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Abstract

We argue that the next generation of macro modellers at Inflation Targeting

central banks should adapt a methodology from the weather forecasting literature

known as ‘ensemble modelling’. In this approach, uncertainty about model specifi-

cations (e.g., initial conditions, parameters, and boundary conditions) is explicitly

accounted for by constructing ensemble predictive densities from a large number of

component models. The components allow the modeller to explore a wide range of

uncertainties; and the resulting ensemble ‘integrates out’ these uncertainties using

time-varying weights on the components. We provide two examples of this modelling

strategy: (i) forecasting inflation with a disaggregate ensemble; and (ii) forecasting

inflation with an ensemble DSGE.
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1 Introduction

We argue that macro models in Inflation Targeting countries are too narrowly focused

to forecast probabilities well. Despite the explicit consideration of model uncertainty

afforded by Bayesian estimation techniques, the models prominent in central banks devote

insufficient attention to ‘uncertain instabilities’. That is, too much attention has been paid

to refining a single preferred but inevitably misspecified model. A product of this oversight

is that the 2007 vintage workhorse monetary policy models had little (or nothing) to say

about the probability of ‘tail’ events which now dominate the debate over the causes of,

and remedies for, the recent Global Financial Crisis.

In our view, the next generation of macro modellers should address this deficiency

whilst preserving the architecture of dynamic non-linear modelling. We propose a method-

ology adapted from the weather forecasting literature known as ‘ensemble modelling’ . In

this approach, uncertainty about model specifications (e.g., initial conditions, parameters,

and boundary conditions) are explicitly accounted for by constructing ensemble predictive

densities from a large number of component models. The components allow the modeller

to explore a wide range of uncertainties; and the resulting ensemble ‘integrates out’ these

uncertainties using time-varying post-data weights on the components.

We provide two economic examples of the ensemble methodology. In the first, we con-

sider a policymaker (recursively) selecting a linear combination of disaggregate predictives

to produce an ensemble forecast density for inflation based on disaggregate measures of

inflation. Each component of the ensemble comprises a univariate autoregessive model

using a single disaggregate series. In our second application, we utilize an ensemble of

DSGE models, where the components are differentiated by candidate break dates. In

both examples, the ensembles outperform autoregressive benchmarks in terms of density

forecast performance for Norwegian inflation.

The remainder of this paper is structured as follows. In the next section, we set out the

case for explicit consideration of ensemble methods to deal with uncertain instabilities. In

section 3, we provide an example of ensemble modelling based on combining the informa-

tion in disaggregate inflation indices; and a second example combines DSGE models. In

the final section, we conclude by considering the scope for further developments in macro

modelling under Inflation Targeting.
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2 Current macro and ensemble modelling

We begin this section by motivating our approach to macro modelling. Then we outline

the relationship between ensemble modelling and the ‘uncertain instabilities’ literature in

macroeconomics. We complete the section with a discussion of the characteristics of the

ensemble approach.

2.1 What just happened?

The recent Global Financial Crisis has provoked considerable debate about the nature of

existing macro models. In particular, it has been argued that the models at the heart of

policymaking in Inflation Targeting central banks abstract from key aspects of financial

plumbing that were the source of the crisis. And that without these features, modellers

and policymakers stood little chance of spotting the slump in activity that stemmed from

it. For example, Willem Buiter (‘Maverecon’, Financial Times blog, March 3) has argued

that modern macro “excludes everything I am interested in” , echoing the thoughts of

Charles Goodhart on the dominance of macro models without finance (e.g., see Goodhart,

2007).

In response, central bankers are, no doubt, busy bolting bits of financial apparatus

onto workhorse DSGE models, which abstract currently from many key features of the

economy, not just the financial plumbing implicated in the current crisis. The narrow

focus on inflation above other considerations represents, after all, the defining feature of

an Inflation Targeting regime. Leaving aside the issue of whether macro models should be

developed by bolting on new sectors after each unique crisis, whatever bits are added to

today’s model, the next generation of central bank workhorse models will remain highly

abstract.

