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Abstract

We propose a methodology for producing forecast densities for economic ag-
gregates based on disaggregate evidence. Our ensemble predictive methodology
utilizes a linear mixture of experts framework to combine the forecast densities
from potentially many component models. Each component represents the uni-
variate dynamic process followed by a single disaggregate variable. The ensemble
produced from these components approximates the many unknown relationships
between the disaggregates and the aggregate by using time-varying weights on the
component forecast densities. In our application, we use the disaggregate ensemble
approach to forecast US Personal Consumption Expenditure inflation from 1997Q2
to 2008Q1. Our ensemble combining the evidence from 11 disaggregate series out-
performs an aggregate autoregressive benchmark, and an aggregate time-varying
parameter specification in density forecasting.
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1 Introduction

Policymakers regularly combine the leading evidence in disaggregate series to carry out

probabilistic assessments of aggregate behavior; see, for example, Greenspan (2004), and

the discussions by Feinstein, King, and Yellen (2004). To our knowledge, economists have

not explored formally the scope for producing density forecasts for economic aggregates

based on disaggregate information. This is surprising given the widespread recognition

that evaluations of point forecast accuracy are only relevant for highly restricted loss

functions. More generally, complete probability distributions over outcomes provide in-

formation which is helpful for making economic decisions; see, for example, Granger and

Pesaran (2000) and Timmermann (2006). Accordingly, several central banks, including

the US Federal Reserve, have committed to density or interval forecasts in recent years.

In this paper, we propose an ensemble methodology for combining the evidence in dis-

aggregate series to make probabilistic forecasts for an economic aggregate. We formulate

the forecasting problem as one in which a forecaster (recursively) selects a linear combi-

nation of component forecast densities to produce an ensemble forecast density for the

aggregate. Each component forecast is produced from a univariate time series model for a

single disaggregate series. The resulting ensemble approximates the many unknown rela-

tionships between the disaggregates and the aggregate using time-varying weights across

the disaggregate forecast densities. Construction of the disaggregate ensemble forecast for

the economic aggregate uses out of sample density combination methods; see, for example,

Jore, Mitchell and Vahey (2010).

In our application based on US Personal Consumption Expenditure deflator data, we

assess the forecast performance of the disaggregate ensemble approach over the out of

sample period 1997Q2 to 2008Q1. An ensemble combining the evidence from 11 disag-

gregate series outperforms an aggregate autoregressive benchmark, and also an aggregate

time-varying parameter specification in density forecasting. Our applied macroeconomic

work extends the case for forecast combinations, made by (among others) Stock and Wat-

son (2003) and Clark and McCracken (2010), to forecast densities for economic aggregates
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from disaggregate information.

The remainder of this paper is structured as follows. In Section 2, we describe our

methods for ensemble modeling of the relationship between the economic aggregate and

the disaggregates. In Section 3, we apply our methodology to US data to produce ag-

gregate inflation forecast densities from an ensemble system utilizing disaggregate infor-

mation. We compare and contrast the ensemble predictive densities with those resulting

from our alternative specifications which ignore disaggregate information. In the final

section, we conclude.

2 Disaggregate Ensemble Forecast Methodology

The theoretical insights of Bates and Granger (1969) and the macroeconomic forecast eval-

uation studies by (among others) Stock and Watson (2003) and Clark and McCracken

(2010) suggest that forecast combination can be an effective tool for point forecasting.

Jore, Mitchell and Vahey (2010) and Garratt, Mitchell and Vahey (2009) establish the

performance credentials of forecast combinations for macroeconomic aggregates using en-

sembles of vector autoregression (VAR) components.

Outside of the economics literature, meteorologists commonly construct ensemble den-

sities to deal with model and/or measurement uncertainty. For an early description of

a weather ensemble forecasting see Molteni et al (1996), and more recent contributions

in this field by Raftery et al (2005), and Bao et al (2010). Murphy et al (2004) discuss

ensembles for modeling climate change; Lopez et al (2009) examine the impact of climate

change on resources.

The methodology proposed in this paper extends the scope of the ensemble macroeco-

nomic forecasting framework, developed by Jore, Mitchell and Vahey (2010) and Garratt,

Mitchell and Vahey (2009), to disaggregate systems. These existing macroeconomic fore-

casting exercises consider combinations of forecast densities from models with a small

number of (three, or less) candidate variables. With a large number of (lagged) disag-

gregate variables which could be used to forecast an economic aggregate, the applied re-
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searcher faces a severe computational difficulty. For example, given 10 disaggregates, and

restricting attention to a single lag of each disaggregate, the researcher faces 210 = 1024

feasible forecasting specifications for the aggregate. Allowing for anything beyond first-

order dynamics is prohibitively burdensome computationally. For example, just one or

two lags of each disaggregate variable would give 220 = 1, 048, 576 variants. And of

course, whatever model selection methodology is applied by the researcher, there will be

considerable model uncertainty about which specification is ‘best’ in practice.

