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Abstract

We apply a suite of models to produce quasi-real-time density fore-
casts of Norwegian GDP and inflation, and evaluate different combina-
tion and selection methods using the Kullback-Leibler information crite-
rion (KLIC). We use linear and logarithmic opinion pools in conjunction
with various weighting schemes, and we compare these combinations to
two different selection methods. In our application, logarithmic opinion
pools were better than linear opinion pools, and score-based weights were
generally superior to other weighting schemes. Model selection generally
yielded poor density forecasts, as evaluated by KLIC.
Keywords: Model combination; evaluation; density forecasting; KLIC
JEL Codes: C32, C52, C53, E52

“My own feeling is that different combining rules are suitable for dif-
ferent situations, and any search for a single, all purpose, “objective”
combining procedure is futile.” Winkler (1986)

1 Introduction

Monetary policy-makers make policy decisions about their instruments in the
context of a fundamentally uncertain world. To ensure appropriate monetary
∗The views expressed in this paper are those of the authors and should not be attributed

to Norges Bank or the Reserve Bank of New Zealand.
†Corresponding author: Christie.Smith@rbnz.govt.nz; Ph +64 4 471 3740; Fax +64 4 473
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policy decisions, central bankers must provide suitable characterisations of that
uncertainty. In this article we use density combination methods to characterise
uncertainty and provide short term macroeconomic forecasts. In the context of
a broad suite of models, we explore the performance of different density combi-
nation methods (log and linear opinion pools) and weighting schemes (weights
compiled from log scores and continuous ranked probability scores). We eval-
uate these combinations using logarithmic scores, which can be interpreted as
evaluating densities on the basis of the Kullback-Leibler information criterion.

Boiled down to its essence, our paper is a horse race to identify which com-
bination schemes yield the best density forecasts. The imperatives of policy-
making mean that forecasts are always required, irrespective of whether the
forecasts are consistent with some notionally ideal model. By identifying the
best forecast densities it is hoped that the losses that entail from the density
misspecification will be as small as possible. The quote from Winkler (1986)
above suggests that there may not be a universally ‘best’ combination method,
a view with which we have considerable sympathy. It also implies that dif-
ferent combination methods should be assessed on a case-by-case basis. This
paper represents one such case, and illustrates a method that can be used to
discriminate between different competing densities.

Although the importance of uncertainty on decision-making has long been
realised by monetary policy-makers, the vast bulk of analysis has taken refuge in
a certainty equivalence framework that enables policy-makers to disregard the
properties of uncertainty. If a policy-maker’s loss function is quadratic and the
dynamics of the economy can be adequately represented with linear equations,
certainty equivalence implies it is only necessary to focus on the first moments of
future outcomes, appropriately discounted, to derive optimal policy (see Simon
1956 and Theil 1957). However, if the policy-maker’s loss function is more
complicated or if the world is nonlinear then it no longer suffices to focus solely
on the first moments of possible outcomes entering the loss function, rather one
may need to characterise all moments or, equivalently, the entire distribution of
possible outcomes.1 Consequently, forecasters should provide density forecasts
rather than simply point forecasts reflecting expected values.2

Models should be specified and estimated taking into account the objec-
tive function of the end-user of the model, but typically the objective function
is unknown. Ideally, different methods for forecasting densities would have a
consistent ranking irrespective of the decision-maker’s loss function; the high-
est ranked density forecast method would then be robust to the preferences of
the ultimate end-user. However, as Diebold et al. (1998) and Granger and Pe-
saran (2000) discuss, there is no consistent ranking over competing, misspecified

1Karagedikli and Lees (2007), Surico (2007), Cukierman and Muscatelli (2008) and Aguiar
and Martins (2008) all find evidence of significant asymmetries in monetary policy preferences.
Dolado et al. (2004) find asymmetries in the reaction function of the Volcker-Greenspan regime
and infer that policy preferences are asymmetric.

2Timmerman (2006, sn 2.1) makes a similar point, noting that, when the loss function
depends solely on forecasts, the optimal combination weights will typically depend on the
entire distribution of forecast errors.
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density forecasts: different decision-makers with different loss functions could
favour different density forecasting methods. On the other hand, if one of the
density forecasting methods miraculously coincides with the true data gener-
ating process then this true density function will be preferred above all others
since it enables the optimal action to be identified, which ultimately minimizes
the expected loss of the policy-maker. The goal for forecasters is thus to provide
density forecasts that are as close as possible to the truth, to facilitate a good
approximation to the optimal action.