Of course, the early RBC literature—which kick-started the computational develop-

ments prevalent in modern workhorse macro models—gave explicit consideration to the

extreme degree of abstraction. Given this starting point, it seems surprising to us that

Inflation Targeting central banks typically focus on a single specification, estimated di-

rectly by the Bayesian equivalent of Maximum Likelihood.1 Why should simply allowing

for informative priors (on parameters) yield a specification capable of producing accurate

forecasts for the events of interest to policymakers?

1Karagedikli et al (2009) provide a recent review of DSGE modeling.
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2.2 Uncertain instabilities and ensemble modelling

A recent strand of the macro-econometrics literature has focused on ‘model uncertainty’

more widely, taking as its foundation that the models considered are profoundly false.

Durlauf and Vahey (2009) provide a summary in a special issue of the Journal of Applied

Econometrics which focuses on the approach. On the forecasting side, this framework

is sometimes referred to as one of ‘uncertain instabilities’. The name implies that the

estimated parameters of a single model will exhibit instabilities and that these can be

difficult to identify in the real-time forecasting exercises confronting central banks. The

dominant strategy in the forecasting applications is to combine the evidence from many

models. For example, Clark and McCracken (2009) examine the scope for taking linear

combinations of point forecasts in real time, motivated by the desire to circumvent the

uncertain instabilities in any particular specification.2 In a series of papers, Stock and

Watson (2001, 2004) have documented the robust performance of point forecast combi-

nations using various types of models for numerous economic and financial variables.

In so far as the ‘uncertain instabilities’ literature combines the evidence from many

specifications, the prevailing approach has a Bayesian interpretation. The difficulty with

applying conventional frequentist econometrics here is obvious: selecting a single model

has little appeal if the usual model selection approach yields a specification that suffers

from instability. This might happen either if the ‘true’ model is not within the model

space considered by the modeller, or if the model selection process performs poorly on

short runs of macroeconomic data.

Geweke (p95, 2009) argues that standard Bayesian methods are ill-suited to the tasks

of inference and prediction in the case where the ‘true’ model is absent from the model

space—sometimes referred to as an ‘incomplete model space’. A number of econometri-

cians, including Sims (2007) and Del Negro et al. (2007) have noted that ratios of marginal

likelihoods overstate the difference between candidate models in the absence of the ‘true’

model from the model space. Using several examples, Geweke (ch 5, 2009) demonstrates

the scope for pooling forecast densities to produce superior predictions, even if the set of

components to be combined excludes the ‘true’ model. Hall and Mitchell (2007) draw at-

tention to this property in their analysis of forecast density performance and combination

at two institutions, namely, the Bank of England and the National Institute of Economic

and Social Research.

Outside the econometrics literature, the benefits of density combination have been

2Jore, Mitchell and Vahey (2009) examine linear combinations of densities using the same US data.
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recognized for some time, as Garratt, Vahey and Mitchell (2009) observed. Over the

last 15 years, meteorologists and statisticians have focused a great deal of attention on

analyzing statistical ensembles. The roots of the approach can be traced back to Gibbs’

contribution to thermodynamics. Loosely, the idea behind the ensemble approach is to

consider a large number of component models, each of which is a replicant of the ‘preferred’

specification.3 Since each component could be viewed as an approximation of the current

state of the ‘true’ but unknown specification, the components are considered together.

The ensemble of components approximates the truth.

In the meteorological forecasting literature, the ensemble methodology is a response

to the ‘uncertain instabilities’ problem. Density forecasts are generated from a common

theoretical framework with slightly different initial conditions (measurements, auxiliary

assumptions). The framework from which the component specifications are derived might

allow for data, parameter, and/or model uncertainty.4 With practical forecasting issues

in mind, two central questions are: (i) What components should be included in the

model space?; and (ii) How should the ensembles be simulated? The researcher designs

the ensemble component model space in order to explore the likely source of ‘uncertain

instabilities’. In meteorology and climate prediction, the analysis typically uses Monte

Carlo simulation techniques.