In this paper, we overcome the curse of dimensionality resulting from forecasting with

disaggregates by approximating the interactions between the many disaggregates and the

aggregate. Each component in the ensemble represents the dynamic univariate time series

process for a single disaggregate variable. Then we take time-varying weighted combina-

tions of the forecast densities produced from the individual components to construct the

ensemble predictive density for the aggregate. The calibration properties of the ensemble

forecast densities provides guidance on the appropriateness of the approximation. Bache

et al (2009) and Geweke (2009) discuss the interpretation of forecast density combinations

in the presence of an incomplete model space.

2.1 Disaggregate Ensemble Construction

We consider a forecaster combining out of sample forecast densities provided by compo-

nent models. Timmermann (2006, p177) discusses out of sample density combination.

Recent applications include Wallis (2005), aggregating survey information, and Mitchell

and Hall (2005), combining forecasts from two institutions.

We assume that the forecaster has uninformative priors over the forecast densities pro-

duced by the component models. In principle, off-model information—such as assigning

prior mass to the expenditure shares used to define the aggregate index—could be helpful

in forecasting applications. However, a prior elicitation problem arises with dynamic in-

terrelationships between (potentially, a large number of) disaggregates. Hence, we leave

an investigation of the scope for informative component priors to subsequent research.
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Given i = 1, . . . , N disaggregates (where N could be a large number), we define the

disaggregate ensemble (DE) by the convex combination sometimes referred to as a linear

opinion pool. The disaggregate ensemble is defined as:

DE = g(Yτ ) =
N∑

i=1

wi,τ h(Yτ | Ii,τ ), τ = τ , . . . , τ , (1)

where h(Yτ | Ii,τ ) are the one step ahead forecast densities from component model i,

i = 1, . . . , N of the economic aggregate Yτ , conditional on the information set Ii,τ .

Each component produces one step ahead forecasts for the aggregate. Hence, the

variables used to produce a one step ahead forecast density for τ are dated τ − 1 or

earlier. Although we do not explore this issue here, a density combination framework can

easily be extended to forecast horizons greater than one; see, for example, Jore, Mitchell

and Vahey (2010). The non-negative weights, wi,τ , in this finite mixture sum to unity,

are positive, and vary by recursion in the evaluation period τ = τ , . . . , τ .

Notice that our ensemble framework does not restrict the way in which the compo-

nent forecasts are produced. The component models could have time-varying or con-

stant parameters. The members of the ensemble could be estimated by frequentist or

Bayesian methods, with or without the aid of conventional regression diagnostics. And

the component models need not utilize the same in-sample observations for parameter

estimation—rolling regression variants can be accommodated in the out of sample den-

sity combination exercise. Notice also that the disaggregate ensemble will be a mixture of

the forecast densities produced by the components. Hence, the ensemble given by equa-

tion (1) can accommodate non-Gaussian predictive densities. This flexibility can be very

useful in adapting the methodology to applied economic issues. Kascha and Ravazzolo

(2010) discuss the methods to restrict the ensemble densities to be both unimodal and

symmetric if required.
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2.2 Component Model Space

Macroeconomic disaggregate time series variables commonly exhibit parameter change,

and applied researchers often utilize Bayesian methods to accommodate this feature. With

this in mind, consider a mixture innovation model for a single disaggregate variable, π:

πt = β0t +
∑k

p=1 βptπt−p + σtεt

βjt = βj,t−1 + κjtηjt, j = 0, . . . , k

lnσ2
t = lnσ2

t−1 + κk+1,tηk+1,t

(2)

where t = 1, ..., τ − 1, εt ∼ N(0, 1), ηt = (η0t, ..., ηk+1,t)
′ ∼ N(0, Q) with Q a diagonal

matrix and elements q2
0, . . . , q

2
k+1, and κt = (κ0t, . . . , κk+1,t)

′ is a ((k + 2) × 1) vector of

unobserved uncorrelated 0/1 processes with Pr[κjt = 1] = pj for j = 0, . . . , k + 1.

