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Evaluating ensemble density combination

– forecasting GDP and inflation.∗

Karsten R. Gerdrup† Anne Sofie Jore‡ Christie Smith§ Leif Anders Thorsrud¶

November 11, 2009

Abstract

Forecast combination has become popular in central banks as a means to improve
forecasts and to alleviate the risk of selecting poor models. However, if a model suite
is populated with many similar models, then the weight attached to other independent
models may be lower than warranted by their performance. One way to mitigate this
problem is to group similar models into distinct ‘ensembles’. Using the original suite of
models in Norges Bank’s system for averaging models (SAM), we evaluate whether forecast
performance can be improved by combining ensemble densities, rather than combining
individual model densities directly. We evaluate performance both in terms of point
forecasts and density forecasts, and test whether the densities are well-calibrated. We
find encouraging results for combining ensembles.
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1 Introduction

In this paper, we investigate a two stage approach to combine forecast densities. In the
first step, density forecasts for Norwegian inflation and GDP from a number of models are
combined into ‘ensembles’. The models in each of the ensembles have some common element,
for example the same information set or model structure, which might result in correlated
forecasts. In the next step, we combine the ensemble density forecasts. We find that the
out-of-sample performance of the ensemble density combination is better than combining all
the density forecasts in one step.

Forecast combination can be motivated by several reasons. For example, unknown insta-
bilities might favour one model over another at different points in time (Clark and McCracken
(2007) and Jore et al. (2009)). Forecasting models may also be subject to idiosyncratic biases,
and combining forecasts may help to average out these unknown biases. Forecast combina-
tion has also proven to be successful empirically: see the summaries of the M-competitions
in Makridakis et al. (1982), Makridakis et al. (1993), and Makridakis and Hibon (2000). See
also Timmermann (2006) for a thorough discussion of theoretical and empirical motivations
for combining forecasts.

The literature on forecast combination builds to a large extent on Bates and Granger
(1969), where a main conclusion is that a combination of two forecasts can yield lower mean-
square forecasts error than either of the original forecasts when optimal weights are used.
Forecast combination is expected to yield the largest improvements if the sets of forecasts
contain truly independent information. Estimating optimal Bates-Granger weights is usually
undesirable because of the large number of models relative to the evaluation period, making
it infeasible to estimate the full covariance matrix of forecasts. A simple average of point fore-
casts has empirically been found to be effective, the so-called ”forecast combination puzzle”,
see Stock and Watson (2004). Because of the effect of finite-sample error in estimating the
weights, a recommendation from Wallis and Smith (2009) is to ignore the covariance between
forecast errors and base the estimates on mean squared forecast errors alone if estimated
weights are to be used. Aiolfi and Timmermann (2006) find, however, that forecasting perfor-
mance can be improved by first sorting models into clusters based on their past performance,
second by pooling forecasts within each cluster, and third by estimating optimal weights on
these clusters (followed by shrinkage towards equal weights).

Our paper is close to Aiolfi and Timmermann (2006) in the sense that we combine models
in more than one stage. However, our focus is mainly on density forecasting since central
banks often communicate through fan charts.1 Furthermore, we are particularly interested in
the case of a model suite which is populated by a wide range of models which are typically
considered by central banks (survey-based models, univariate autoregressions, factor models,
dynamic stochastic general equilibrium model etc.) when they form their views on the future
trajectory of the economy. Instead of grouping models according to past forecast performance,
we group models that share the same information set or model structure. The idea is that the
lower the degree of information overlap, the more useful is a combination of forecasts likely
to be. Clemen (1987) argues that: ”In the case of aggregating economic forecasts, say, one

1Our paper is also close to Bache et al. (2009a) which combine density forecasts from different specifications
of Vector Autoregressions (VARs) and a Dynamic Stochastic General Equilibrium Model (DSGE). A result
from this paper is that the DSGE is poorly calibrated and that it receives a low weight in the combination.
Bache et al. (2009b) finds that a combination of several DSGE models with different break dates outperforms
autoregressive benchmarks.
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might like to select a group of forecasters who exhibit as little dependence as possible. Such a
group would be a heterogeneous collection of forecasting approaches, theoretical persuasions,
and different views of available data.”

In the following sections, we first briefly describe the model suite, and discuss the rationale
for combining ensemble densities. Then we describe the weighting schemes used. We evaluate
the out-of-sample performance of the ensemble density combination with that of some other
main alternatives. We use several tests based on probability integral transforms to assess if
the composite densities are well specified. Following Bjørnland et al. (2009a) we investigate
whether the ensemble combination forecasts perform better than Norges Bank’s own forecasts
for inflation.

2 Model suite and ensembling

2.1 Model suite in Norges Bank’s system for averaging models (SAM)

SAM is used to provide model-based density forecasts for GDP Mainland-Norway and CPI-
ATE (consumer prices adjusted for taxes and without energy) in the monetary policy process.
The models in SAM vary both in terms of structure and information set. For GDP there are
237 models, and for CPIATE there are 167.2 A large number of models forecast both GDP
and inflation, but many models are specific to each of the two target variables.

Table 1: Models for forecasting GDP Mainland-Norway
Ensemble Description No of Models’

models ratio

eRegN Regional network model 1 0.004
eTstruc Term structure models 4 0.017
eMI Monthly indicator models 2 0.008
eFM Factor models 2 0.008
eEmod Macro model (VECM) 1 0.004
eDSGE Macro model (DSGE) 1 0.004
eBVAR Bayesian VARs 10 0.042
eUniv Univariate autoregressive models (ARs) 38 0.160
eVAR2 VARs with GDP and inflation 36 0.152
eVAR3 VARs with GDP, inflation and/or interest rate 72 0.304
eTNSG Bivariate VARs with household surveys 6 0.025
eBuild Bivariate VARs with building and construction 10 0.042
eOrd Bivariate VARs with orders to manufacturing 4 0.017
eEmpl Bivariate VARs with employment data 10 0.042
eMny Bivariate VARs with money and credit 7 0.030
eBTS Bivariate VARs with Business Tendency Survey 33 0.139

Sum 237 1

For GDP, SAM has a family of bivariate VAR models with variable indicators as ex-
planatory variables. The indicators encompass building and construction, industrial orders,
employment developments, monetary aggregates, household surveys and business tendency
survey. One model uses information from Norges Bank’s own regional network on expected

2See Appendix C for an overview over the model suite in SAM.
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Table 2: Models for forecasting CPIATE
Ensemble Description No of Models’

models ratio

eDisAgg ARs for CPI-disaggregates 1 0.006
eMth Monthly VARs 3 0.018
eFM Factor models 3 0.018
eEmod Macro model (VECM) 1 0.006
eDSGE Macro model (DSGE) 1 0.006
eBVAR Bayesian VARs 10 0.060
eUniv Univariate autoregressive models (ARs) 39 0.234
eVAR2 VARs with GDP and inflation 36 0.216
eVAR3 VARs with inflation, GDP and/or interest rate 72 0.431
eMny VAR with GDP and money 1 0.006

Sum 167 1

production.3 The model suite for forecasting GDP also includes factor models which extract
factors from monthly or quarterly information, term structure models, and two monthly in-
dicator models which use monthly manufacturing production, employment, retail sales, hotel
statistics and building starts as explanatory variables. For CPIATE we have some models
which forecast monthly inflation, eg. a model which uses the 14 components of CPI to fore-
cast CPIATE. The monthly forecasts are aggregated to quarterly frequencies and evaluated
against the quarterly models.

For some model classes, we have several variants with different specifications because we
do not know the true data generating process. We have for example 36 variants of a bivariate
VAR with GDP and inflation as explanatory variables, which involve different degrees of
differencing, detrending, number of lags, and estimation periods. Since the information set
and model class is the same in all these models, there is a risk that several models will provide
highly correlated forecasts.

The number of bivariate VARs with GDP and different indicators as explanatory variables
are in total 70. Some of these indicators may provide different signals about the future
trajectory of the economy, but some indicators may be highly correlated, like the different
sub-indices of the Business Tendency Survey (in total 33 different indicators). The different
groups of models according to our grouping are listed in table 1 and 2. The different model
groups are as mentioned labeled ‘ensembles’.

