents.

We have used promotion decisions in …rms and the selection of mutual fund managers

as examples of situations where …ercer competition may lead to more risk taking and

reduced selection e¢ciency. However, the insights from our analysis can be applied to other

contexts also. For instance, governments and private …rms often sponsor tournaments to

induce research on speci…c topics. The reward structure and selection issues of these

tournaments is close to what we have discussed in this paper: there is usually only one

large prize and selection of a high-quality …rm is essential since the winner is going to

take care of prospective production.17 In such tournaments, the participants can usually

vary the risk pro…le of their research strategies. Our results indicate that an organizer of

a research tournament may want to restrict the number and quality of contestants in a

research tournament.

Taylor (1995) considers how a sponsor of a research contest should induce a high level

of e¤ort from the participants – the riskiness of their research strategies is not considered.

Nor does Taylor (1995) take into account the fact that the sponsor commonly continues

the relationship with the winner through a production contract, and consequently Taylor

ignores selection e¢ciency. Our discussion of selection e¢ciency under risk taking can be

considered as a natural extension of the discussion of e¤ort taking in Taylor (1995).18

17The prizes are large procurement contracts and/or prize money. Rogerson (1989) used stock-market
data to estimate the size of the prize implicit in each production contract awarded after the 12 major
aerospace research contests held by the US Department of Defence between 1964 and 1977. He showed
that the average award was in the interval 10.2 to 14.6 percent of the market value of an average contestant
…rm.
18Our paper is also related to that of Fullerton and McAfee (1999) which considers the use of auctions

for selecting highly quali…ed contestants for research tournaments. Neither Fullerton and McAfee (1999)
nor Taylor (1995) takes into account that …rms often can choose among research strategies with varying
degree of riskiness.
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We have two main results. We show that although increasing the number of …rms

participating in a contest makes it more likely that the pool of contestants includes a

high-quality …rm, it might make it less likely that a high-quality …rm will be awarded the

prize. We also show that an increase in the expected ability or quality of the contestants

may make it less likely that a high-quality …rm will be selected. The intuition behind

the results is that a more competitive tournament – more contestants or higher expected

abilities among the contestants – induces …rms to adopt riskier strategies, which may harm

the selection of high-quality …rms. Riskier projects create more noise in the selection

contest, and thereby reduce the informativeness of the rank.

Our results provide an explanation of why it seems to be increasingly di¢cult to

identify mutual fund managers with superior investment skills.19 As the mutual fund

market becomes more competitive, fund companies may become more inclined to apply

investment strategies (more risk taking) which reduce the investors ability to identify

highly skilled fund managers.20

A Numerical Analysis

The discrete output space, fz1; z2; z3; z4g, places tight restrictions on the type of risk

taking allowed. Speci…cally, the only way for an agent to increase risk is by putting more

probability weight on the endpoints z1 and z4. With a continuous output space, say the

interval [z1; z4], increased risk does not necessarily imply more weight at the endpoints. In

this appendix we use simulation techniques to consider the case with a continuous output

19See e.g. Brown and Goetzmann (1995), Carhart (1997), or Hendricks et al. (1993) for empirical
analyses of performance persistence in the mutual fund industry.
20The famous failure of Long-Term Capital Management (LTCM) may be an example of a company

adopting excessive risky strategies to attract investors.
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space and three di¤erent ability levels: High (H), Medium (M), and Low (L). The results

of this section show that our main results also hold when the output space is continuous.21

As before, the agents maximize the probability of being selected by choosing between

safe and risky projects. To conduct the simulation analysis we make the following assump-

tions.

1. The outcomes of the agents’ projects are normally distributed with expected out-

comes L = 0, M = 3 or H = 6.

2. The agents choose between a safe and a risky project with the same expected out-

come. The safe project is assumed to have a standard deviation of 1. The risky

project has a standard deviation of ¾, where ¾ 2 [3; 7].

3. The probability of being of a particular type is:

L M H

Probability 1
2 ¡ µ 1

2 µ

An increase in µ implies that it is more likely for any agent to meet an opponent

with high ability.

A.1 Quality of the Contestants

In this section we show that ¦ may decrease with an increase in the quality of the contes-

tants (µ).