Policy-makers are confronted with a wide array of candidate models and
hence candidate forecast densities. We use combination methods (cf. selec-
tion) to reconcile competing forecasts. Timmerman (2006) surveys combination
methods and provides theoretical rationales in favour of combination – includ-
ing unknown instabilities, portfolio diversification of models, and idiosyncratic
biases. Empirical evidence also supports the use of combination methods, see
for example Clemen (1989), Makridakis et al. (1982), Makridakis et al. (1993),
Makridakis and Hibon (2000)), Stock and Watson (2004), and Clark and Mc-
Cracken (2010). For point forecasting, a number of these papers find that simple,
equal-weighted combination methods out-perform more sophisticated ‘adaptive’
methods where the weights are based on past performance. However, Jore et al.
(2010) examine density forecasts and conclude that adaptive weights improve
upon simple weights.

Our paper is similar to Gerard and Nimark (2008) and Eklund and Karlsson
(2007) in that we use out-of-sample predictive performance to weight models
together and investigate whether improved forecasts can be derived from model
combination. However, Eklund and Karlsson and Gerard and Nimark use a
single formal method for combination – Bayesian model averaging – while we
explore both linear and logarithmic opinion pools, and we have a larger and
more diverse model space. Unlike Kascha and Ravazzolo (2010) and Garratt
et al. (2009), who compute densities using either a normal or multivariate t-
distribution approximation, some of our densities are computed using simulation
techniques. The use of simulation methods affects how we represent the densities
and compute our linear and logarithmic opinion pools, which we elaborate on
later in the paper.

We forecast year-on-year inflation in the Norwegian consumer price index
adjusted for taxes and energy (CPIATE) and the year-on-year growth in gross
domestic product (GDP) for ‘Mainland Norway’. CPIATE is the main reference
series used to evaluate the implementation of Norwegian monetary policy, while
the Mainland Norway GDP series endeavours to exclude the impact of North
Sea oil production.3 Oil production is discounted for monetary policy purposes
since it is capital intensive and much of the returns are invested abroad by the
‘The Government Pension Fund - Global’, colloquially known as the Norwegian
Petroleum Fund. Consequently, off-shore oil production has little impact on
domestic demand, and hence inflationary pressure.

3Norges Bank’s mandate requires it to disregard any direct effects on consumer prices
resulting from changes in interest rates, taxes, excise duties and extraordinary, temporary
disturbances when implementing monetary policy.
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The paper is organised as follows. Section 2 covers three issues: i) the eval-
uation of the predictive forecast densities; ii) the mechanisms used to combine
densities; and iii) the derivation of weights used to aggregate densities. In sec-
tion 3 we describe the suite of models employed in our analysis and discuss
how the forecast densities from individual models are characterised. We also
describe how we conduct our quasi real-time analysis. Section 4 then reports
the log scores of the forecast combinations, which enables us to rank the combi-
nation methods given our suite of models. These combination forecasts are also
compared to those obtained from model selection. Section 5 concludes.

2 Density evaluation, model combinations and
weighting schemes

2.1 Assessment of densities

‘Scoring rules’ are functions of predictive distributions and realised out-turns,
and are used to evaluate the predictive densities (Gneiting and Raftery, 2007).
When forecasters are assessed and rewarded relative to ‘proper’ scoring rules,
the forecasters have an incentive to report their true beliefs about the density
rather than trying to game the assessment by reporting some other forecast
density, see Matheson and Winkler (1976) and Good (1952).

We use logarithmic scores to assess individual and combination densities,
which are proper scoring rules in the sense described above. Log scores are
linked to both Shannon entropy and the Kullback-Leibler information criterion
(KLIC) (Gneiting and Raftery, 2007). The KLIC for the ith model is:

E (log(f(yt)/Pi(yt))) (1)

where this expectation is taken with respect to the true unknown density f(yt).
For a continuous distribution, this expectation is:

KLICi =
∫ +∞

−∞
log(f(yt)/Pi(yt)))f(yt)dy

=
∫ +∞

−∞
log (f(yt)) f(yt)dy −

∫ +∞

−∞
log (Pi(yt)) f(yt)dy (2)

The KLIC of a model’s density represents the expected divergence of the model
density relative to the true unknown density across the entire domain of the
true density. The KLIC is non-negative, and only attains its lower bound of
zero when Pi(yt) = f(yt). The first integral on the right hand side of (2) is an
unknown but fixed constant. Therefore the KLIC can be minimized by mak-
ing the second term as large as possible, ie by maximizing

∫
log (Pi(yt)) f(yt)dy.