Models can be combined in many ways. If we use equal weights, then each model would
get a weight of 0.004 and 0.006 for GDP and inflation, respectively. The average would,
however, be heavily influenced by some types of models or information sets. One way of
looking at this is to calculate the ratio of models within each class or ensemble relative to the
total number of models, as done in table 1 and 2. The tables show that using equal weights
would mean that the average would be heavily influenced by AR models, VARs using GDP
and inflation as explanatory variables, and VARs using GDP, inflation and interest rate as
explanatory variables. When forecasting GDP, the average would also be heavily influenced
by the bivariate VARs with Business Tendency Survey data as explanatory variables. These
models would drown out signals from many other types of models, for example from the two
macro models, or information sets, for example from the regional network.

Using weights that adapt to past forecast performance (for example inverse-MSE weights
3See Brekke and Halvorsen (2009) for more information on the regional network.
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or score-based weights, see section 3) would not remove this problem because similar models
could potentially still get a higher weight than warranted if they are many. The method
proposed by Winkler (1981) to take account of the covariance between the forecast errors is
infeasible in our model suite because of near-singularity in the variance-covariance matrix.

Trimming the model suite (for example down to eight models as in the version of SAM
until September 2009) would also not solve this problem, but could potentially exacerbate
it since we could end up with having models from only one model class or ensemble in the
combination and thus models that are not really independent.

2.2 Why ensembling might be desirable

The rationale behind the pre-grouping models and combining them in two steps can be de-
scribed with a simple, stylised example. Suppose you have two models that have statistics
(eg scores) that are used to compute weights; higher values of the statistic are better. Let
M1 denote model 1 and M2 denote model 2. Denote the scores of the models with q1 and q2
respectively.

Model Statistic/score
M1 q1=0.9
M2 q2=0.1

Given these statistics, a fairly natural way to compute a weight for M1 is 0.9 = 0.9/(0.1+0.9).
The weight on M2 is simply the complement 0.1 = 0.1/(0.9 + 0.1).

Suppose that you repeated M2 99 times and computed the weights again based on these
101 models, i.e you want to combine forecasts from all the models.

Model Statistic/score
M1 0.9
M2 0.1
M3 0.1
...

...
M101 0.1

The weight on M1 will now be: 0.0826 = 0.9/(0.9+100×0.1), and the remaining M2,. . . ,M101
models will each have weight 0.0092 = .1/(0.9+100×0.1). Since these latter models are really
just a single model, forecasts from this model would receive a weight of 0.92 in the combined
forecast. This simple example demonstrates that adding in many similar models does reduce
the probability attached to other models, even if the other models are demonstrably better
in terms of their performance.

2.3 Remedy: ensembling or prior weights

Suppose we succeed in collecting the similar models in ensembles by combining. In this case,
we treat the single model M1 as an ensemble. The second ensemble has 100 models that are
equal, and the average statistic of this ensemble is of course 0.1. The first ensemble’s statistic
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is 0.9. When we use these ensemble statistics to derive weights, we are back with the original
model space and hence the same weights as if we had averaged only the two models M1 and
M2.4

The use of ensembles is not the only way one might seek to address the problem outlined
above. An alternative approach would be to provide explicit priors on the models, explicitly
assigning a given amount of prior probability to a class of models and spreading that prob-
ability across the members of the class. Suppose that prior probability of 0.5 is attached to
model M1 and prior probability of 0.5 is ‘diluted’ over models M2,. . . ,M101 (so-called dilution
priors, see George 1999). Then the weight on M1 would be (0.5×0.9)/(0.5×0.9+(0.5/100)×
0.1× 100) = 0.9. This is the same weight as would have been applied to M1 when it is only
combined with M2 (and M3,. . . ,M101 are excluded).

Yet another approach, as described by Stock and Watson (2006), is to use factor models
to extract common factors from the forecasts provided by the suite of models. One advantage
of ensembling over the factor model approach is that we are able to relate developments in
the ensemble density forecast to developments in the data more easily, and this also helps to
motivate the forecasts for policy-makers.

3 Weighting schemes

3.1 Type of aggregation

We have to determine both the type of aggregation (or pooling) and the construction of the
weights before we can combine models.

The simplest aggregation method is a so-called linear opinion pool in which the combined
density is a linear combination of the densities from the individual models or ensembles.:

P (yt) =
n∑

i=1

wiPi(yt) (1)

where P (yt) is the combination density, Pi(yt) is a density obtained from the ith model or
ensemble and wi is the weight on the ith model, with wi ∈ [0, 1] and

∑n
i=1wi = 1. This

combined density is clearly non-negative and integrates to one.
An alternative method is the log opinion pool, which is a geometrically weighted average

of the individual models or ensemble densities:

P (yt) = K ·Πn
i=1Pi(yt)wi (2)

where K is a constant to ensure that the log opinion pool integrates to 1. The two combi-
nation schemes have different properties, but no scheme is obviously superior to the other.
In general, log opinion pools are less dispersed than linear opinion pools, and are typically
uni-modal (see Genest and Zidek (1986)). Linear opinion pools, on the other hand, may be
multi-modal. The geometric weighting of a log opinion pool means that the combination will
have zero probability mass in a region if a single density says that the region has zero prob-
ability (contributing to its reduced dispersion). This property means that a single density
can have a material impact on the combination density, and explains why it is necessary to

4An simpler solution in this stylised example is of course to trim the model suite down to two models again
if the two distinct models can be identified.
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be careful about which models are included in a log opinion pool. A log opinion pool will be
normally distributed if the individual densities underpinning it are normally distributed; see
the appendix in Kascha and Ravazzolo (2008). Combining normally distributed probability
distributions in a linear opinion pool results in a normal mixture distribution.

3.2 Construction of weights

We consider three types of weights, all of them common in the literature. The simplest
choice of weights is simply to equally-weight all of the models or ensembles that enter the
combination. Equally-weighted combinations have been found to be surprisingly effective, at
least for point forecasting, see Clemen (1989). Bates and Granger (1969) propose another
alternative, combining models using weights derived from their sum of squared errors (SSE).
These weights will minimise a quadratic loss function based on forecast errors, provided that
the estimation errors of different models are actually uncorrelated. One of the objectives with
grouping models is to generate ensembles that are less correlated than the individual models
are. Using inverse-SSE weights produces the same weights as those derived from the inverse
of mean squared errors (MSEs) computed over some recent observed sample:

wi =
1

MSEi∑n
j=1

1
MSEj

(3)

We also consider the so-called log score weights. The weights use (loosely speeking) the
probability that a model or ensemble could have generated the evaluation data to help form
the weights and can be specified as:

wi =
exp

(
log(Pi(y))

)∑n
j=1 exp

(
log(Pj(y))

) (4)

where y = (y1, . . . , yT )′, and log(Pi(y)) =
∑T

t=1 log(Pi(yt)).
Bjørnland et al. (2009b) demonstrates that the score for a model with normally distributed

errors is a transformation of the MSE, modified by the sample size and the unknown variance.
The variance parameter and the sample size are crucial, since the weights from the log score
approach will depend on whether the variation of the realized errors was big relative to the
variation expected on average. As the sample size increases the MSE and unknown variance
should coincide. If two models have different variance then eventually the model with smaller
variance will accumulate greater and greater weight; ultimately all weight will be put on the
best model or ensemble in the suite. As Hall and Mitchell (2005) observe, even if the suite
of models contained the true data generating process it would not receive a weight of 1 given
a finite sample of data. When the weights are based on log scores, asymptotically the best
model in the suite of models will receive weight of 1 even if it is not the truth. However,
Bates-Granger weights would not put all weight on the correct model even asymptotically,
which can be seen from equation (3).

4 Evaluation of the ensemble density combination

4.1 The experiment

The experiment in this section is to compare the ensemble density combination (also referred
to as ‘grand ensemble’ in the following) with alternative weighting schemes: 1) combination of
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all models, 2) combination of the eight best models (as in the version of SAM until September
2009), and 3) selection strategy where we try to pick the ‘best’ model. We look at two measures
of quasi out-of-sample forecasts performance: root mean squared forecast errors (RMSFE)
and logarithmic scores.

The models are first estimated up to 1998Q4, and then the estimation window is recursively
expanded in quasi real-time.5 The estimation of the models and the evaluation of forecasts
are based on the most recent vintage of data, since Norwegian real-time data are still in the
process of being compiled and implemented in SAM.

The models are combined using univariate, horizon-specific weights. In principle it is
possible to use weights derived from multivariate measures of fit (such as the log-likelihood
of a model for example), but because not all models forecast all variables and models may be
good at predicting only one of the variables, we have chosen to use univariate weights.