21The MapleV programs used in this section can be obtained from the authors. We have experimented
with di¤erent parameter values and obtained similar results, so the results seem robust.
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Consider the case with two contestants. It is simple to verify that there exists an

equilibrium in dominant strategies where the H type always chooses a safe strategy and

the L type always chooses a risky strategy.22 Let us now focus on the M type. If µ is

small, then the likelihood of facing a better contestant is small and the M type behaves

as if she is best and, hence, chooses the safe strategy. But if µ is high then the M type is

more likely to face a better contestant and, hence, chooses the risky strategy. In Figure

2, the curve G shows the critical values for µ, such that the M type is indi¤erent between

choosing a safe and a risky strategy.
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Figure 2: Higher quality (µ) of contestants

The shaded area represents the possibility that an increase in µ reduces ¦. Moving

22To see why, …rst note that for type L the high risk strategy dominates the low risk strategy. If she is
facing a better type, she will always increase her probability of winning by choosing the riskier strategy.
If she is facing another L type she is indi¤erent about the choice between a high and low risk strategy.
Hence, a high risk strategy is a dominant strategy for the L type. Second, note that the low risk strategy
is the dominant strategy for the H type. A high risk strategy will increase the probability of low outputs
and hence increase the likelihood of less able contestants achieving a higher output. Furthermore, the H
type will be indi¤erent to the choice between low and high risk strategy facing another H type.
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northwards from a point on the G line into the shaded area, causes a decrease in ¦.

To illustrate further, take two points on the diagram and label them A and B. Then ¦

increases from A to B if B lies further north than A, as long as we do not cross the G line.

If A is below the G line and B is above, as illustrated in Figure 2, then ¦ may decrease.

An increase in the quality of the contestants makes it more likely that one of the

contestants is a H type. But higher quality induce theM types to choose a risky strategy,

which may decrease ¦.

A.2 Number of Contestants

In this section we illustrate that ¦ may decrease as a result of adding one contestant

to a group of two contestants. For simplicity, we focus on the case in which adding a

contestant induces the M type to change strategy, but not the L type or the H type. It

is straightforward to show that (risky; risky; safe)n=3 is a unique equilibrium for µ < 1
5 ,

which is the case we consider in the following …gure.
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Figure 3: Adding one more contestant

In Figure 3, the line P gives the points where ¦ is identical for n = 2 and n = 3. In

the shaded area of Figure 3, ¦ decreases when the number of contestants increases from

two to three.

B Proofs

For the sake of brevity, we write s instead of safe, r instead of risky, l instead of low and

h instead of high throughout this appendix.

Proof of Proposition 1: We use the following convention: Ui(j; k) denotes the win

probability of an agent of type i when agents of her own type (including herself) play

strategy j and agents of the other type play strategy k. For example, UH(s; r) denotes the

win probability of an h agent when all h agents (including herself) play s, and all l agents
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play r. The individual payo¤s in the symmetric tuples (when all agents of the same type

choose the same strategies) are:

UH(r; r) =
1
2(1 + (1¡ µ)(y ¡ x)) UL(r; r) =

1
2(1 + µx¡ µy)

UH(s; r) = 1¡ 1
2µ ¡ x+ µx UL(s; r) =

1
2(1 + µ)¡ µy

UH(r; s) =
1
2µ + (1¡ µ)y UL(r; s) =

1
2(1¡ µ) + xµ

UH(s; s) = 1¡ 1
2µ UL(s; s) =

1
2(1¡ µ)

For individual deviations, we use the following convention: U 0i(j; k) denotes the win

probability of an agent of type i when she plays strategy ¡j, other agents of her own type

play strategy j, and agents of the other type play strategy k. Since the payo¤ from letting

¡j be a mixed strategy is a convex combination of playing s and playing r, we only need

to consider pure-strategy deviations . For example, U 0H(s; r) denotes the win probability

of an h agent playing r, when all other h agents play s, and all l agents play r. The

individual payo¤s from individual deviation are:

U 0H(r; r) = µ(1¡ y) + (1¡ µ)(1¡ x)

U 0H(s; r) = µy + (1¡ µ)(12xy + y(1¡ x) + 1
2(1¡ x)(1¡ y))

U 0H(r; s) = µ(1¡ y) + (1¡ µ)