Ensemble predictive methods are commonly used by the majority of weather predic-

tion institutions worldwide. One example is the “Ensemble Prediction System” developed

by the European Centre for Medium-Range Weather Forecasts.5 Leutbecher and Palmer

(1997) provide a primer on ensemble forecasting in meteorology. MacKenzie (2003) con-

siders the impetus to ensemble developments in meteorology provided by failing to assess

the probability of severe storms (tail events).

The experience of the Global Financial Crisis indicates the limitations of designing

monetary policy in the absence of precise information about probabilities. The ensemble

methodology offers the scope to generate accurate density forecasts from large numbers

of theoretically-coherent models. Even with explicit consideration of financial plumbing,

it is hard to envisage that a single next-generation DSGE model will offer accurate (and

robust) probabilistic forecasts.

3The term ‘replicant’ is taken from the movie ‘Blade Runner’ (1982). The equivalent term in micro is
‘differentiated but otherwise identical’.

4In weather forecasting applications, the sensitivity to initial conditions stems from the chaotic pro-
cesses considered.

5For an early description of weather ensemble forecasting see Molteni et al. (1996).
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2.3 Characteristics of ensemble modelling

We conclude this section by highlighting some common characteristics of an ensemble

modelling strategy for macro modelling.

1. Generation of forecasting densities, rather than point forecasts

2. Predictive density construction from a large number of component macro-econometric

models

3. Forecast density evaluation and combination based on out of sample performance,

rather than in-sample analysis

4. Component model weights vary through evaluation—ensemble densities have time

varying weights

Papers in the economics literature that satisfy these criteria include (among others):

Jore, Mitchell and Vahey (2009), Kasha and Ravazzolo (2009), Gerard and Nimark (2008)

and Garratt, Mitchell and Vahey (2009). Smith et al. (2009) consider the performance

of the Norges Bank nowcasting system which also adopts the ensemble methodology. In

these cases, the out of sample densities from many macro-econometric component models

are directly combined into the ensemble using an ‘opinion pool’.6 These papers differ in

the design of the model space and the number of components considered, as well as the

applied problem of interest. We shall discuss this opinion pool approach in considerable

detail below when we analyze two specific examples. As we shall discuss, variants can

produce symmetric or non-symmetric predictive densities.

Another strand of the ensemble economics literature uses informative priors and

Markov chain Monte Carlo methods to produce ensembles. Maheu and Gordon (2009)

and Geweke (2009) use mixture models to give non-Gaussian predictives; Andersson and

Karlsson (2007) produce symmetric Gaussian predictive densities from many vector au-

toregressions.7 Geweke (2009) discusses the relationships between density pooling and

mixture modelling, and argues that the former presents a more coherent approach for

incomplete model spaces. Clearly, both variants can be effective methods for combining

densities in forecasting applications. (In a related literature, Patton (2004), Maheu and

6Wallis (2005) uses opinion pools to average (model free) survey forecasts, rather than those from
macro-econometric models. Mitchell and Hall (2005) use opinion pools to combine forecasts from two
institutions.

7Frequentist approaches to mixture model estimation are also feasible but practitioners have tended
to prefer Bayesian simulation methods with scope for informative priors.
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McCurdy (2009) and Amisano and Geweke (2009) consider ensembles in various financial

applications.)