Hence, each of the regression parameters βjt and the residual variance σ2
t remain the

same as their previous values βj,t−1 and σ2
t−1 unless κjt = 1 and κk+1,t = 1 in which case

βjt changes with ηjt and ln(σt)
2 changes with ηk+1,t respectively. See, for example, Koop

and Potter (2007) and Giordani, Kohn, van Dijk (2007) for similar approaches. As the

changes in the variance parameters lnσ2
t are stochastic we allow for a form of stochastic

volatility; see Giordani and Kohn (2008). The flexibility of the specification in (2) stems

from the fact that the parameters βt = (β0t, . . . , βkt)
′ and σ2

t are allowed to change every

time period, but they need not change. The occurrence of a change is described by the

latent binary random variable κjt, while the magnitude of the change is determined by ηjt,

which is assumed to be normally distributed with mean zero. An attractive property of (2)

is that the changes in the individual regression parameters are not restricted to coincide

but rather are allowed to occur at different points in time. Given the popularity of this

specification for modeling time variation in autoregressions, we relegate our discussion of

the computational steps to Appendix A.1. We describe the disaggregate forecast densities

from equation (2) in Appendix A.2.

We emphasize that the component specification described by equation (2) repre-
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sents an autoregressive forecasting relationship (with parameter change) for a single

disaggregate—the aggregate variable of interest does not enter equation (2). In applied

ensemble work, the component (in our case, disaggregate) model forecasts might be badly

behaved. The forecast densities from a given component could be too diffuse, or too

narrow, and/or the forecasts might exhibit individual bias. It is common in the ensemble

literature to consider adjusting the spread and/or the central location of each compo-

nent density prior to combination; see, the discussions in (among others) Atger (2003),

Stensrud and Yussouff (2007) and Bao et al (2010). In our disaggregate forecasting exer-

cise, the disaggregate forecast, πτ , may not be an efficient forecast of the aggregate, Yτ .

Although more flexible approaches are feasible, a simple bias-correction step to the com-

ponent forecasts has often been found to be sufficient to ensure well-calibrated ensemble

densities in practice; see, for example, Stensrud and Youssoff (2007). To implement this

post-processing step, estimate with (recursive) Ordinary Least Squares (OLS):

Ys = a + pe(πs | Ii,s) + εs, s = s, . . . , τ − 1 (3)

where pe(πs|Ii,s) is the expected value (for example, the median) of the predictive den-

sity p(πs | Ii,s) from the ith disaggregate component. Then, define the bias-corrected

disaggregate forecast density for the aggregate:

h(Yτ | Ii,τ ) = p(πτ | Ii,τ ) + â (4)

where â is the OLS estimate of a in (3). The bias-corrected disaggregate forecast density

h(Yτ | Ii,τ ) is used to construct the ensemble forecast density for the aggregate, g(Yτ ).

We note that although we consider a time-varying parameter model for the disaggre-

gate time series, this is not a necessary feature of the ensemble approach. For example,

Ravazzolo and Vahey (2009) utilize (recursively-estimated) constant parameter autore-

gressive components to forecast inflation in Australia.
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2.3 Disaggregate Ensemble Weights

We complete our description of the disaggregate ensemble prediction system by specifying

the construction of the time-varying weights. A number of studies in the economics

literature have used density scoring rules. Mitchell and Wallis (2009) provide a recent

discussion of scoring rules and the justification for testing relative density forecasting

performance from the perspective of the Kullback-Leibler Information Criterion (KLIC).

Gneiting and Raftery (2007) analyze the relationships between scoring rules and Bayes

factors. Corradi and Swanson (2006) provide an extensive review of measures of density

forecast performance.

Outside the econometrics literature, Hersbach (2000), Gneiting and Raftery (2007)

and Panagiotelis and Smith (2008) have argued that the Continuous Ranked Probability

Score (CRPS), which rewards predictive densities with high probabilities near (and at)

the outturn, provides a robust metric of density forecast performance. Gneiting and

Raftery (2007) refer to the concentration of a forecast density about its central location

as ‘sharpness’, and the location as ‘distance’. The CRPS metric favors densities with

small distance and high sharpness.

The CRPS is measured as the difference between the predicted and actual cumulative

distribution. Figure 1 provides an illustrative example for a particular observation: the

CRPS measures the area between the predictive (for this example, assumed to be Gaus-

sian) and the actual cumulative distribution (marked by shading). The (positive) score

approaches zero as the predictive density converges on the true (but unobserved) density.

More formally, following Panagiotelis and Smith (2008), the CRPS of a component

density for a particular observation can be defined as:

CRPS = Eh|y − Y | − 0.5Eh|y − y′| (5)

where Eh is the expectation for the predictive h(Yτ ), y and y′ are independent random

draws from the predictive, and Y is the observed outturn. The expectation terms can

be approximated using the Monte Carlo draws from the component forecast density;

Panagiotelis and Smith (2008, equation 4.5) provide the computational steps required.