We have made the following choices regarding weighting schemes for the grand ensemble:

1. Linear pool and inverse-MSE weights for weighting the ensembles.

2. Linear pool and score-based weights for weighting models within each ensemble.

First, linear pool and inverse-MSE weights is a very common weighting scheme in forecast
combination literature. More importantly, we also wanted to make incremental changes to
our combination scheme relative to the previous version of SAM, SAM8, which used this
weighting scheme. This means that each ensemble density forecast receive a weight depending
on past out-of-sample point forecast performance in the grand ensemble.6 In the individual
model combination case, we also use a linear pool and inverse-MSE weighting scheme. In the
selection case, models are ranked according to their MSE, and the best model is picked in
quasi-real time.

Second, we use a linear pool and score-based weights for individual models within each
ensemble.7 Score-based weights adapt quickly to changes in models’ performance as indi-
cated above, and the weights can be considered as approximations to the models’ posterior
probabilities.8 The weight on each individual model will thus depend on each model’s past
out-of-sample forecast performance relative to other models in the ensemble.

4.2 Recursive out-of-sample forecasts

The figure panel 1 show recursive inflation forecasts together with actual inflation (solid lines)
for the different weighting schemes. Recursive forecasts for GDP Mainland-Norway together
with the vintage for GDP that was published in May 2009 are depicted in figure panel 2.

5It is comparatively uncommon, given data publication lags for gross domestic product, for a data set to be
balanced. When the data set is unbalanced the analysis proceeds as if the same unbalancedness prevails each
time the model is estimated. For example, at the beginning of the recursive estimation some data points in
1999Q1 will be treated as known, and this unbalancedness will be repeated as the data sample is recursively
expanded.

6The weights take into account publication lags, only using data that would be known at a given date.
7We have one more degree of freedom in choosing weighting scheme in the grand ensemble case than in

the individual model combination case because we also can choose the within-ensemble weighting scheme. A
priori one could argue that a comparison of the grand ensemble with individual model combinations or SAM8
is unfair because the comparison may be influenced by within-ensemble weights. We will later see, however,
that the performance of the grand ensemble is not sensitive to the choice of within-ensemble weighting scheme.

8Hall and Mitchell (2008) suggests minimising the Kullback-Leibler information divergence by using a linear
pool and score-based weights.
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Forecasts for both inflation and GDP tend to return towards a historical mean in all
weighting schemes. This tendency seems somewhat stronger in the individual model com-
bination case when forecasting GDP, in particular in the high growth period from 2004 to
2007. The reason for this is that the individual model combination is dominated by quarterly
AR-models, bivariate VARs and tri-variate VARs, which in our case have a strong tendency
of returning towards a historical mean.

Selection often produces forecasts that jump from one horizon to the next because a
different model is selected for the different horizons. Selection also lead to high forecast
errors for some recursive forecasts because the model suite does not include models that are
superior to the others over time.

It is not clear from these figures whether one combination scheme is superior to the others.
None of the combination schemes were, for example, good at predicting the downturn in GDP
in 2003 or the sharp decline in 2008Q4-2009Q1.

All combination schemes forecasted that inflation would continue to fall quite rapidly in
the second half of 1999 and first half of 2000, and did not forecast the rise in inflation in 2001.
The grand ensemble seems to have been better at forecasting the upturn in inflation in 2005
and 2007 than the individual model combination, but not necessarily better than SAM8 or
selection. We can also see that the weighting schemes give very different forecasts for inflation
in the second half of 2009 and the beginning of 2010. The grand ensemble forecast higher
inflation than the other alternatives. However, the jury is still out for these forecasts.

4.3 Evaluation of results

The performance of the weighting schemes – selection, SAM8, individual models, and grand
ensemble – are reported in table 3 for inflation and table 4 for GDP. The grand ensemble has
better performance than all the other weighting schemes when forecasting CPIATE for the
horizons 2-5, both in terms of RMSFE and logarithmic scores. However, for the first horizon,
it has the same RMSFE as SAM8 and somewhat lower logarithmic score than SAM8.

The results are a little more mixed when forecasting GDP. The grand ensemble has about
the same, or somewhat better, performance than the other weighting schemes in terms of
RMSFE for the first four horizons. Using selection when forecasting GDP would produce
poor density forecasts at medium-term horizons (3-5 quarters ahead), since the logarithmic
score at those horizons are lower than the other weighting schemes. The same is true when
forecasting inflation 4-5 quarters ahead.

It is worth noting that constructing a grand ensemble (which include all models) typically
is superior to weighting all the individual models together, which seems to suggest that the
grand ensemble provide a better hedge against uncertain instabilities. This is certainly the
case when the objective is to minimise RMSFE, both when forecasting CPIATE and GDP.
However, the performance of the great ensemble is about the same as the individual model
combination scheme when evaluating GDP in terms of logarithmic scores.

The performance over time of the different weighting schemes 1-4 quarters ahead, are
illustrated in the figure panels 3-4. The performance of the grand ensemble is more stable
over time than the other weighting schemes, and produces quite early in the evaluation period
relatively low forecast errors and good density forecasts (i.e. relatively high logarithmic
scores). Selecting the best model in quasi real-time leads at some points in time, and for
some forecast horizons, to high forecast errors and poor density forecasts. SAM8 has at some
horizons about the same performance in terms of point forecasts as the grand ensemble, both
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when forecasting CPIATE and GDP, at least at the end of the evaluation period, suggesting
that SAM8 has improved more than the grand ensemble after starting out with higher forecast
errors in the beginning of the evaluation period. The results are more mixed for SAM8 when
considering logarithmic scores, depending on the variable of interest (CPIATE or GDP) or
horizon.

It is not obvious from table 3 and 4 and the corresponding figures to what extent differences
in RMSFE and logarithmic scores are large or not. In the next two sections, we investigate this
further, first by calculating the weights that we would have attached to the different schemes
if we treated them as different models or external forecasts, and second by illustrating and
testing the probability integral transforms (pits) of the weighting schemes.

4.4 Weights derived from combining the weighting schemes

The results for weights are reported in table 5 for inflation and table 6 for GDP. Both inverse-
MSE weights and score-based weights are reported.

Generally, score-based weights discriminate much more between the different weighting
schemes than MSE-based weights. The latter attach nearly close to equal weights to the
different weighting schemes. Score-based weights would, in the case of CPIATE, put all
weight on SAM8 on the first horizon, and most weight on the grand ensemble for the other
horizons. When forecasting GDP, score-based weights would put almost all weight on selection
and SAM8 on the first horizon, which indicate that the model suite include a few models with
good performance for that horizon. The advantage of combining many models becomes clearer
for horizon 2-5 when we use score-based weights to forecast GDP. Most weight is on the grand
ensemble and the individual model combination.

4.5 Testing the pits

The pits summarize the properties of the densities, and may help us to judge whether the
densities are biased in a particular direction, and whether the width of the densities has been
roughly correct on average. The pits are the ex ante inverse predictive cumulative distribution
evaluated at the ex post actual observations, see Geweke and Amisano (2008). The figure
panels 5 and 6 depict the pits of the different weighting schemes when forecasting CPIATE
and GDP, respectively, by showing histograms with bars for each percentile.

A density is correctly specified if the pits are uniform and, for one-step ahead forecasts,
independently and identically distributed. Accordingly, we may test for uniformity and inde-
pendence at the end of the evaluation period. Several candidate tests exists, but few offer a
composite test of uniformity and independence together, as would be appropriate for one-step
ahead forecasts. In general, tests for uniformity are not independent of possible dependence
and vice versa. Since the appropriateness of the tests are uncertain, we conduct several
different tests. See Hall and Mitchell (2004) for elaboration and description of different tests.

We use a test of uniformity of the pits proposed by Berkowitz (2001). The Berkowitz
test works with the inverse normal cumulative density function transformation of the pits.
Then we can test for normality instead of uniformity. For 1-step ahead forecasts, the null
hypothesis is that the transformed pits are identically and independently normally distributed,
iid N(0,1). The test statistics is χ2 with three degrees of freedom. For longer horizons, we do
not test for independence. In these cases, the null hypothesis is that the transformed pits are
identically, normally distributed, N(0,1). The test statistics is χ2 with two degrees of freedom.
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Other tests of uniformity are the Anderson-Darling (AD) test (see Noceti et al. (2003)) and a
Pearson chi-squared test suggested by Wallis (2003). Independence of the pits is tested by a
Ljung-Box test, based on autocorrelation coefficients up to four for one-step ahead forecasts.
For forecast horizons h>1, we test for autocorrelation at lags equal to or greater than h.