The mixture innovations approach to state space models developed by (for example)

Giordani, Kohn and van Dijk (2007) and Giordani and Kohn (2008) has a number of com-

mon features with ensemble modelling. Both strategies aim to combine relatively simple

components. In ensemble applications, the components are typically conditionally (i.e.,

locally) linear Gaussian, but this is not required. The mixture innovation literature de-

ploys the Kalman filter to conditionally linear Gaussian processes.8 Given the flexibility

afforded by combination, the Gaussian components may not impair forecasting perfor-

mance significantly. Ensemble modelling applications also focus more explicitly on out of

sample density forecasting, and given the relatively light computational burden, a broader

(and sometimes more eclectic) model space made up of candidate macro-econometric spec-

ifications.

3 Examples

In this section, we consider two specific examples of ensemble forecasting for inflation:

using an ensemble of disaggregates, and DSGE ensembles. Both applications use Norwe-

gian data and the opinion pool approach to ensemble density construction. We begin by

describing the density combination approach used throughout.

3.1 Density combination

To summarize the approach, for each observation in the policymaker’s out of sample

‘evaluation period’, we use forecast density combination to compute the weight on each

component model. In each example that follows, the component models will use a common

time series structure. In the first example, each component will consider a particular

disaggregate inflation measure. In the second example, the DSGE components will be

distinguished by assumptions about break date timing. In both cases, the weights are

based on the ‘fit’ of the component predictive densities for measured inflation. Given

these weights, we construct ensemble forecast densities for measured inflation.

More formally, consider a policymaker aggregating forecasts supplied by ‘experts’ each

using a unique component forecasting model. Given i = 1, . . . , N components (where N

8The ensemble Kalman filter can be used to approximate non-Gaussian processes with an ensemble
based on simulated Gaussian measurement errors; see, for example, Mandel (2007).
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could be a large number), we define the ensemble by the convex combination also known

as a linear opinion pool:

p(πτ,h) =
N∑
i=1

wi,τ,h g(πτ,h | Ii,τ ), τ = τ , . . . , τ , (1)

where g(πτ,h | Ii,τ ) are the h-step ahead forecast densities for inflation from component

model i, i = 1, . . . , N , conditional on the information set Iτ .

We stress that each component model produces h-step ahead forecasts for inflation—

we are weighting the components only by the performance of their inflation forecasts in

these examples, although multivariate weights are feasible.9

Each component model uses data, dated τ − h or earlier, to produce an h-step ahead

forecast density for τ . The non-negative weights, wi,τ,h, in this finite mixture sum to

unity, are positive, and vary by recursion in the evaluation period τ = τ , . . . , τ .

We emphasize that the ensemble forecast density could be non-Gaussian even if the

component models produce Gaussian predictives. The linear opinion pool ensemble (1)

accommodates skewness and kurtosis. The flexible structure resulting from linear pooling

allows the data to reveal whether, for example, the ensemble should have fat tails, or

asymmetries. Kascha and Ravazzolo (2009) compare and contrast logarithmic and linear

pooling. Logarithmic opinion pools force the ensemble predictives to be symmetric, but

accommodate fat tails; see also, Smith et al. (2009).

We construct the ensemble forecast density for measured inflation using equation (1).

Implementation of the density combination requires a measure of component density fit

to provide the weights. A number of recent applications in the economics literature

have used density scoring rules. In the applications that follow, we utilize the Continuous

Ranked Probability Score (CRPS), which as (among others) Gneiting and Raftery (2007),

Panagiotelis and Smith (2008) and Ravazzolo and Vahey (2009) note, rewards predictive

densities from component models with high probabilities near (and at) the outturn.10

3.2 A disaggregate ensemble

Monetary policymakers examine regularly disaggregate inflation series for leading evidence

of the inflationary process. The introduction of Inflation Targeting led central banks to

9In the examples that follow, we set h = 1 for simplicity.
10See Panagiotelis and Smith (2008) for an explanation of how CRPS is calculated for each component

density.
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focus much greater attention on the behaviour of inflation. One problem in doing so is

that headline inflation can be volatile. A tradition common among Inflation Targeters

considers the disaggregate inflation (or price) cross-sectional distribution but truncates

and averages the distribution to provide a ‘core’ measure. A second approach excludes

(zero-weights) particular disaggregates; the resulting measure is commonly referred to as

an ‘Ex’ core measure. It is often argued that a key test of core inflation measures is

whether the candidate core can predict measured inflation at a given horizon; see, for

example, Smith (2004).