8



For each bias-corrected disaggregate forecast density, we construct the mean CRPS

averaged over the evaluation period. The weight on an individual component density i in

each observation of the evaluation period is then calculated by:

wi,τ =

[∑τ−1
s X(h(Yτ | Ii,τ ))

]

∑N
i=1

[∑τ−1
s X(h(Yτ | Ii,τ ))

] , τ = s, . . . , τ , . . . , τ . (6)

with X is the inverse of the mean CRPS, 0 ≤ X ≤ ∞, and higher scores are preferred.

2.4 Methodological Summary

Our disaggregate ensemble methodology can be summarized as follows. For each obser-

vation in the forecaster’s evaluation period, we estimate N univariate time series repre-

sentations, one for each disaggregate. The ‘fit’ of each bias-corrected component forecast

density is assessed with the CRPS, and used to construct weights for the ensemble fore-

cast density. These weights vary through the evaluation period. In this manner, we

approximate the forecast densities for the true, but unknown, relationships between the

disaggregates and the aggregate. The appropriateness of the approximation can be as-

sessed by examining the calibration properties of the ensemble forecast densities. (We

shall utilize a number of well-known calibration tests in the subsequent application.)

3 Application: forecasting inflation for the US

In this forecasting US inflation application, we consider US Personal Consumption Ex-

penditure deflator (PCE) data. We construct a disaggregate ensemble using an evaluation

period from 1997Q2 to 2008Q1, and then examine the calibration of the ensemble aggre-

gate inflation forecast densities using probability integral transforms, PITS, at the end of

the evaluation. We also examine forecast performance relative to a number of aggregate

benchmarks. We stress that our focus in this example is the predictive performance of the

ensemble. We do not aim to select a preferred single disaggregate predictor of aggregate

inflation from the (likely) misspecified disaggregate components.
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We begin our analysis by describing the US data. Then we describe our disaggregates

ensemble, aggregate benchmarks, density evaluation methods, and results.

3.1 Data

The dataset contains time series for the disaggregate components of the PCE. The data

are available on the Bureau of Economic analysis http://www.bea.gov/national/nipaweb.

To our knowledge, the disaggregate data used in this study are not available on a real-time

basis, although Croushore (2009) discusses the revisions in aggregate PCE. The PCE data

permit breakdowns at various levels of disaggregation. Tables AI-AIII in Clark (2006)

provide further details on levels of disaggregation in the US PCE data.

We emphasize that, in principle, our methodology could be applied to any level of

disaggregation. In our application, we illustrate our technique with 11 disaggregates.

These are Motor Vehicles, Household Equipment, Other Durables, Clothing, Other Non-

durables, Housing, Household Operation, Transport, Medical Care, Recreation and Other

Services. For all inflation series, PCE and its disaggregates, we work with the quarterly

growth rates (calculated as 100 time the log difference in the price levels) plotted in fig-

ure 2. The volatility and the mean of PCE measured inflation vary through the sample

as figure 2 makes clear, providing some motivation for time-varying parameter specifica-

tions. The 11 disaggregate series display varying degrees of shifting levels and changes

in volatility: Motor Vehicles, Household Equipment, Other Durables, and Other Non-

durables have marked changes in levels; Household Operation, Transport, Recreation and

Other Services show signs of volatility changes; and Clothing, Housing, and Medical Care

exhibit both characteristics relatively strongly. Overall, the data display considerable

time variation and heterogeneity across disaggregates.

Using conventional assumptions about the timing of Great Moderation, we start our

sample for component estimation with 1984Q1 and end with 2008Q1. Hence, we restrict

our analysis to the period in which conventional wisdom has it that inflation is diffi-

cult to predict in terms of point forecast accuracy; see, for example, Stock and Watson
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(2007). With our evaluation period (τ) from 1997Q2 (τ) to 2008Q1 (τ), the period 1993Q2

to 1997Q1 comprises a ‘training period’ to initialize the ensemble weights. The bias-

correction step is based on a rolling window of 20 quarters, denoted s = τ − 20, . . . , τ − 1,

for the results reported below. (Using the training period plus the evaluation period

for bias-correction gave some degradation in relative performance but the disaggregate

ensemble always outperformed the aggregate benchmark.)

3.2 Disaggregate Ensemble and Aggregate Benchmarks

The ensemble forecast densities for aggregate inflation use equations (1)-(6) described

above. In addition to our disaggregate ensemble, DE11, we also evaluate the predictive

densities from two time series models of aggregate inflation. The first uses a linear model

to forecast measured inflation without disaggregate information. That is, using a linear

autoregressive model for aggregate measured inflation, with two lags, AR(2). We use

uninformative priors for the AR(2) parameters with an expanding window. The predictive

densities follow the t-distribution, with mean and variance equal to OLS estimates; see,

for example, Koop (2003) for details. We use this AR model as our benchmark in tests

of relative forecast performance.