Table 7 and 8 show the p-values of the test for the different weighting schemes for horizons
1 to 5, for CPIATE and GDP, respectively. P-values equal to or higher than 0.05 mean that we
can not reject the hypothesis that the combination is correctly calibrated at a 95% significance
level.

For CPIATE, the grand ensemble passes all tests for all horizons, except the Berkowitz
test for one-step ahead forecasts. The frequency of not being able to reject the null across
all horizons and all tests is 0.95. SAM8 and individual model combination also seem to be
fairly well calibrated, with frequencies of non-rejections at 0.90. Selection stands out with a
frequency of non-rejections of 0.40.

When forecasting GDP, all combinations appear to be well calibrated. We only get re-
jections of the hypothesis that the densities are well calibrated for the grand ensemble and
individual model combination. This occurs for the Berkowitz test for both combination
schemes for the one-step ahead forecast and for the grand ensemble for the second-step ahead
forecast. This suggests that we have one or a few models in the suite with well-calibrated
densities for short-term forecasting.

4.6 Sensitivity analysis

We have one more degree of freedom in choosing weighting scheme in the grand ensemble
case than in the individual model combination case because we also can choose the within-
ensemble weighting scheme. A priori one might think that the comparison of the grand
ensemble with individual model combinations or SAM8 is unfair because the comparison
may be influenced by the within-ensemble weights. In table 9 and 10 we have summarized
RMSFE’s and logarithmic scores for CPIATE and GDP, respectively, when we use different
schemes, both within-ensemble and between ensembles. The different combination schemes
differ first by the weighting scheme within each ensemble, either inverse MSE-weights, score-
based weights, or equal weights. Linear pooling is used for the three different within-ensemble
weighting schemes. Then for each within-ensemble weighting scheme, we present six between-
ensemble weighting schemes: two pooling methods (linear and logarithmic) and three different
weights (inverse MSE-weights, score-based weights, and equal weights).

The main result from these tables is that the performance of the grand ensemble, in terms
of RMSFE, is not sensitive to the choice of within-ensemble weights. The alternatives ‘Mse
Linear Mse’ and ‘Equal Linear Mse’ have relative RMSFE’s close to 1, and the performance is
therefore quite similar to the benchmark alternative (‘Score Linear Mse’) used in this paper.

More important is the weighting scheme used between ensembles. It is for example possible
to reduce the RMSFE when forecasting CPIATE by about 40% at horizon 1, see ‘Score Log
Mse’, ‘Mse Log Mse’ and ‘Equal Log Mse’ in table 9. Equal weights between the ensembles
have about the same performance in terms of RMSFE when forecasting CPIATE as inverse
MSE-weights as long as we use a logarithmic pool, see alternatives ‘Score Log Equal’, ‘Mse
Log Equal’ and ‘Equal Log Equal’.

Average logarithmic scores when forecasting CPIATE can also differ, and may change both
when we change the within-ensemble weighting schemes and the between-ensemble weighting
schemes. Based on a judgement of relative logarithmic scores, it seems like a good idea to use
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score-based weights within ensembles and use a logarithmic pool when weighting the ensemble
forecasts, see alternatives ’Score Log Mse’, ’Score Log Score’ and ’Score Log Equal’ in table
9. At horizon 1, no alternative weighting scheme is clearly better than the benchmark.

Furthermore, it is possible to reduce the RMSFE when forecasting GDP by 12% at horizon
1 by using score-based weights between the ensembles (regardless of the within-ensemble
weighting scheme), see table 10. It is also possible to increase relative scores by using score-
based weights between the ensembles regardless of use of within-ensemble weighting scheme
or use of pool to combine forecasts between ensembles.

5 Comparison with Norges Bank’s own forecasts for CPIATE

In this section we compare the grand ensemble forecasts for inflation with those of Norges
Bank, both point forecasts and density forecasts. We reduce the evaluation period to the
period Q3 2001 - Q1 2009 because of limited availability of density forecasts for CPIATE.
Norges Bank published three reports (Inflation Reports/Monetary Policy Reports) per year
in that period, whereas we produce four forecasts per year. The forecasts made in Q1 are
taken from IR1/MPR1. Since these reports were published at the end of March, Norges
Bank could utilize information on prices in both January and February (in the period 2001
to 2004, however, only January was known). The monthly models in the grand ensemble
make use of these two months in the whole period. The forecasts made in Q2 are taken from
IR2/MPR2 (published at the end of June). CPIATE for April and May is therefore known
before the reports are published. Norges Bank did not publish one-step ahead forecasts
for Q3 in the evaluation period we are considering. The one-step ahead forecasts for Q3
are therefore taken from the two-step ahead forecasts in IR2/MPR2, giving Norges Bank an
information disadvantage relative to the grand ensemble. For longer horizons, we use forecasts
that Norges Bank published in IR3/MPR3, giving Norges Bank an information advantage.
The forecasts made in Q4 are from IR3/MPR3, which was published at the end of October
when no information for Q4 was know.

The grand ensemble appears to perform better than Norges Bank’s own forecasts, thus
confirming the results of Bjørnland et al. (2009a), that forecast combinations improve perfor-
mance. The upper panel in figure 7 shows that the grand ensemble has more precise point
forecasts. This is particularly due to some large errors that Norges Bank encountered when
forecasting inflation in 2003 and 2004. Norges Bank forecasted that inflation would return
quite quickly to more normal levels after falling rapidly from the end of 2002, see figure 8.
After that period, Norges Bank’s forecast errors have been relatively low, leading to a falling
RMSFE.

The gain from using a grand ensemble seems to be particularly large when evaluating
density forecasts. The lower panel in figure 7 illustrates that the logarithmic scores of Norges
Bank’s own forecasts have deteriorated compared to the grand ensemble. This would suggests
that the grand ensemble densities are much closer to the true, but unknown, density.
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6 Conclusion

In this paper, we investigate a two stage approach to combine forecast densities. In the
first step, density forecasts for Norwegian inflation and GDP from a number of models are
combined into ‘ensembles’. The models in each of the ensembles have some common element,
for example the same information set or model structure, which might result in correlated
forecasts. In the next step, we combine the ensemble density forecasts. We find that the
out-of-sample performance of the ensemble density combination is better than combining all
the density forecasts in one step.

We evaluate forecasting performance using quasi out-of-sample root mean square forecast
errors and logarithmic scores, and find encouraging results for the ensemble density combina-
tion approach. Overall, the ensemble density combination outperforms alternative weighting
schemes when forecasting CPIATE, both in terms of point forecasts and density forecasts.
Selecting, ex ante, the best model in quasi real-time, produces poorly specified densities when
forecasting CPIATE. Overall, the ensemble density combination forecasts for GDP performs
at least as good as alternative weighting schemes, both in terms of point forecasts and density
forecasts.
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A Tables

Table 3: RMSFE and average logarithmic score for selection, SAM8, individual models, and
grand ensemble. CPIATE

RMSFE
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.15 0.33 0.52 0.77 1.01
SAM8 0.11 0.32 0.52 0.67 0.83
Individual models 0.18 0.38 0.57 0.72 0.83
Grand ensemble 0.11 0.27 0.45 0.64 0.77

Average logarithmic score
hor=1 hor=2 hor=3 hor=4 hor=5

Selection -0.33 -0.21 -0.57 -1.06 -1.04
SAM8 1.24 -0.04 -0.47 -0.79 -0.96
Individual models 0.76 -0.34 -0.63 -0.79 -0.90
Grand ensemble 1.12 -0.02 -0.44 -0.63 -0.77

Table 4: RMSFE and average logarithmic score for selection, SAM8, individual models, and
grand ensemble. GDP

RMSFE
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.87 1.41 1.60 1.74 1.81
SAM8 0.85 1.25 1.48 1.67 1.76
Individual models 1.03 1.35 1.62 1.82 1.95
Grand ensemble 0.85 1.13 1.40 1.68 1.83