Assuming ergodicity this expectation can be approximated using a sample mean
1
T

∑T
t=1 log (Pi(yt)). Maximizing this quantity given a vector of data (y1, . . . , yT )′

is simply maximum likelihood. Thus, a density with a higher (log) likelihood
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value than another – a higher score – has a lower Kullback-Leibler information
divergence and is closer to the true but unknown density.

Scores are affected by both the location and dispersion of a density. A
density that is under-dispersed will have observations fall in its tails more often
than predicted resulting in low average scores. Conversely, a distribution that
is over-dispersed will have actual observations fall mainly in its centre, but the
scores will be lower than they should because probability mass is spread over
ranges that are only infrequently visited by the random variable of interest.

The log scores of the models and combinations are derived from the out-
of-sample performance of the predictive densities. Performance is also assessed
on a horizon-specific basis, since models are often found to have contrasting
performance at different horizons (Makridakis and Hibon, 2000).

2.2 Opinion pools

Linear and logarithmic opinion pools are the two density combination schemes
that have been most prominent in the literature.4 The linear opinion pool is
the most intuitive combination density, simply being:

P (yt) =
n∑

i=1

wiPi(yt) (3)

where P (yt) is the combination density, Pi(yt) is an individual density obtained
from the ith model (suppressing parameter vectors for notational convenience)
and wi is the weight on the ith model, with wi ∈ [0, 1] and

∑n
i=1 wi = 1. This

combined density is clearly non-negative and integrates to one. Bayesian model
averaging (BMA), which is often used to combine densities, is an example of
a linear opinion pool.5 Linear opinion pools can also be generalised to allow
for a constant and indeed negative weights; see Genest and Zidek (1986) and
Timmerman (2006).

The log opinion pool, on the other hand, is a geometric weighted average of
the individual densities:

P (yt) = K ·Πn
i=1Pi(yt)wi (4)

where K is a constant to ensure that the log opinion pool integrates to 1.
It is worth noting several characteristics in which linear and logarithmic

opinion pools differ. The geometric weighting of a log opinion pool means that
the combination will have zero probability mass in a region if a single density
says that the region has zero probability (contributing to its reduced dispersion)
– Genest and Zidek (1986) refer to this as a ‘veto’ property. Consequently a
single, poorly specified density could have a material impact on a combination
density from a log opinion pool. A log opinion pool will also be normally

4Garratt et al. (2010), this issue, adopt terminology from the meteorological literature and
refer to density combinations as ensembles.

5See Hoeting et al. (1999) for an introduction to Bayesian model averaging.
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distributed if the individual densities underpinning it are normally distributed;
see Kascha and Ravazzolo (2010). Conversely, combining normally distributed
probability distributions in a linear opinion pool results in a normal mixture
distribution.

In general, log opinion pools are less dispersed than linear opinion pools,
and are typically uni-modal (Genest and Zidek, 1986). Linear opinion pools, on
the other hand, may be multi-modal. Kascha and Ravazzolo (2010) illustrate
that when combining two densities with two distinct modes, the linear and log-
arithmic pools can result in quite different combination densities: in particular,
the log opinion pool can place high probability mass between the modes of the
individual densities even though each individual density places low probability
on that intermediate region. Nevertheless, a priori one cannot say that such a
density will be worse in terms of KLIC, and therefore both pooling operators
need to be assessed empirically.

As we have no strong preference for particular density combination proper-
ties we investigate both linear and logarithmic opinion pools, evaluating their
forecasting performance against each other. The choice of pool still leaves open
the question of the choice of weights.

2.3 Combination weights

The simplest combination scheme uses equal weights for all of the densities that
enter the combination. Equal weights imply that the data cannot reliably inform
us about the performance of individual models. Nonetheless, as discussed ear-
lier, equally-weighted combinations have been found to be surprisingly effective,
at least for point forecasting.