The second aggregate variant uses a single time-varying parameter autoregressive spec-

ification similar to equation (2), but for aggregate inflation, Yτ , with no disaggregate in-

formation. For both the aggregate and the disaggregate time-varying specifications we

use four autoregressive terms (that is, we set k = 4).

3.3 Density Evaluation

Following (among others) Jore, Mitchell and Vahey (2010), we evaluate the ensemble pre-

dictive densities using a battery of (one-shot) tests of absolute forecast accuracy, relative

to the ‘true’ but unobserved density. Like Rosenblatt (1952) and Diebold, Gunther and

Tay (1998), we utilize the probability integral transforms, PITS, of the realization of the

variable with respect to the forecast densities. A forecast density is preferred if the density
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is correctly calibrated, regardless of the forecasters loss function. The PITS are:

zτ =

∫ πτ

−∞
p(u)du.

The PITS should be both uniformly distributed, and independently and identically dis-

tributed if the forecast densities are correctly calibrated. Hence, calibration evaluation

requires the application of tests for goodness-of-fit and independence. Given the large

number of bias-corrected component forecast densities under consideration in the ensem-

ble, we do not allow for estimation uncertainty in the components when evaluating the

PITS. Corradi and Swanson (2006) review tests computationally feasible for small N .

The goodness-of-fit tests employed include the Likelihood Ratio (LR) test proposed

by Berkowitz (2001), the Anderson-Darling test, and the Pearson (χ2) test used by Wallis

(2003). Our Berkowitz test is a three degrees of freedom variant, with a test for indepen-

dence, where under the alternative zτ follows an AR(1) process. The Anderson-Darling

(AD) test for uniformity, a modification of the Kolmogorov-Smirnov test, gives more

weight to the tails of the forecast density. The Pearson (χ2) tests divides the range of the

zτ into eight equiprobable classes and tests for uniformity in the histogram. We also test

directly for independence of the PITS using a Ljung-Box (LB) test, based on autocor-

relation coefficients up to four. A well-calibrated ensemble should give high probability

values for all four of these tests—implying the null hypothesis of no calibration failure

cannot be rejected.

Turning to our analysis of relative predictive accuracy, we consider a Kullback-Leibler

Information Criterion (KLIC) based test, utilizing the expected difference in the Loga-

rithmic Scores of the candidate forecast densities; see, for example, Bao, Lee and Saltoglu

(2007), Mitchell and Hall (2005) and Amisano and Giacomini (2007). Suppose there

are two density forecasts, g(Yτ | I1,τ ) and g′(Yτ | I2,τ ), and consider the loss differ-

ential dτ = ln g(Yτ | I1,τ ) − ln g′(Yτ | I2,τ ). The null hypothesis of equal accuracy is

H0 : E(dτ ) = 0. The sample mean, dτ , has under appropriate assumptions the limiting

distribution:
√

T (dτ − dτ ) → N(0, Ω). The Logarithmic Score of the ith density forecast,

ln g(Yτ | Ii,τ ), is the logarithm of the probability density function g(. | Ii,τ ), evaluated
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at the outturn Yτ . In our LS test of relative forecast performance, we abstract from the

estimation procedure used to generate the forecast densities. Mitchell and Wallis (2009)

discuss the value of information-based methods for evaluating forecast densities that are

well-calibrated on the basis of PITS tests.

3.4 Results

Before considering the density evaluations for our disaggregate ensemble, we summa-

rize the point forecast performance. Both the disaggregate ensemble (DE11) and the

time-varying parameter aggregate autoregressive model (TVPAR) are considerably out-

performed by the aggregate AR(2) model in terms of root mean squared prediction error

(RMSPE). For the AR(2) benchmark, the raw RMSPE is 0.163. The other specifications

give figures approximately 60 percent higher. Stock and Watson (2007) discuss the dif-

ficulty of outperforming simple benchmarks in terms of RMSPE with Great Moderation

data; see also Groen, Paap and Ravazzolo (2009) for similar results.

The evaluation of the forecast densities are presented in table 1. The three rows refer

to the disaggregate ensemble, DE11, the aggregate autoregressive benchmark, AR(2), and

the aggregate time-varying parameter model, TVPAR, respectively. The five columns of

table 1 report the p-values for the Berkowitz LR test, the Anderson-Darling AD test, the

χ2, the LB test, and the Logarithmic Scores (averaged over the evaluation period).

Looking at the DE11 results shown in the top row, we see that the null hypothesis

of no calibration failure cannot be rejected at the 1 percent significance level for all of

the four individual diagnostic tests, marked in bold. (Using a 5 percent significance level,

the χ2 test is (just) failed with a 4.8 percent probability value.) We note that each of

these diagnostic tests for calibration is conducted on an individual basis. A 5 percent

significance level on each individual test would imply a Bonferroni-corrected p-value of

5/4=1.25 percent (reported as 0.0125 in the table).