In this example, we construct ensemble predictives based on the out of sample fore-

cast performance of many component models, where each component model uses a par-

ticular disaggregate series. The example follows closely the approach of Ravazzolo and

Vahey (2009). Using US data, they label the combined forecast density the ‘disaggregate

ensemble core’ inflation. We demonstrate below that the ensemble predictives provide

accurate forecast densities for measured inflation. And the weights on the disaggregate

components are non-zero throughout the evaluation. We conclude that the common prac-

tice of discarding disaggregate information either by zero-weighting groups or individual

disaggregates—analogous to truncation and the ‘Ex’ approach, respectively—are unwar-

ranted from the perspective of assessing the probability of inflation events of interest. The

example also illustrates the mechanics and flexible nature of ensemble modelling.

In our application, we decompose inflation in Norway into 12 disaggregates. These are:

food and non-alcoholic beverages; alcoholic beverages and tobacco; clothing and footwear;

housing, water, electricity and fuels; furnishings and house equipment; health care; trans-

port; communications; recreation; education; restaurants and hotels; and, miscellaneous

goods and services. We emphasize that, in principle, our methodology could be applied

to an extremely large number of disaggregates. For all inflation series, we work with

quarterly growth rates. Restricting our attention to Great Moderation data, we start our

sample with 1984Q1 and end with 2008Q4. The evaluation period for the predictives is

1996Q3 to 2008Q4; the period 1993Q1 to 1996Q2 we use as a ‘training period’ to initialize

the ensemble weights. This application focuses entirely on one-step ahead forecasts.11

Recall that we construct the ensemble by combining the predictive densities from

11Within the core inflation literature, the horizon of interest varies, typically between one and eight
quarters ahead. Although longer horizon ensemble forecasts are possible (see, for example, Jore, Mitchell
and Vahey (2009)), we prefer to focus on horizons much shorter than the focal range of many Inflation
Targeting regimes. Thereby, the results presented in this paper cannot be interpreted as a test of the
‘credibility’ of the inflation targeting regime. For further discussion of this issue see Brischetto and
Richards (2006).
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all of the disaggregate component models. Each component model uses a univariate

autoregressive specification with four lags for a single disaggregate series. We construct

the ensemble predictives for measured inflation by evaluating the disaggregate forecasts

for measured inflation. In each recursion, we (recursively) center the component forecasts

on measured inflation as described by Ravazzolo and Vahey (2009).12

To assess the calibration properties of the core ensemble density we follow Diebold et

al. (1998) and compute PITS, probability integral transforms, and apply the Berkowitz

(2001) likelihood ratio test for independence, zero mean and unit variance of the PITS.

The test statistic is distributed χ2(3) under the null hypothesis of no calibration failure,

under a maintained hypothesis of normality. We also report the average (over the eval-

uation period T = τ − τ) logarithmic score. The logarithmic score of the i-th density

forecast, ln g(πτ,h | Ii,τ ), is the logarithm of the probability density function g(. | Ii,τ ),
evaluated at the outturn πτ,h. Hence, the log score evaluates the predictives at the out-

turn only. We investigate relative predictive accuracy by considering a Kullback-Leibler

information criterion (KLIC)-based test, based on the expected difference in two mod-

els’ log scores; see Bao et al. (2007), Mitchell and Hall (2005) and Amisano and Gia-

comoni (2007). Suppose there are two density forecasts, g(πτ,h | I1,τ ) and g(πτ,h | I2,τ ),

so that the KLIC differential between them is the expected difference in their log scores:

dτ,h = ln g(πτ,h | I1,τ ) − ln g(πτ,h | I2,τ ). The null hypothesis of equal density forecast

accuracy is H0 : E(dτ,h) = 0. A test can then be constructed since the mean of dτ,h

over the evaluation period, dτ,h, under appropriate assumptions, has the limiting distri-

bution:
√
Tdτ,h → N(0,Ω), where Ω is a consistent estimator of the asymptotic variance

of dτ,h.
13 Mitchell and Wallis (2009) explain the importance of information-based methods

in discriminating between competing density forecasts.