For density combination, one of the most natural statistics to use to derive
weights is the probability that a model could have generated the evaluation
data. Loosely speaking, the log-likelihood is the log of the probability that the
data were generated by a particular model. One way of deriving weights is thus
by taking the exponent of the log-likelihood. The weights can then be specified
as:

wi =
exp

(
log(Pi(y))

)∑n
j=1 exp

(
log(Pj(y))

) (5)

where y = (y1, . . . , yT )′, and log(Pi(y)) =
∑T

t=1 log(Pi(yt)).
Another candidate statistic that can be used to derive model weights is the

continuous ranked probability score (CRPS). In an ideal world perfect forecast-
ers would correctly anticipate all future events, and probability mass of one
would be centred on the soon-to-be realised outcomes. The corresponding cu-
mulative density functions would be step functions, with the steps also located
at the realised outcomes. The CRPS can be conceptualised as a measure of the
deviation from this step-function ideal. Let Xt be the variable being forecast
and denote the actual out-turn Xt = xt. Then the ideal cumulative forecast
distribution, the ‘heaviside function’ centred on the actual observation, is a step
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function that we denote:

I(x ≥ xt) =
{

1 if x ≥ xt

0 if x < xt
(6)

Denote the predictive forecast distribution of model Mi as F (x;Mi). Then the
CRPS for model Mi for the single observation at time t is:

CRPSit =
∫ +∞

−∞
(I(x ≥ xt)− F (x;Mi))2dx (7)

and over a sample of random variables X1, ..., XT one can simply take the av-
erage of CRPSit to assess the calibration of the densities from model Mi. Fig-
ure 1 illustrates the continuous ranked probability score for a single realisation
(though for simplicity the shaded regions depict the absolute differences between
the heaviside function and the forecast density, rather than the quadratic dif-
ferences of the CRPS). Two forecast densities may have the same score – the
same slope of the CDF evaluated at the realisation – but one density may be
considered better than another because it has more probability mass ‘near’ the
realisation. The CRPS provides a metric for discriminating between two such
densities. The CRPS is also more forgiving of outliers than scores: if a realised
value x is below (less than) the support of a model density then the slope of the
cumulative distribution function, the score, would be zero but the CRPS would
be
∫ +∞

x
(1 − F (x;Mi))2dx, which would be a finite number. The score of zero

for a single observation would result in no probability ever being attached to
that model, even if the performance of the model density was very good for all
other realisations. In contrast, the CRPS might still place positive weight on
this model density, despite its egregious miss for one realisation. The more for-
giving CRPS weights might therefore yield a better combination density.6 The
appendix provides more detail on the computation of weights from log scores
and CRPS statistics.

3 Norges Bank models and estimation

3.1 SAM and the models

In 2006 Norges Bank instituted a ‘Nowcasting’ project to improve its short-
term forecasting. One of the objectives of the project was to provide a formal,
model-based characterisation of uncertainty. This objective has been framed in
terms of obtaining good density forecasts through forecast combination. We use
Norges Bank’s System for Averaging Models (SAM) to evaluate the models and
the combinations employed in this paper. Since it is entirely possible that the
best models or combinations at time t will be superseded by some other models

6Any non-linear transformation of a statistic will affect the weights assigned to different
models. Transforming the CRPS non-linearly to optimize the combination is a possibility, but
is left for future research.
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or combinations at a later date, it is important for the models and combinations
to be evaluated on a recurrent basis, and this ongoing evaluation also helps to
forestall mistakes in the implementation of the models.

Norges Bank’s System for Averaging Models is used recurrently as part of
the policy process to provide model-based forecasts for GDP and inflation. The
suite of models in Sam includes univariate and vector autoregressions (ARs and
VARs), factor models based on quarterly and monthly data, Bayesian VARs,
term structure models, and a dynamic stochastic general equilibrium (DSGE)
model. For GDP many of the models are simply bivariate autoregressions with
four lags of both GDP and an indicator as regressors.7 For GDP there are 144
models, and for CPIATE there are 84. There are ongoing efforts to expand the
suite of models, and to widen the set of variables being forecast.

The models are estimated using a variety of different methods, from classical
estimation to Markov chain Monte Carlo (MCMC) techniques. Consequently,
the density forecasts are also obtained in a variety of different ways. Many of
the VAR models provide density forecasts by assuming asymptotic normality
(ignoring parameter uncertainty) and thus require just a point forecast and
a standard deviation to compute the density, whilst densities for some of the
other models are obtained by simulation, e.g. bootstrapping the estimation
errors with replacement or using simulations from MCMC methods. These
‘simulation samples’ are smoothed using kernel density methods.