Average logarithmic score
hor=1 hor=2 hor=3 hor=4 hor=5

Selection -1.32 -1.51 -1.75 -1.88 -1.91
SAM8 -1.31 -1.50 -1.64 -1.72 -1.75
Individual models -1.48 -1.54 -1.61 -1.64 -1.65
Grand ensemble -1.35 -1.49 -1.60 -1.66 -1.66
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Table 5: Weights for a combination of selection, SAM8, individual models, and grand ensem-
ble, at the end of the evaluation period (2009Q1). CPIATE

Inverse MSE-weights
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.18 0.23 0.24 0.21 0.17
SAM8 0.33 0.24 0.24 0.27 0.26
Individual models 0.12 0.17 0.20 0.23 0.26
Grand ensemble 0.36 0.35 0.32 0.29 0.30

Score-based weights
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.00 0.00 0.00 0.00 0.00
SAM8 1.00 0.25 0.19 0.00 0.00
Individual models 0.00 0.00 0.00 0.00 0.00
Grand ensemble 0.00 0.75 0.80 1.00 1.00

Table 6: Weights for a combination of selection, SAM8, individual models, and grand ensem-
ble, at the end of the evaluation period (2009Q1) GDP

Inverse MSE-weights
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.26 0.20 0.23 0.25 0.26
SAM8 0.27 0.26 0.26 0.27 0.27
Individual models 0.19 0.22 0.22 0.22 0.22
Grand ensemble 0.27 0.32 0.29 0.26 0.25

Score-based weights
hor=1 hor=2 hor=3 hor=4 hor=5

Selection 0.41 0.21 0.00 0.00 0.00
SAM8 0.51 0.30 0.11 0.03 0.01
Individual models 0.00 0.06 0.36 0.67 0.53
Grand ensemble 0.08 0.43 0.53 0.30 0.46
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Table 7: Pits tests for evaluating density forecasts for CPIATE (p-values)
Berkowitz χ2 Ljung-Box Anderson-Darling

horizon=1 Selection 0.00 0.17 0.06 0.01
SAM8 0.33 0.77 0.31 0.79
Individual models 0.03 0.06 0.08 0.20
Grand ensemble 0.02 0.63 0.15 0.37

horizon=2 Selection 0.00 0.27 0.22 0.06
SAM8 0.64 0.78 0.47 0.89
Individual models 0.03 0.37 0.78 0.43
Grand ensemble 0.05 0.54 0.78 0.41

horizon=3 Selection 0.00 0.01 0.75 0.00
SAM8 0.86 0.88 0.96 0.90
Individual models 0.12 0.70 0.99 0.69
Grand ensemble 0.31 0.84 0.97 0.75

horizon=4 Selection 0.00 0.01 0.88 0.00
SAM8 0.46 0.77 0.91 0.51
Individual models 0.15 0.38 0.96 0.62
Grand ensemble 0.66 0.38 0.91 0.90

horizon=5 Selection 0.00 0.02 0.88 0.00
SAM8 0.02 0.49 0.86 0.03
Individual models 0.15 0.28 0.85 0.58
Grand ensemble 0.64 0.80 0.88 0.72

Note: For 1-step ahead forecasts, the null hypothesis in the Berkowitz test is that the inverse normal cumulative
distribution function transformed pits are identically and independently normally distributed, iid N(0,1). For
longer horizons, the null hypothesis is that the transformed pits are identically, normally distributed, N(0,1). χ2

is the Pearson chi-squared test of uniformity of the pits histogram in eigth equiprobable classes. Ljung-Box is a
test for independence of the pits for 1-step ahead forecasts. For longer horizons, the Ljung-Box test is modified
such that it test for independence at lags greater than or equal to the horizon. The Anderson-Darling test is a
test for uniformity of the pits, with the small-sample (simulated) p-values computed assuming independence of
the pits.
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Table 8: Pits tests for evaluating density forecasts for GDP (p-values)
Berkowitz χ2 Ljung-Box Anderson-Darling

horizon=1 Selection 0.08 0.30 0.87 0.21
SAM8 0.05 0.17 0.91 0.36
Individual models 0.03 0.49 0.14 0.54
Grand ensemble 0.01 0.05 0.36 0.20

horizon=2 Selection 0.58 0.90 0.89 0.30
SAM8 0.47 0.17 0.94 0.74
Individual models 0.47 0.15 0.76 0.72
Grand ensemble 0.04 0.30 0.87 0.29

horizon=3 Selection 0.07 0.11 0.98 0.13
SAM8 0.76 0.21 0.83 0.66
Individual models 0.91 0.50 0.84 0.93
Grand ensemble 0.21 0.46 0.85 0.47

horizon=4 Selection 0.06 0.11 0.27 0.33
SAM8 0.90 0.82 0.89 0.97
Individual models 0.92 0.38 0.99 0.82
Grand ensemble 0.55 0.72 0.99 0.65

horizon=5 Selection 0.11 0.19 0.94 0.27
SAM8 0.72 0.64 0.95 0.54
Individual models 0.75 0.40 1.00 0.40
Grand ensemble 0.80 0.22 1.00 0.56

Note: For 1-step ahead forecasts, the null hypothesis in the Berkowitz test is that the inverse normal cumulative
distribution function transformed pits are identically and independently normally distributed, iid N(0,1). For
longer horizons, the null hypothesis is that the transformed pits are identically, normally distributed, N(0,1). χ2

is the Pearson chi-squared test of uniformity of the pits histogram in eigth equiprobable classes. Ljung-Box is a
test for independence of the pits for 1-step ahead forecasts. For longer horizons, the Ljung-Box test is modified
such that it test for independence at lags greater than or equal to the horizon. The Anderson-Darling test is a
test for uniformity of the pits, with the small-sample (simulated) p-values computed assuming independence of
the pits.
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Table 9: Sensitivity analysis: Performance of alternative weighting schemes relative to grand
ensemble. CPIATE

Relative RMSFE (numbers lower than one mean better performance than the benchmark)

hor=1 hor=2 hor=3 hor=4 hor=5

Score Linear Mse 1.00 1.00 1.00 1.00 1.00
Score Linear Score 1.23 1.05 1.09 1.17 1.19
Score Linear Equal 1.54 1.03 0.99 0.96 0.96
Score Log Mse 0.60 0.94 0.97 1.02 1.06
Score Log Score 1.04 1.02 1.05 1.16 1.19
Score Log Equal 0.60 0.94 0.97 1.01 1.05
Mse Linear Mse 0.97 1.08 1.02 0.99 0.99
Mse Linear Score 0.96 1.10 1.15 1.15 1.13
Mse Linear Equal 1.35 1.11 1.02 0.94 0.92
Mse Log Mse 0.60 0.98 0.98 1.00 1.04
Mse Log Score 0.68 1.04 1.10 1.12 1.13
Mse Log Equal 0.58 0.98 0.96 0.96 0.99
Equal Linear Mse 1.01 1.08 1.01 0.99 0.98
Equal Linear Score 1.38 1.09 1.14 1.15 1.15
Equal Linear Equal 1.50 1.12 1.00 0.93 0.92
Equal Log Mse 0.60 0.99 0.99 1.01 1.05
Equal Log Score 0.95 1.05 1.10 1.13 1.14
Equal Log Equal 0.60 0.99 0.97 0.97 1.00

Average logarithmic score of combination minus average logarithmic score in benchmark (positive numbers mean better

performance than the benchmark)

hor=1 hor=2 hor=3 hor=4 hor=5

Score Linear Mse 0.00 0.00 0.00 0.00 0.00
Score Linear Score -0.41 0.09 0.15 0.13 0.21
Score Linear Equal -0.58 -0.09 -0.04 -0.01 0.02
Score Log Mse -0.62 0.20 0.22 0.18 0.15
Score Log Score -1.21 0.09 0.26 0.18 0.28
Score Log Equal -0.40 0.15 0.21 0.21 0.23
Mse Linear Mse 0.04 -0.11 -0.09 -0.15 -0.17
Mse Linear Score 0.02 -0.04 -0.08 -0.15 -0.12
Mse Linear Equal -0.34 -0.19 -0.16 -0.19 -0.17
Mse Log Mse -0.64 0.11 0.12 0.05 -0.00
Mse Log Score -0.76 -0.04 -0.05 -0.09 -0.04
Mse Log Equal -0.29 0.04 0.09 0.06 0.04
Equal Linear Mse 0.01 -0.11 -0.10 -0.15 -0.17
Equal Linear Score -0.29 -0.05 -0.08 -0.14 -0.12
Equal Linear Equal -0.50 -0.20 -0.16 -0.19 -0.18
Equal Log Mse -0.62 0.11 0.12 0.06 0.00
Equal Log Score -0.96 -0.05 -0.04 -0.07 -0.04
Equal Log Equal -0.35 0.04 0.09 0.06 0.04