We construct an ensemble one-step ahead predictive density for measured inflation,

which we refer to as DE12. As a benchmark, we use a linear model to forecast measured

inflation without disaggregate information. That is, we use a linear autoregressive model

for aggregate measured inflation, with four lags, AR(4).14 We use this AR model as our

benchmark in tests of relative forecast performance.

12In effect, this step restricts the ensemble forecast densities to be uni-modal but not symmetric.
13When evaluating the density forecasts we treat them as primitives, and abstract from the method

used to produce them. Amisano and Giacomoni (2007) and Giacomini and White (2006) discuss more
generally the limiting distribution of related test statistics.

14We use uninformative priors for the AR(4) parameters with an expanding window. The predictive
densities follow the t-distribution, with mean and variance equal to OLS estimates; see, for example,
Koop (2003) for details.
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Table 1: Forecast performance

LR LS LS-test

AR 0.175 -1.057
DE12 0.215 -0.615 0.001

Note: The column LR is the Likeli-
hood Ratio p-value of the test of zero
mean, unit variance and independence
of the inverse normal cumulative dis-
tribution function transformed PITS,
with a maintained assumption of nor-
mality for transformed PITS. LS is
the average logarithmic score, aver-
aged over the evaluation period. LS-
test is the p-value of the KLIC-based
test for equal density forecasting per-
formance of AR and DE12 over the
sample 1996Q3 to 2008Q4.

Before turning to the density evaluations for our various ensembles, we summarize

the point forecast performance. The root mean squared prediction error (RMSPE) of

DE12 and AR(4) is 0.313 and 0.430, respectively. The Clark-West (2006) test for superior

predictive accuracy (against the null of equal accuracy) indicates the superior performance

of DE12 with a test statistic of 2.61; the critical value for rejection of the null at 95% is

1.65.15

We turn now to the ex post (end of evaluation period) evaluation of the forecast

densities from DE12 and the AR(4) benchmark. Table 1 has two rows; one for each. The

columns report (reading from left to right) the Berkowitz likelihood ratio test (based on

the PITS ), the log scores (averaged over the evaluation period), and the p-values for the

equal predictive density accuracy test (based on the log scores), respectively. Whereas

both models appear well-calibrated on the basis of the Berkowitz likelihood ratio, the

final column shows that the AR is rejected in favour of DE12 using the KLIC-based test.

DE12 delivers a statistically significant, at the 99% level, improvement in the log score

(reported in the second column).

The weights in DE12 display some variation through time. Table 2 reports the weights

on the 12 disaggregates at three specific observations. It can be seen from Table 2 that

generally all disaggregate components have a non-zero weight, although the weight on

Clothing and Footwear does drop to just below two percent.16 There does not seem to be

15Smith (2004) and Kiley (2008) discuss the point forecasting properties of various core inflation mea-
sures. Most fail to outperform simple AR benchmarks.