Since some predictive densities are computed parametrically and others are
derived from simulations, we need to establish a common basis that can be
used to weight the densities together into a combined density. One approach to
construct a linear opinion pool would be to represent each density numerically
by simulating, say, 1000 realisations from the density. One could then compute
a weighted combination by sampling from each density’s simulation sample with
the desired weight. Suppose for example that there are two models, M1 and M2

and model M1 had probability 2/6 and model M2 had probability 4/6. Like a
mixture distribution, one could roll a die and draw with replacement from M1’s
simulation sample if {1, 2} occurred on the die, and draw from M2’s simulation
sample if the die return {3, 4, 5, 6}. One could draw N such variates resulting
in a sample from the weighted density. The probabilities for this weighted
density could be computed using a histogram or non-parametric methods; this
histogram or non-parametric density is required to enable one to assess the score
of an observation that might fall anywhere in the domain of the density.

While this simulation approach could be employed to approximate a linear
opinion pool, it is not immediately obvious how it could be used to approximate
a logarithmic opinion pool. Kascha and Ravazzolo (2010) compute logarithmic
opinion pools, but they do so parametrically, making use of the fact that when
the individual densities are normal (as they assume) then so to is the combined
logarithmic opinion pool.

Given the number of models in our model suite, the number of recursive
7A brief description of most of the models in Sam is provided in Bjørnland et al. (2008),

and a complete description of the models is available from the authors upon request.
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samples, and the fact that we are also interested in logarithmic opinion pools,
the simulation approach described above was impractical for our application.
Instead we represent cumulative distributions using piecewise linear functions,
with knots at a common grid of points g ∈ {g1, g2, . . . , gN}, where gj−1 < gj .

If model M1 has a simulation sample {X(1), X(2), . . . , X(N)} to represent a
density for a variable X being forecast, then the empirical cumulative distribu-
tion for model M1 at point g is:

FN (X ≤ g;M1) =
1
N

N∑
k=1

I(X(k) ≤ g) (8)

where

I(X(k) ≤ g) =
{

1 if X(k) ≤ g
0 if X(k) > g

(9)

This empirical distribution function converges uniformly as the sample size N
increases (Mood et al., 1974). For model M1, P (gj−1 < X ≤ gj ;M1) = FN (X ≤
gj ;M1) − FN (X ≤ gj−1;M1); given the assumption of piecewise linearity, this
probability is assumed to be evenly distributed across the interval (gj−1, gj ].8

Suppose that model M2 has a parametric cumulative distribution F (X ≤
g;M2). Then, as for models that use empirical distribution functions, P (gj−1 <
X ≤ gj) = F (gj ;M2) − F (gj−1;M2). Although it is possible to evaluate the
distribution function exactly at any intermediate point using the parametric dis-
tribution function, we approximate the distribution by using a piecewise linear
function, with knots at the same grid as before, g ∈ {g1, g2, . . . , gN}. Placing
both parametric and simulation densities on a common footing is done for com-
putational convenience to ease the combination of the individual densities. The
linear and log opinion pools are computed at {g1, g2, . . . , gN} using (3) and (4).

The grid of knots used for both GDP and CPIATE lies in the interval
[−5,+10] and increments in steps of 0.05. This domain is broader than the
unconditional domains of historical Norwegian GDP and CPIATE. In the con-
text of year-on-year inflation, the grid encompasses deflation of 5 percent year
on year, and moderately high inflation of up to 10 percent per year. Likewise,
the analysis can incorporate declines in output of up to 5 percent per year, and
expansions of up to 10 percent per year.

3.2 Estimation

To evaluate the models and the different combination schemes we perform an
out-of-sample evaluation. This is a quasi real-time analysis, based on the most
recent vintage of data. Given that we wish to mimic the forecasting problems
faced by a central bank, it would be preferable to perform a complete real-time
analysis, but Norwegian real-time data were not available when this analysis
was undertaken.

8In practice we use non-parametric methods to compute the densities at the knots and
assume the densities are flat across intervals such as (gj−1, gj ].
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The models are first estimated up to 1998Q4, and then the estimation win-
dow is recursively expanded. We report results and statistics for our entire quasi
out-of-sample period, 1999Q1-2008Q4. However, not all models are estimated
on the same in-sample period, since different researchers have different views
as to which data should be used to forecast forward (e.g. because of structural
breaks, data availability, and/or changes in policy regime). Thus, it is not pos-
sible to provide a fair comparison of the models based on their in-sample fit,
which motivates our choice of out-of-sample evaluation criteria (see section 2).
Out-of-sample evaluation also acts as a natural penalty on over-parameterized
models.