Note: The different combination schemes differ first by the weighting scheme within each ensemble, either
inverse MSE-weights, score-based weights, or equal weights (first entry in column 1). Linear pooling is used
for the three different within-ensemble weigthing schemes. Then for each within-ensemble weighting scheme,
we present six alternative between-ensemble weighting schemes: two pooling methods (linear and logarithmic,
see second entry in column 1) and three different weights (inverse MSE-weights, score-based weights, and equal
weights, see third entry in column 1).
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Table 10: Sensitivity analysis: Performance of alternative weighting schemes relative to grand
ensemble. GDP Mainland-Norway

Relative RMSFE (numbers lower than one mean better performance than the benchmark)

hor=1 hor=2 hor=3 hor=4 hor=5

Score Linear Mse 1.00 1.00 1.00 1.00 1.00
Score Linear Score 0.87 1.03 1.04 1.10 1.11
Score Linear Equal 1.03 1.02 1.01 1.01 1.00
Score Log Mse 0.97 1.00 0.99 0.99 1.02
Score Log Score 0.88 1.03 1.04 1.10 1.11
Score Log Equal 1.00 1.03 1.02 1.01 1.02
Mse Linear Mse 1.03 1.03 1.02 1.01 1.01
Mse Linear Score 0.88 1.02 1.06 1.11 1.11
Mse Linear Equal 1.06 1.05 1.03 1.01 1.01
Mse Log Mse 0.99 1.02 1.01 1.00 1.02
Mse Log Score 0.88 1.01 1.05 1.11 1.12
Mse Log Equal 1.01 1.05 1.03 1.01 1.02
Equal Linear Mse 1.03 1.03 1.02 1.01 1.01
Equal Linear Score 0.87 1.01 1.07 1.11 1.11
Equal Linear Equal 1.06 1.05 1.03 1.01 1.01
Equal Log Mse 0.99 1.02 1.00 1.00 1.02
Equal Log Score 0.88 1.01 1.06 1.11 1.12
Equal Log Equal 1.01 1.05 1.03 1.01 1.02

Average logarithmic score of combination minus average logarithmic score in benchmark (positive numbers mean better

performance than the benchmark)

hor=1 hor=2 hor=3 hor=4 hor=5

Score Linear Mse 0.00 0.00 0.00 0.00 0.00
Score Linear Score 0.14 0.07 0.10 0.10 0.11
Score Linear Equal -0.03 -0.02 -0.02 -0.02 -0.01
Score Log Mse 0.09 0.08 0.06 0.00 0.05
Score Log Score 0.18 0.09 0.12 0.12 0.13
Score Log Equal 0.06 0.06 0.05 0.01 0.05
Mse Linear Mse -0.02 -0.03 -0.03 -0.03 -0.03
Mse Linear Score 0.14 0.06 0.09 0.08 0.11
Mse Linear Equal -0.05 -0.05 -0.04 -0.05 -0.04
Mse Log Mse 0.07 0.05 0.03 -0.03 0.02
Mse Log Score 0.18 0.06 0.10 0.10 0.13
Mse Log Equal 0.04 0.04 0.03 -0.01 0.02
Equal Linear Mse -0.02 -0.03 -0.02 -0.03 -0.04
Equal Linear Score 0.14 0.06 0.09 0.09 0.11
Equal Linear Equal -0.05 -0.05 -0.04 -0.05 -0.05
Equal Log Mse 0.07 0.05 0.03 -0.03 0.02
Equal Log Score 0.18 0.06 0.10 0.10 0.13
Equal Log Equal 0.04 0.04 0.03 -0.02 0.02

Note: The different combination schemes differ first by the weighting scheme within each ensemble, either
inverse MSE-weights, score-based weights, or equal weights (first entry in column 1). Linear pooling is used
for the three different within-ensemble weigthing schemes. Then for each within-ensemble weighting scheme,
we present six alternative between-ensemble weighting schemes: two pooling methods (linear and logarithmic,
see second entry in column 1) and three different weights (inverse MSE-weights, score-based weights, and equal
weights, see third entry in column 1).
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B Figures

Figure 1: Recursive quasi-out-of-sample forecasts. 4-quarter growth. Per cent. CPIATE
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(a) Grand ensemble
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(b) Individual models
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(c) SAM8
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(d) Selection

Note: The figures show recursive out-of-sample forecasts for the next 1-5 quarters, for the grand
ensemble, individual models, SAM8, and selection. Estimation and forecasts are done in quasi real-
time, using the latest vintage of data.
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Figure 2: Recursive quasi-out-of-sample forecasts. 4-quarter growth. Per cent. GDP
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(a) Grand ensemble
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(b) Individual models
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(c) SAM8
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(d) Selection

Note: The figures show recursive out-of-sample forecasts for the next 1-5 quarters, for the grand ensemble,
individual models, SAM8, and selection. Estimation and forecasts are done in quasi real-time, using the latest
vintage of data.

24



Figure 3: Performance of grand ensemble, individual model combination, SAM8, and selec-
tion. Expanding window. CPIATE
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Figure 4: Performance of grand ensemble, individual model combination, SAM8, and selec-
tion. Expanding window. GDP
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Figure 5: Probability integral transforms. Horizon=1-5. CPIATE
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Note: The pits are the ex ante inverse predictive cumulative distribution evaluated at the ex post actual obser-
vations. The pits of a forecasting model should have a standard uniform distribution if the model is correctly
specified.
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Figure 6: Probability integral transforms. Horizon=1-5. YFN
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Note: The pits are the ex ante inverse predictive cumulative distribution evaluated at the ex post actual obser-
vations. The pits of a forecasting model should have a standard uniform distribution if the model is correctly
specified.
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Figure 7: Performance of grand ensemble and Norges Bank. Expanding window. CPIATE
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Figure 8: Recursive quasi-out-of-sample forecasts for MPR. 4-quarter growth. Per cent.
CPIATE
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Note: The figure shows recursive out-of-sample forecasts the next 1-5 quarters from various Inflation
Reports/Monetary Policy Reports.
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C Model suite

C.1 Autoregressive models (AR)

AR-models use historical variations in a single time series to provide forecasts. Generally, the
form of the model is given by,

yt = α+
p∑

j=1

φjyt−j + νt (5)

where yt is the variable of interest and p is the lag order of the autoregressive (AR) terms.
The following AR-models are included:

• 36 quarterly AR-models for GDP and CPIATE, respectively, estimated from 1981, which
differ first by the number of lags (one to four), then by the number of estimation periods
(whole period, a short rolling window of 20 quarters, and a longer rolling window of 40
quarters), and third by the transformation of data (differenced, double-differenced, and
trend-adjusted). The models are included in the ensemble eUniv.

• One quarterly AR-model for GDP (with two lags) and for CPIATE (one lag), respec-
tively, estimated from 1990. The models are included in the ensemble eUniv.

• One quarterly AR-model for GDP estimated from 1981, where the number of lags (up to
four) is determined by a Bayesian information criteria (BIC). The models are included
in the ensemble eUniv.

• One AR-model for CPIATE with four lags, estimated on monthly data from 1990.
Forecasts are done on a monthly basis and converted to quarterly frequencies. The
model is included in the ensemble eUniv.

• One model for CPIATE which first forecast 12 main components of CPI and two com-
ponents covering energy prices using AR-models. The models for the components are
estimated on monthly, unadjusted data from 1991. Forecasts from each component are
weighted using the consumer weights in CPI to form composite forecasts for CPIATE.
The forecasts are converted to quarterly frequencies. The model is included in the
ensemble eDisAgg.

C.2 Random Walk in Mean

Forecast monthly inflation measured by CPIATE. Monthly forecasts are aggregated to quar-
terly frequencies. The forecasts are the mean of a rolling window of monthly data. The mean
is updated iteratively over the forecasting horizons. The model is estimated on data from
1990.

C.3 Vector AutoRegressive (VAR) models

The VAR models are based on statistical relationships between GDP (and/or inflation) and
other explanatory variables. All the variables are a function of lagged values of itself and the
other variables,

31



Xt = A+
p∑

j=1

BjXt−j + νt (6)

where Xt is the vector of variables in the model. We use an iterative forecasting method.
SAM includes the following VARs:

• Quarterly VARs with different combinations of GDP, inflation and interest rate as ex-
planatory variables, see table 11 for more details.