The aggregate specifications, shown in the remaining two rows of table 1, display a

number of instances of calibration failure. The AR(2) benchmark, first row, fails all of
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the diagnostic tests, with three p-values below 1 percent. The more flexible aggregate

specification, TVPAR, fails two of the four tests at the 1 percent level. Namely, the LR

and the χ2.

Figure 3 plots the PITS histograms for the three candidates, the DE11, the AR(2)

and the TVPAR. The histogram for the AR(2) displays severe departures from uniformity.

The TVPAR and DE11 are more evenly spread across the decile counts, although visual

inspection suggests calibration could be improved in both cases.

Turning to the Logarithmic Scores of the forecast densities, shown in the fifth column of

table 1, we see that the disaggregate ensemble DE11 records the best relative performance,

roughly 26 percent of the AR(2). The LS test p-value (marked in bold) indicates that the

null hypothesis of equal forecast performance can be rejected at the 1 percent significance

level. The time-varying parameter aggregate specification also improves on the the AR(2)

benchmark, at roughly 60 percent. An LS test of the DE11 relative to the TVPAR

confirms the superiority of the DE11 at the 1 percent significance level.

To shed further light on the contribution of disaggregate information, figure 4 plots

the weights in the disaggregate ensemble DE11. As we might expect, given the univariate

nature of the components, there is uncertainty about the relative importance of disaggre-

gate components through the evaluation. The weights lie in the (approximate) interval

[0.04, 0.18] at the beginning of the evaluation. But the dispersion in the weights drops as

the top three disaggregates decline in importance through the evaluation.

In figure 5, we plot the median from our disaggregate ensemble, together with ag-

gregate PCE inflation. The 25th and 75th percentiles from the ensemble density are also

shown. The plot shows that the median of the DE11 is considerably less volatile than

the actual aggregate inflation series. The central mass of the predictive density is around

0.3 percent prior to 2004, and slightly higher thereafter. The difference between the two

percentiles shown varies very little through the evaluation, typically remaining close to

0.4 percentage points. We note that the number of inflation outturns above the 75th per-

centile is somewhat larger than the number below the 25thpercentile. Although the PITS

tests indicate that the ensemble forecast densities are correctly calibrated, clearly there
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is scope for further improvement.

We draw the following conclusions from our forecast density evaluations. First, the

disaggregate ensemble DE11 performs well in both tests of absolute and relative density

forecasting performance. Second, as Jore, Mitchell and Vahey (2010) and Clark (2009)

emphasize, although simple autoregressive models of aggregate inflation produce accurate

point forecasts, the benchmark can be bettered in terms of forecast densities.

4 Conclusions

In this paper, we have proposed a methodology for constructing forecast densities for

economic aggregates based on disaggregate evidence using an ensemble predictive system.

In our application, we have shown that the disaggregate ensemble approach delivers well-

calibrated forecast densities for US PCE aggregate inflation from 1997Q2 to 2008Q1.

Alternative forecasting specifications for the aggregate based on time-varying models or

simple autoregressive benchmarks failed to match the density forecasting performance of

our disaggregate ensemble.

Our applied work indicates that including disaggregate information via an ensemble

system improves probabilistic forecasts for US aggregate inflation. This result mirrors

similar findings in other fields where ensemble methods have been widely adopted by

practitioners to provide a pragmatic framework for probabilistic assessment. Our results

also confirm formally the view endorsed by many economic policymakers that disaggregate

information can be helpful for forecasting.
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A Time-Varying parameter model

A.1 Prior Specification and Posterior Simulation

We specify the following mixture innovation model for a given time series π = {πt}τ−1
t=1 :

πt = β0t +
∑k

p=1 βptπt−p + σtεt

βjt = βj,t−1 + κjtηjt, j = 0, ..., k

lnσ2
t = lnσ2

t−1 + κk+1,tηk+1,t

(A-1)

where εt ∼ N(0, 1), ηt = (η0t, ..., ηk+1,t)
′ ∼ N(0, Q) with Q a diagonal matrix and elements

q2
0, ..., q

2
k+1, and κt = (κ0t, ..., κk+1,t)

′ is a ((k + 2) × 1) vector of unobserved uncorrelated

0/1 processes with Pr[κjt = 1] = pj for j = 0, ..., k + 1. The model parameters are the

structural break probabilities p = (p0, ..., pk+1)
′ and the vector of variances of the size of

the breaks q = (q0, ..., qk+1)
′. We collect the model parameters in a (2(k + 1)× 1) vector

θ = (p0, ..., pk+1, q0, ..., qk+1)
′.