It is comparatively uncommon for a data set to be balanced.9 When the data
set is unbalanced the analysis proceeds as if the same unbalancedness prevails
each time the model is estimated. The results reported in this paper are based
on an unbalanced panel, with GDP in 2008Q4 being unknown. This unbalanced-
ness is artificially maintained in earlier forecasting periods. The unbalancedness
is artificial in the sense that publication schedules are not perfectly consistent
through time. Suppose there are two quarterly series {Xt}∞t=1 and {Yt}∞t=1 and
their publication lags in days after the end of the tth quarter are respectively
δxt and δyt, with δxt < δyt. Suppose at an earlier time period s that δxs > δys.
Then at time t xt is published before series yt, but at time s the order of the
publication dates is reversed. Thus a particular unbalancedness (such as xs is
known but ys is not) would never have existed in practice.

The quasi real-time analysis proceeds as we would have in real-time, with the
exception that we use the final vintage of data. Since there are delays before any
evidence of forecast performance is available to assess the models, there are also
delays in our ability to compute the adaptive weights used to form combination
forecasts. For example, for the one-step-ahead forecast horizon we must wait
for a quarter before we can weight the models together; for the two-step-ahead
forecast horizon we must wait two quarters before we can assess the individual
models, and so on for higher-step forecasts. Publication lags exacerbate the
delay in being able to adaptively assess model performance. In early periods
the forecasts from models are equally weighted, which can be thought of as an
uninformative prior for the model weights.

4 Results – model and combination performance

In this section we analyse the performance of the models in the suites employed
by Sam and the performance of various combination forecasts. We compare
these combinations to densities obtained through quasi real-time selection of the
best densities. The next subsection illustrates some statistics for the individual
models. Then in section 4.2 we illustrate how the choice of weights and the type

9For example, National accounts data in Norway are published with lags of up to two
quarters.

10



of opinion pool affects the performance of the resulting forecasting combinations.
Our central research questions are thus:

1. Are densities from model combination better (in KLIC/score terms) than
densities from model selection?

2. Do logarithmic or linear opinions provide better predictive density fore-
casts (evaluated by KLIC/score)?

3. Which weights – equal weights or weights derived from scores or CRPSs
– yield the best (quasi) out-of-sample density forecasting performance,
again evaluated by KLIC?

In our analysis there are two pools and three weighting schemes, resulting
in six different combinations. We also compare our combination results to a
selection strategy, where a weight of 1 is placed on a specific ‘best’ model, given
the performance to date. The choice of best model evolves through time, and
depends on the statistic used to determine which model is best: log score or
CRPS.

4.1 Model evaluation

To set the scene, figures 2 and 3 plot the last round of forecast densities for
mainland GDP growth and CPIATE inflation from the individual models.10

The forecast densities are for growth rates which are calculated in year-on-year
terms, and many of the models are estimated on these year-on-year growth
rates. For GDP there are 144 models, and for CPIATE there are 84 individual
models. The aim is thus to pool the individual densities into a single density, or
to select one, for each variable at each horizon in order to help monetary policy
decision-makers.

As can be seen from these figures, there is substantial variation in the den-
sities provided by the various individual models. The variation is particularly
marked for GDP forecasts, which is not surprising given that Norwegian GDP
has been quite variable, whereas inflation has generally been low and fairly
stable.

4.2 Evaluating combinations and selections

Figures 4 and 5 illustrate the performance of the individual densities, evalu-
ated by their average log scores. (See also figure 1 for more insight into the
computation of the scores.). In light of the previous figures it will come as
no surprise that there is substantial variation in the weights attached to the
individual forecast densities.

Tables 1 and 2 represent the crux of the empirical analysis in this paper. In
these tables we report the densities from the six combinations and the densities
selected by average log score and CRPS.

10We report average log scores, but of course the ranking is the same as if the log scores
were cumulated and exponentiated.
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For GDP the results are fairly clear: conditional on a given weighting scheme,
logarithmic pools are preferred at all horizons according to the Kullback-Leibler
information criterion. The weights that yield the best combination density are
sometimes derived from scores and sometimes derived from CRPSs. However,
even when weights from the CRPSs are better, the differences relative to the
performance of the score-weighted linear opinion pools are only slight. The
densities obtained through selection are almost universally the worst performers.
At the one step forecast horizon for GDP, logarithmic and linear opinion pools
with score-based weights yield the best densities, though the linear opinion pool
is not much better than logarithmic opinion pools with either equal or CRPS-
based weights. At longer horizons the choice of weighting scheme (score, CRPS,
or equal) is not very material, conditional on a given pool type.