• Bivariate VARs with inflation and different indicators as explanatory variables, see table
12 for more details.

• VARs with GDP and different monetary aggregates as explanatory variables, se table
13 for more details.

• Bivariate VARs with GDP and different indicators of economic activity as explanatory
variables, see table 14 for more details.

Table 11: VARs with different combinations of GDP, inflation and interest rate as explanatory
variables in the model suite in SAM
Description Incl. in

ensemble

36 bivariate VARs with GDP and inflation as explanatory variables, s.a., growth eVAR2
36 bivariate VARs with GDP and interest rate as explanatory variables, s.a., growth eVAR3
36 bivariate VARs with inflation and interest rate as explanatory variables, s.a., growth eVAR3
36 tri-variate VARs with GDP, inflation and interest rate as explanatory variables, s.a., growth eVAR3

Note: The sources of the data is Statistics Norway and Norges Bank. GDP is for Mainland-Norway, inflation
is measured by CPIATE and interest rate by 3-month money market rate. The models differ first by the number
of lags (one to four), then by the number of estimation periods (whole period, a short rolling window of 30
quarters, and a longer rolling window of 40 quarters), and third by the transformation of data (differenced,
double-differenced, and trend-adjusted). The models are estimated on data from 1981 for the longest samples.
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Table 12: Bivariate VARs for forecasting inflation in the model suite in SAM. CPIATE and
different indicators as explanatory variables.

Model Description of indicator Incl. in
ensemble

mVARurr Registered unemployment, s.a., monthly frequency, data in differences. Model
estimated from 1992 eMth

mVARi44 Import weighted krone exchange rate (I44) (unadjusted), monthly frequency,
growth. Model estimated from 1992. eMth

mVARr3m Three-month money market rate (unadjusted), monthly frequency, data in.
differences. Model estimated from 1992. eMth

VARm Bivariate VAR with inflation and monetary aggregate (M2, s.a.) as explanatory
variables, quarterly frequency, growth. eMny

Note: The sources of the data is Statistics Norway and Norges Bank. The frequency of the data is monthly.
Inflation is measured by CPIATE (s.a.). Seasonally adjusted data is denoted s.a.

Table 13: VARs with different monetary aggregates for forecasting GDP in the model suite
in SAM
Model Description of indicator Incl. in

ensemble

MnyM1 Bivariate VAR with narrow monetary aggregate (M1) and GDP as explanatory variables. eMny
MnyM2 Bivariate VAR with monetary aggregate (M2) and GDP as explanatory variables. eMny
MnyM12 Tri-variate, structural VAR with M1, M2 and GDP as explanatory variables. eMny

Note: The sources of the data is Statistics Norway and Norges Bank. GDP is for Mainland-Norway. The
models are estimated on quarterly data from 1995. All the data have been seasonally adjusted data. Due to
data limitations, the models only produce forecasts from 2001 and onwards. Prior to 2001, we use forecasts
from an AR(2)-model in the evaluation.

Table 14: Bivariate VARs for forecasting GDP in the model suite in SAM. GDP and different indicators as
explanatory variables

Model Description of indicator Incl. in
ensemble

X-0 Manufacturing, change in total production since previous quarter, diffusion index,
adjusted, level. eBTS

N-0 Manufacturing, average employment, change since previous quarter, diffusion index,
s.a., level. eBTS

OrdreD-0 Manufacturing, orders from domestic market, change since previous quarter,
diffusion index, s.a., level. eBTS

OrderF-0 Manufacturing, orders from export market, change since previous quarter,
diffusion index, s.a., level. eBTS

OrderTot-0 Manufacturing, total orders, change since previous quarter, diffusion index,
s.a., level. eBTS

PrisD-0 Manufacturing, prices at domestic markets, change since previous quarter,
diffusion index, s.a., level. eBTS

PrisF-0 Manufacturing, prices at export markets, change since previous quarter, diffusion
index, s.a., level. eBTS

X-1 Manufacturing, expected change in total production next quarter, diffusion index,
s.a., level. eBTS

Xinput-1 Intermediate goods, expected change in total production next quarter,diffusion,
index, s.a., level. eBTS

Xinvest-1 Capital goods, expected change in total production next quarter, diffusion index,
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s.a., level. eBTS
Xconsum-1 Consumer goods, expected change in total production next quarter, diffusion index,

s.a., level. eBTS
N-1 Manufacturing, average employment, expected change next quarter, diffusion index,

s.a., level. eBTS
Ninput-1 Intermediate goods, average employment, expected change next quarter, diffusion

index, s.a., level. eBTS
Ninvest-1 Capital goods, average employment, expected change next quarter, diffusion

index, s.a., level. eBTS
Nconsum-1 Consumer goods, average employment, expected change next quarter, diffusion index,

s.a., level. eBTS
OrdreD-1 Manufacturing, orders from domestic market, expected change next quarter,

diffusion index, s.a., level. eBTS
OrdreF-1 Manufacturing, orders from export market, expected change next quarter,

diffusion index, s.a., level. eBTS
OrdreTot-1 Manufacturing, total orders, expected change next quarter, diffusion index, s.a., level. eBTS
PrisD-1 Manufacturing, prices at domestic markets, expected change next quarter,

diffusion index, s.a., level. eBTS
PrisF-1 Manufacturing, prices at export markets, expected change next quarter, diffusion

index, s.a., level. eBTS
Generell-1 Manufacturing, general judgement of the outlooks for the next quarter, diffusion

index, s.a., level.
Kaputn Manufacturing, utilization of capacity at the end of the quarter with current

level of production, s.a., weighted average, percent. eBTS
Kaputn-0 Manufacturing, average utilization of capacity, change since previous quarter,

diffusion index, s.a., level. eBTS
Kaputn-1 Manufacturing, average utilization of capacity, expected change next quarter,

diffusion index, s.a., level. eBTS
Ressurs Manufacturing, indicator for bottlenecks in production, s.a., percent. eBTS
Konj-EU Manufacturing, industrial confidence indicator, leading indicator for

production (EU definitions), based on diffusion indices, indices, s.a. eBTS
Lag-com Manufacturing, assessment of inventories of raw materials by end of quarter,

diffusion index, s.a., level. eBTS
Lag-pr Manufacturing, assessment of inventories of own products by end of quarter,

diffusion index, s.a., level. eBTS
L-c-pr Manufacturing, assessment of inventories of raw materials etc. compared

to current production, diffusion index, s.a., level. eBTS
L-v-o Manufacturing, assessment of inventories of own products compared to value of

sales, diffusion index, s.a., level. eBTS
Invest Manufacturing, assessment of whether the enterprise consider changes in the plans

for gross capital investments, diffusion index, s.a., level. eBTS
Ord-prod Manufacturing, assessment of stocks of orders compared to current level of

production at end of quarter, diffusion index, s.a., level. eBTS
SKI-s Manufacturing, industrial confidence indicator, leading indicator for production

(EU definitions), based on net numbers, s.a., percent, level. eBTS
Indikator Survey of consumer confidence, overall assessment of the economic situation,

index, s.a., level. Source: TNS Gallup eTNSG
Landet 0 s Survey of consumer confidence, assessment of economic developments in Norway

last year, index, s.a., level. Source: TNS Gallup eTNSG
Store s Survey of consumer confidence, assessment of the current situation and whether

to buy durables, index, s.a., level. Source: TNS Gallup eTNSG
Landet 1 Survey of consumer confidence, expected development in the Norwegian economy

next year, index, unadjusted, level. Source: TNS Gallup eTNSG
Egen 0 Survey of consumer confidence, assessment of development in own economic

situation last year, index, unadjusted, level. Source: TNS Gallup eTNSG
Egen 1 Survey of consumer confidence, expected development in own economic situation

next year, index, unadjusted, level. Source: TNS Gallup eTNSG
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ORtot Stock of orders, building and construction, value index, s.a., growth. eBuild
ORbol Stock of orders, residential buildings, value index, s.a., growth. eBuild
ORabygg Stock of orders, non-residential buildings, value index, s.a., growth. eBuild
Lager Total inventories in manufacturing, volume index, s.a., growth. eOrd