To facilitate the posterior simulation we make use of independent conjugate priors.

For the structural break probability parameters we take Beta distributions

pj ∼ Beta(aj, bj) (A-2)

The parameters aj and bj can be set according to our prior belief about the occurrence

of structural breaks. For the variance parameters we take the inverted Gamma-2 prior

q2
j ∼ IG-2(νj, δj) (A-3)

where νj, δj are parameters which can be chosen to reflect the prior beliefs about the

variances. Realistic values of the parameters in the different prior distributions depend

on the problem at hand. In general, we suggest to assign to νj high values. This means

to have strong believes that the magnitude of a break at time t for parameter βjt (σ2
t )

associated to Pr[κjt = 1] = 1 is equal to δj. The prior on (A-2) can consequently be chosen
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to limit the number of these breaks. As the posterior probability Pr[κjt = 1] is lower than

1, prior information is weak on breaks with magnitude lower than δj or situations of not

changes.

Posterior results are obtained using the Gibbs sampler of Geman and Geman (1984)

combined with the technique of data augmentation of Tanner and Wong (1987). The

latent variables B = {βt}τ−1
t=1 , R = {σ2

t }τ−1
t=1 and K = {κt}τ−1

t=1 are simulated alongside the

model parameters θ.

The complete data likelihood function is given by

p(π,B, K, R|θ) =
∏τ−1

t=1 p(πt|βt, σ
2
t )

∏k
j=0 p(βjt|βj,t−1, κjt, q

2
j )

p(σ2
t |σ2

t−1, κk+1,t, q
2
k+1)

∏k+1
j=0 p

κjt

j (1− pj)
1−κjt ,

(A-4)

where π = (π1, . . . , πτ−1). The terms p(πt|βjt, σ
2
t ) and p(βjt|βj,t−1, κjt, q

2
j ) are normal den-

sity functions which follow directly from (A-1) and p(σ2
t |σ2

t−1, κk+1,t, q
2
k+1) is an exponential

normal density function. If we combine (A-4) together with the prior density p(θ), which

follows from (A-2)-(A-3), we obtain the posterior density

p(B, K, R, θ|π) ∝ p(θ)p(π,B,K, R|θ). (A-5)

For the Gibbs sampling procedure we employ the efficient sampling algorithm of Ger-

lach, Carter and Kohn (2000) to handle the (occasional) structural breaks. If we define

Kβ = {κ0t, . . . , κkt}τ−1
t=1 and Kσ = {κk+1,t}τ−1

t=1 , the sampling scheme can be summarized

as follows:

1. Draw Kβ conditional on R, Kσ, θ and π.

2. Draw B conditional on R, K, θ, and π.

3. Draw Kσ conditional on B, Kβ, θ, and π.

4. Draw R conditional on B, K, θ, and π.

5. Draw θ conditional on B, K, and π.

21



The (occasional) structural breaks, measured by the latent variable κjt, are drawn using

the algorithm of Gerlach, Carter and Kohn (2000), which derives its efficiency from gen-

erating κjt without conditioning on the states βjt (σ2
t ). The conditional posterior density

for κ∗,t, t = 1, . . . , τ − 1 unconditional on B is

p(κ∗,t|K∗,−t, Kk+1, R, θ, π) ∝ p(π|K∗, Kk+1, R, θ)p(κ∗,t|K∗,−t, θ)

∝ p(πt+1, . . . , πτ−1|π1, . . . , πt, K, R, θ)

p(πt|π1, . . . , πt−1, κ1, . . . , κt, R, θ)p(κ∗,t|K∗,−t, θ),

(A-6)

where K∗,−t = {κ∗,s}τ−1
s=1,s 6=t. Note that the term p(κ∗,t|K∗,−t, θ) is simply given by

∏k
j=0 p

κjt

j (1 − pj)
1−κjt . The two remaining densities p(πt+1, . . . , πτ−1|π1, . . . , πt, K,R, θ)

and p(πt|π1, . . . , πt−1, κ1, . . . , κt, R, θ) can be evaluated as shown in Gerlach, Carter and

Kohn (2000). Because κ∗,t can take a finite number of values, the integrating constant

can easily be computed by normalization.

The full conditional posterior density for the latent regression parameters B is com-

puted using the simulation smoother as in Carter and Kohn (1994). The Kalman smoother

is applied to derive the conditional mean and variance of the latent factors.