U 0H(s; s) = y

U 0L(r; r) = µ(1¡ y) + (1¡ µ)(1¡ x)

U 0L(s; r) = µx+ (1¡ µ)(12xy + x(1¡ y) + 1
2(1¡ x)(1¡ y))

U 0L(r; s) = (1¡ µ)(1¡ x)

U 0L(s; s) = x

Consider equilibrium (r; r). Notice that the payo¤ from individual deviation is the

same for an h agent and an l agent, and moreover that UH(r; r) > UL(r; r). Thus we

18



only have to check a deviation from an l agent: if an l agent would not deviate, then

an h agent would not deviate. An l agent follows the supposed equilibrium strategy if

1
2(1¡ µy + µx) > µ(1¡ y) + (1¡ µ)(1¡ x), which implies that y > 1+µx¡2x

µ .

Consider equilibrium (s; s). An l agent follows the supposed equilibrium strategy if

x < 1
2(1¡ µ). The condition for an h agent is y < 1¡ 1

2µ:

Consider equilibrium (r; s). An l agent follows the supposed equilibrium strategy if

1
2(1 ¡ µ) + xµ > (1 ¡ µ)(1 ¡ x), which implies that x > 1

2(1 ¡ µ). The condition for the

h type is 12(1 + (1 ¡ µ)(y ¡ x)) > µy + (1 ¡ µ)(12xy + y(1¡ x) + 1
2(1 ¡ x)(1 ¡ y)), which

implies that y < 1
2 .

Consider equilibrium (s; r). An l agent sticks if 12(1 + µ) ¡ µy > µx + (1 ¡ µ)(12xy +

x(1¡y)+ 1
2(1¡x)(1¡y)), which implies that x < y+2µ¡3µy

1+µ . The condition for the h type

is 12µ + (1¡ µ)y > µ(1¡ y) + (1¡ µ), which implies that y > 1¡ 1
2µ.

The uniqueness of BNE, given (x; y), follows directly from the argument.

Proof of Proposition 2: There are several areas in the (x; y) diagram where ¦ decreases

with µ. Consider one example. Suppose x = 1
5 and y =

1
4 . If µ =

1
2 , then (s; s) is the

unique BNE, which gives ¦ equal to 3
4 . Now increase µ to

3
5 . In that case (r; s) is the

unique BNE, and ¦ equals 93
125 <

3
4 . Thus we have demonstrated that for x =

1
5 and

y = 1
4 , ¦ is larger for µ =

1
2 than for µ =

3
5 .

Proof of Proposition 3: Consider an example. Let µ = 1
2 , x =

1
5 , y =

1
4 . First

consider the case n=2. Then, from Proposition 2, (s; s) is the unique BNE. That gives

¦(2; 12) = µ
2 + 2µ(1¡ µ) = 3

4 =
150
200 : Now increase n to 3. In that case, (s; s) is no longer

19



a BNE since

UL(s; s) =
1

3
(1¡ 1

2
)2 =

1

12
< U 0L(s; s) =

1

5

However, (r; s) is indeed the BNE since a)UL(r; s) = 67
300 > U 0L(r; s) =

48
300 :While on the

other hand, b) UH(s; r) = 532
1200 > U

0
H(s; r) =

319
1200 : Thus,

¦(3;
1

2
) = µ3 + 2µ2(1¡ µ)(1¡ x) + 2µ(1¡ µ)2(1¡ x)2 = 97

200
<
150

200

As with an increase in µ, examples where ¦ decreases in n due to the h type playing a

riskier strategy can easily be constructed.

Proof of Proposition 4: From Dekel and Scotchmer (1999), Proposition 3, we know

that there exists a …nite n, denoted n*, such that for all n larger than n*, (risky; risky) is

the unique equilibrium. It follows that (risky; risky) is the only equilibrium for an in…nite

number of contestants. Consequently, with an in…nite number of contestants, the winner

has output equal to z4, with probability 1. By the law of large numbers, the share of H

agents that achieve z4 is just y, and the share of L agents that achieve z4 is equal to x.

Thus ¦(1) = µy

µy + (1¡ µ)x . Now consider µ =
1
2 ; x =

1
5 ; y =

1
4 . With those parameter

values, we have ¦(1) = 5
9 <

3
4 = ¦(2).
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