For CPIATE logarithmic opinion pools have larger log scores than linear
pools for all weighting schemes. And within logarithmic pools score-based
weights consistently yield the best combinations (as evaluated by score/KLIC).
However, using scores as the selection criterion or using linear opinion pools
with score based weights also yield fairly good density forecasts for CPIATE.
In contrast to the GDP results, the choice of weighting scheme does matter
for CPIATE: CRPS- and equal-weighted combinations are noticeably inferior
to those that use score-based weights.

Given our model suites, equal weighted combination densities are (with one
exception) inferior to combinations with weights derived from either scores or
CRPSs. Combinations with equal weights are of course contaminated by the
poorest individual densities. However, as we saw in figures 4 and 5, some of the
models that are initially worst improve substantially over time, and ruling them
out entirely could be premature as more data arrives.

Figures 6 and 7 illustrate the evolution of weights as more and more forecast
rounds have been performed so that there is a more extensive sample of (quasi)
out-of-sample forecasts that can be used to assess the models, and hence derive
their weights. Each colour (or monochrome shade) corresponds to a model,
and the height of each colour/shade corresponds to the weight attached to the
model after a given number of forecast rounds. Naturally, each column sums
to one. The early forecast rounds, where equal weights were attached to each
model, are not depicted. The most obvious feature of these plots is that the
identification of which models are ‘best’ changes through time. Initially some
models have quite high weights, but then they fail to forecast some observations
and their weights drop away reflecting this poor performance. Naturally the
reverse happens too, some weights increase. The upshot is that we cannot be
assured that the accumulation of data will enable us to select a single best
model, or a combination with a subset of best performing models.

5 Conclusion

In this paper we investigated the forecasting properties of various combined
densities for Norwegian GDP growth and Norwegian inflation. We evaluated
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these forecast densities by considering their log scores, which is analogous to
assessing them by the Kullback-Leibler information divergence. Our results
imply that the performance of the combinations depends upon the interaction
between the choice of pool and the choice of weights, and the underlying model
space.

For our data and model suites, and evaluating densities by their scores, we
found that the logarithmic opinion pools generally provided better densities
(as measured by KLIC) than linear opinion pools. Furthermore, densities ob-
tained through combination were generally better than densities obtained by
selecting a best model, where selection was based on a statistic from the out-
of-sample forecast performance. Though not universally best, weights obtained
from scores were generally better than simple (equal) weights, and better than
weights obtained from the CRPSs. It should be noted that the score based
weights did exhibit substantial variation as the forecast rounds were conducted.
Generally, a relatively small number of models received substantial weight, but
the exact models receiving the weight evolved considerably through time.

The analysis illustrated in this paper helps to answer a ‘live’ policy question
about which combination method to use. We do not formally test whether one
combination is better than another since ultimately we need to choose a method
to provide policy-makers with forecasts, and we do not care whether one method
is only slightly or significantly better than another.

It has long been realised that specification choices affect model properties,
and that one should take into account the possibility that there are other models
that may be better than the single model that one selects. Specification choices
are also important for model combinations: choices about model weights or the
type of pool can have an important effect on the properties of a combination
density forecast. Decisions about the choice of weights also have an impact; the
precise consequences will depend on the suite of individual models underlying
the combinations. Without investigating the different possible combinations,
one cannot know if one’s combination choices have been inspired or unknowingly
mediocre.

The introduction to this paper emphasized that density forecasting is needed
in monetary policy analysis to facilitate policy decision-making, as per the sim-
ple decision environment outlined in Diebold et al. (1998, sn. 2). For monetary
policy that simple decision environment is somewhat unsatisfactory because fu-
ture macroeconomic outcomes, and hence also macroeconomic forecasts, should
be affected by the policy actions undertaken. If, however, policy can be well-
represented by a rule, so that the effects of monetary decisions are already em-
bedded in the reduced form dynamics of the data, or if such policy actions take
a while to affect the economy, then near-term forecasts may be relative immune
to such considerations. Nevertheless, explicitly incorporating policy condition-
ality into the forecasting process – making forecasts conditional on interest rates
– would be a highly desirable direction in which to proceed, particularly when
forecast horizons are a year or more.
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Table 1: GDP: Average log scores

H=1 H=2 H=3 H=4
Selection-score -1.5569 -1.701 -1.8441 -1.8781
Selection-CRPS -1.578 -1.6899 -1.7582 -2.2781
Linear pool-score -1.2845 -1.5537 -1.7197 -1.8176
Linear pool-CRPS -1.4671 -1.5897 -1.7316 -1.8332
Linear pool-equal -1.4762 -1.591 -1.7378 -1.8403
Log pool-score -1.2189 -1.5014 -1.6417 -1.7553
Log pool-CRPS -1.3758 -1.4977 -1.6331 -1.7653
Log pool-equal -1.3903 -1.5001 -1.6346 -1.7654

Each column corresponds to a different forecast horizon. The best performing
combinations are highlighted in red/bold.