To draw Kσ and R in steps 3 and 4 we want to follow the same approach. As the

model for ln σ2
t does not result in a linear state space model the Kalman filter cannot be

applied. Therefore, we apply the approach of Giordani and Kohn (2008) and rewrite the

model (A-1) as

ln(πt − β0t −
k∑

p=1

βptπit−p)
2 = ln σ2

t + ut

βjt = βj,t−1 + κjtηjt, j = 0, . . . , k,

ln σ2
t = ln σ2

t−1 + κk+1,tηk+1,t

(A-7)

where ut = ln ε2
t has a log χ2 distribution with 1 degree of freedom. We follow Carter and

Kohn (1994), Carter and Kohn (1997), Shephard (1994) and Kim, Shephard, Chib (1998)

who show that the ln χ2(1) distribution can be approximated very accurately by a finite

mixture of normal distributions. We consider a mixture of five normal distributions such
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that the density of ut is given by

f(ut) =
5∑

s=1

ϕs
1

ωs

φ((ut − µs)/ωs). (A-8)

with
∑5

s=1 ϕs = 1. The appropriate values for µs, ω2
s and ϕs can be found in Carter and

Kohn (1997, Table 1). In each step of the Gibbs sampler we simulate a component of the

mixture distribution from the distribution of the mixing distribution. Given the value

of the mixture component we can apply standard Kalman filter techniques. Hence, the

variables Kσ and R can be sampled in a similar way as Kβ and B in step 1 and 2.

To sample the parameters θ we can use standard results in Bayesian inference. Hence,

the probabilities πj are sampled from Beta distributions, and the variance parameters q2
j

are sampled from inverted Gamma-2 distributions.

A.2 Forecast density

The one-step ahead forecast density of πτ at time τ conditional on Iτ is given by

p(πτ |Iτ ) =

∫∫ ∑
K

∑
κτ

p(πτ |S, βτ , σ
2
τ )

k∏
j=0

p(βj,τ |βj,τ−1, κj,τ , q
2
j )

p(σ2
τ |σ2

τ−1, κk+1,τ , q
2
k+1)

k+1∏
j=0

p
κj,τ

j (1− pj)
1−κj,τ p(B, K, R, S, θ|π)dBdRdθ, (A-9)

where p(πτ |S, βτ , σ
2
τ ) and p(βj,τ |βj,τ−1, κj,τ , q

2
j ) and p(σ2

τ |σ2
τ−1, κτ , q

2
k+1) follow directly from

(A-1) and where p(B, K, R, S, θ|π) is the posterior density in (A-5) using information Iτ .

Computation of this predictive density is straightforward using the Gibbs draws. In each

Gibbs step, we simulate the πτ using (A-1) as data generating process, where we replace

the parameters and the latent variables by the draw from the posterior distribution. As

point estimate we use the posterior median.

The procedure can be applied to derive the predictive density p(πτ,h | Ii,τ ) for each

disaggregate i, i = 1, . . . , N .
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Figure 1: CRPS

Note: The figure shows the cumulative distribution of a normal density with zero mean and unit

variance, N(0,1), and the cumulative distribution of the realized value 0. The colored area measures the

CRPS.
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Figure 4: DE11 weights
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Note: The figures plot the weights given by disaggregate ensemble DE11. The disaggregate order 1-11

for DE11 corresponds to the order in figure 2.
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Figure 5: PCE inflation forecasts
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Note: The figure shows the posterior median (blue solid line) of the predictive density given by

disaggregate ensemble DE11 and the actual inflation (black dashed line), together with the 25th and

75th percentiles of the predictive density (red dashed line).
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Table 1: Forecast density performance, 1997Q2 - 2008Q1

LR AD χ2 LB LS

DE11 0.603 0.086 0.048 0.677 0.262

Individual models

AR 0.000 0.000 0.000 0.014 -0.427

TVPAR 0.000 0.057 0.001 0.122 0.602

Note: The column LR is the Likelihood Ratio p-value of the

test of zero mean, unit variance and independence of the

inverse normal cumulative distribution function transformed

PITS, with a maintained assumption of normality for trans-

formed PITS. AD is the p-value for the Anderson-Darling test

for uniformity of the pits. The small-sample (simulated) 1%

p-values computed assuming independence of the PITS for the

Anderson-Darling test is 3.905. χ2 is the p-value for the Pear-

son chi-squared test of uniformity of the PITS histogram in

eight equiprobable classes. LB is the p-value from a Ljung-Box

test for independence of the PITS. A bold number indicates

that the null hypothesis of a correctly specified model cannot

be rejected at 1% significance level for LR, AD, χ2 and LB.

LS is the average Logarithmic Score over the evaluation pe-

riod. The value using an AR(2) for PCE is reported in italics;

all the other numbers report statistics relative to those of the

AR(2). Numbers below one indicate that the competitor pro-

vides a mean LS lower than the AR(2), i.e. the benchmark is

outperformed. Bold numbers indicate that the null of the LS

test of equal density predictive accuracy relative to the AR(2)

benchmark is rejected at 1% significance level.
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