New orders, manufacturing, domestic, index, s.a., growth. eOrd
ORi Stock of orders, manufacturing, domestic, index, s.a., growth. eOrd
AIi Estimated fixed investment in electric supply, in millions of NOK, s.a., growth. eOrd
ORanlegg Stock of orders, civil engineering works, value index, unadjusted, growth. eBuild
OTanlegg New orders, civil engineering works, value index, s.a., growth. eBuild
OTba New orders, building and construction, value index, index, s.a., growth. eBuild
OTbygg New orders, total building, value index, index, s.a., growth. eBuild
OTbol New orders, residential buildings, value index, index, s.a., growth. eBuild
OTabygg New orders, non-residential buildings, value index, index, s.a., growth. eBuild
ORbygg Stock of orders, total building, value index, index, s.a., growth. eBuild
Behning Number of vacant positions, s.a., growth. Source: NAV eEmpl
tilgang Number of new vacant positions, s.a., growth. Source: NAV eEmpl
ukeverk Number of weeks worked, three-month moving average converted to

quarterly numbers, s.a., growth, growth. Source: AKU eEmpl
syss Total employment, unadjusted, growth. Source: AKU eEmpl
sba Number of employed aged 15-74 in building and construction, unadjusted,

growth. Source: AKU eEmpl
stransp Number of employed aged 15-74 in tranportation, unadjusted, growth. Source: AKU eEmpl
svare Number of employed aged 15-74 in retail trade etc., unadjusted, growth. Source: AKU eEmpl
sfintj Number of employed aged 15-74 in financial industry, unadjusted, growth. Source: AKU eEmpl
stjen Number of employed aged 15-74 in other services, unadjusted, growth. Source: AKU eEmpl
sindu Number of employed aged 15-74 in manufacturing, unadjusted, growth.Source: AKU eEmpl
K2real Domestic credit (C2) to general public deflated by CPIATE, s.a., growth. eMny
K2hus Domestic credit to households deflated by CPIATE, s.a., growth. eMny
M2nonfin Domestic credit to non-financial enterprises deflated by CPIATE, s.a., growth. eMny
K2Non- Domestic credit to general public minus domestic credit to households,
Housing deflated by CPIATE, s.a., growth. eMny
RegnX-1 Expected production next 6 months from Norges Bank’s regional network,

s.a., growth. Due to data limitations, the model only produce forecasts
from 2005 and onwards. Prior to 2005, we use forecasts from a VAR where
we replace RegnX-1 with the variable X-1. eRegN

Note: The source of the data is Statistics Norway unless otherwise stated. NAV is The Norwegian Labour and
Welfare Administration. AKU is Statistics Norway’s Labour Force Survey. The Business Tendency Survey
is carried out by Statistics Norway. The frequency of the data is quarterly. GDP is for Mainland-Norway.
Seasonally adjusted or trend adjusted data is denoted s.a.
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C.4 Bayesian VAR (BVAR) models

Bayesian methods have proven useful in the estimation of VARs. In Bayesian analysis the
econometrician has to specify prior beliefs about the parameters. The prior beliefs are then
combined with the data in the VAR to form a posterior view of the parameters. We use
a direct forecasting method (eg CPIATE at time t+h is now regressed against factors from
data at time t). Table 15 gives an overview over the BVARs.

Table 15: Bayesian VARs in the model suite in SAM for forecasting GDP and inflation

Model Description Incl. in
ensemble

BVAR1 Bivariate VAR with GDP and inflation as explanatory variables. eBVAR
BVAR2 BVAR with GDP, inflation, interest rate and exchange rate as explanatory variables. eBVAR
BVAR3 BVAR1 plus exogenous variables (OILGAS, M2, GDPw, INFLw, exchange rate,

interest rate, Iw). eBVAR
BVAR4 BVAR2 plus exogenous variables (M2, OILGAS, GDPw, INFLw, Iw). eBVAR
BVAR5 BVAR1 with Minnesota priors eBVAR
BVAR6 BVAR2 with double-difference data eBVAR
BVAR7 BVAR3 with double-difference data eBVAR
BVAR8 BVAR with GDP, inflation, interest rate and terms of trade as explanatory variables. eBVAR
BVAR9 BVAR8 plus exogenous variables (M2, OILGAS, GDPw, INFLw, Iw) eBVAR
BVAR10 BVAR8 with double-difference data eBVAR

Note: The sources of the data is Statistics Norway and Norges Bank. GDP is for Mainland-Norway, inflation
is measured by CPIATE and interest rate by 3-month money market rate. Quarterly frequencies. M2 is money
supply, OILGAS is the average price of oil and gas exports, exchange rate is the trade-weighted krone exchange
rate (KKI), GDPw is a weighted index of GDP among 25 trading partners, INFLw is is a weighted index of
CPI among 25 trading partners, and Iw is a weighted index of 3-month money market rate (US, UK, Sweden
and Euro).

C.5 Monthly indicator models

The monthly indicator models forecast GDP using several monthly indicators (that are av-
eraged up to a quarterly frequency) as regressors. The models are estimated using OLS
(ordinary least squares). In order to forecast GDP Mainland-Norway, the explanatory vari-
ables in the indicator models are projected using AR-models. The explanatory variables
in the two indicator models are: manufacturing production, employment, retail sales, hotel
statistics and building starts. The models are included in the ensemble eMI.

C.6 Monthly (FM) and Quarterly factor (FQ) models

Factor models are estimated using large data sets. Based on correlation between the different
variables, the data sets are reduced to a few common factors. These factors are then used
in various equations to provide forecasts of economic developments. Our factor models for
predicting inflation builds on Matheson (2006) and use either a monthly or a quarterly data-
set.9 In one factor model for inflation, we also forecast monthly inflation and convert the
forecast to quarterly frequencies. We use a direct forecasting method (eg CPIATE at time
t+h is now regressed against factors from data at time t). The models are included in the
ensemble eFM.

9See Aastveit and Trovik (2007) for an example of a factor model for Norwegian GDP.
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C.7 Error correction model (Emod)

We estimate an econometric (equilibrium correction) model of 13 macro variables; with spec-
ification derived from data. We use CPIATE, GDP, other domestic variables, auxiliary equa-
tions for variables such as foreign prices, interest rates, oil price. The sample period begins in
1982Q4/2001Q1 (the latter date reflecting changes in monetary policy regimes). The missing
forecasts in our evaluation period are approximated with an AR(2). EMOD produces fore-
casts for all variables from 2003Q4 and onwards.10 The model is included in the ensemble
eEmod.

C.8 Dynamic Stochastic General Equilibrium (DSGE) Model

The DSGE model is a New Keynesian small open economy model. A version applied to the
Norwegian economy is documented in Brubakk et al. (2006). The DSGE model is estimated
using Bayesian maximum likelihood on seasonal adjusted data for mainland GDP growth,
consumption growth, investment growth, export growth, employment, inflation (CPIATE),
imported inflation, real wage growth, the real exchange rate (I44) and the nominal interest
rate. The sample period is 1987Q1–1998Q4 (extended recursively until 2009Q1). The steady-
state levels are equal to recursively updated means of the variables. The model is included in
the ensemble eDSGE.

C.9 Term Structure Models

We construct four models for GDP Mainland-Norway using term structure information, two
unrestricted VARs and two affine-based models, see table 16. The affine model is a VAR
where parameters are restricted to ensure no-arbitrage between yields of different maturities,
and builds on the work by Ang et al. (2006).

Table 16: Term structure models for forecasting GDP in the model suite in SAM

Model Description of model Incl. in
ensemble

TStruct1 An unrestricted VAR model for the 3-month yield, the yield spread
(5-years minus 3-months) and GDP eTstruc

TStruct1a An unrestricted VAR model for the monthly 3-month yield,
the monthly yield spread (5-years minus 3-months) and GDP.
The Kalman-filter is used to forecast GDP in case of jagged edge. eTstruc

TStruct2 Restricted affine-model implied specification. The following
yields are included: 3-month NIBOR, 12-month NIBOR, and 2,
4 and 5 year interest rate swaps (in NOK). eTstruc

TStruct3 Affine-model implied specification. The following yields
are included: 3-month NIBOR, 12-month NIBOR, and 2, 4 and
5 year interest rate swaps (in NOK). eTstruc

Note: The sources of the data is Statistics Norway and Norges Bank. GDP is for Mainland-Norway (s.a.).
Due to data limitations, the term structure models only produce forecasts from 2004 and onwards. Prior to
2004, we use forecasts from an AR-model in the evaluation.

10The model is documented in Akram (2008).
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