Table 2: CPIATE: Average log scores

H=1 H=2 H=3 H=4
Selection-score 0.25833 -0.0999 -0.23992 -0.44781
Selection-CRPS -0.16116 -0.25499 -0.64458 -0.96924
Linear pool-score 0.25526 -0.1346 -0.28698 -0.46247
Linear pool-CRPS -0.032881 -0.45715 -0.68689 -0.8583
Linear pool-equal -0.087209 -0.48884 -0.71791 -0.89089
Log pool-score 0.37547 -0.088455 -0.18822 -0.38615
Log pool-CRPS 0.29961 -0.1914 -0.41939 -0.59501
Log pool-equal 0.2567 -0.2202 -0.44782 -0.61869

Each column corresponds to a different forecast horizon. The best performing
combinations are highlighted in red/bold.

17



Figure 1: Illustration of the Continuous Ranked Probability Score
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The CRPS is the integral of the squared heights in the shaded region (for con-
venience, the figure shades the absolute values not the squared heights of the
CRPS). Thus, the CRPS is a measure of the divergence from an ideal forecast
with probability mass centred on the observation that actually occurred. The
score is the slope of the cumulative forecast density evaluated at the realisation.
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Figure 2: GDP densities for all individual models
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Figure 3: CPIATE densities for individual models
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Figure 4: GDP average log scores
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Figure 5: CPIATE average log scores
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Figure 6: Evolution of GDP score-based weights
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There are 144 models for GDP, but many of these models are poor with weights
below 1 percent. Very low weights are not discernible in the figure. Across the
recursive samples for horizon 1, at most 39 models receive weight greater than
1 percent, and for the last (full) sample only 7 models have weight greater than
1 percent.
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Figure 7: Evolution of CPIATE score-based weights
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There are 84 models for CPIATE, but many of these models are poor with
weights below 1 percent. Very low weights are not discernible in the figure.
Across the recursive samples for horizon 1, at most 41 models receive weight
greater than 1 percent and only 8 models have weight greater than 5 percent.
For the last (full) sample, for horizon 1, only 4 models have weight greater than
1 percent.
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Appendix: Deriving weights

In principle, weights between zero and one that sum to one could be derived
from any model statistic indicating performance, e.g.,

wit =
h(sit)∑n

j=1 h(sjt)
(10)

where sit ∈ S is a statistic from the ith model at time t, and h(·) is a monotonic
function, h : S → R+. While such a function h(·) will preserve the ranking of
models according to the statistic s, the function h(·) may have a material effect
on the weight wi that is subsequently assigned to the ith model.

Given that we focus on the performance of density forecasts, our particular
interest is in computing weights from statistics that account for both location
and calibration, such as the score and the CRPS. Calibration in the context
of density forecasting refers to the consistency of the density with the actual
outcomes that are observed (Gneiting et al., 2007). In particular, if a forecast
density is well-calibrated then outcomes should occur in given ranges with the
frequencies predicted by the forecast density, and should therefore be neither
under- nor over-dispersed relative to the data that actually arises. We include
equal-weighted combinations to connect to the earlier point forecasting litera-
ture, which has found equal-weighted combinations to be difficult to surpass for
point forecasting.

We compute weights using equation (10) where s is an out-of-sample log
score or an average CRPS statistics. For log scores the function h(s) = exp(s)
and for CRPS the function h(s) = s. The log scores are computed as per
equation (4) in Kascha and Ravazzolo (2010). The CRPS for a single realised
out-turn is computed using equation (7) (see also Gneiting and Raftery 2007,
eq. 20), with F (y;Mi), the cumulative distribution function of the ith model,
being represented as a piecewise linear function, as discussed in section 3. For
computational convenience, the limits of the integral are −5 and +10, which
encompasses the unconditional distributions of Norwegian GDP and CPIATE
over the sample period used to estimate our models. The CRPS for the ith

model is then computed as the average CRPS from realised out-turns; using
the sum of CRPSs rather than the average would result in the same weights as
constants cancel out in the numerator and denominator of equation (10).
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