16Geweke (2009) argues that even a zero weight is not sufficient to conclude that a component model
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Table 2: Disaggregate weights

1996Q3 2002Q3 2008Q4

Food and non-alc. bev. 0.138 0.128 0.117
Alc. bev. and tobacco 0.032 0.041 0.050
Cloth. and footwear 0.031 0.017 0.016
Housing, water, el. and fuel 0.105 0.091 0.070
Furnishings and house equip. 0.155 0.123 0.110
Health care 0.043 0.054 0.059
Transport 0.048 0.072 0.082
Communications 0.021 0.026 0.032
Recreation 0.136 0.161 0.159
Education 0.079 0.057 0.062
Rest. and hotels 0.139 0.139 0.135
Miscellaneous goods and services 0.071 0.090 0.107

Note: The columns reports disaggregate weights in three observations,
1996Q3, 2002Q3 and 2008Q4.

a case for excluding the information on individual disaggregates, or groups of particular

disaggregates, on the basis of these weights.17

In figure 1, we plot the median from our DE12 density forecast, together with the 25

and 75 percentiles from this ensemble density. The plot shows that the median of the DE12

core ignores several extreme values in the actual measured inflation series. Typically, the

probability of inflation being less than zero is well below 25 percent.

To provide further insight into the probability of tail events for inflation, figure 2

provides the ensemble predictive densities at particular observations, namely 1996Q3 and

2008Q4, the first and the last values in our evaluation period. We see that the AR(4)

benchmark produces density forecasts that are too wide, with a high probability mass

attributed to (quarterly) inflation of greater than two percent in absolute value for both

observations. The DE12 predictives contain more mass in the regions around the outturn

than the AR(4) benchmark, with relatively minor departures from symmetry.

We conclude from this analysis that the ensemble approach provides a means of gen-

erating accurate forecast densities for measured inflation from disaggregate information.

Moreover, the common practice of discarding disaggregate information, either by zero-

weighting groups or individual disaggregates as in the core inflation literature, is unwar-

has zero value for the linear opinion pool.
17Rules of thumb for truncation, such as, dropping disaggregates with less than 10 percent weight, may

result in improvements in forecast performance. One difficulty to be explored in subsequent research is
how to deal with the uncertainty over the truncation factor (eg 10 percent).
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Figure 1: Inflation interval forecasts
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Note: The figure shows the posterior median (solid line) of the predictive density given by disaggregate
ensemble DE12 and actual inflation (the dashed line). The red dashed lines in the graphs are the 25th

and 75th percentiles of the predictive density.

ranted in this density forecasting context as they do contain useful information about the

future values of inflation.

3.3 A DSGE ensemble

Monetary policymakers typically use DSGE models as core workhorse models for forecast-

ing and policy analysis. The introduction of Inflation Targeting led central banks to focus

their macro models on inflation issues. One issue in doing so is that the current generation

of models are considerably more abstract than the large-scale Keynesian macro models

of the 1970s. Also, the DSGE tradition adopted by Inflation Targeters takes optimizing

behaviour by micro agents as the cornerstone of model building. Despite the profusion

of nominal and real rigidities adopted in the workhorse models, many critics argue that

the models are fundamentally misspecified. We interpret this view as consistent with the

incomplete model space concept in Geweke (2009).

In this example, we construct ensemble predictives for inflation based on the out of

sample forecast performance of many component models, where all component models

use a particular DSGE specification. The components are distinguished by the assumed
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Figure 2: AR and DE12 density forecasts
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Note: The figures plot the histogram of the density forecasts given by AR benchmark and by the
disaggregate ensemble DE12 for two different periods, the first and last forecasts. The realized value for

CPI is also provided.

(single candidate) break date in the sample, with each component using a unique post-

break sample to produce forecasts through the evaluation period. The recursive simulation

strategy for the DSGE model in this example follows closely the approach of Bache, Jore,

Mitchell and Vahey (2009). Using Norwegian data, they compare the out of sample

forecasting performance of NEMO (the Norges Bank core macro model) with benchmark

models. In our paper, every component model is a replicant of NEMO, but with different

start dates for in-sample estimation. We refer to the ensemble of DSGEs as EDSGE,

which we construct by using CRPS weights for measured inflation. That is, we treat

the component models in exactly the same way as in the previous example, and eschew

multivariate density scoring.18

We emphasize that our EDSGE framework uses many very similar DSGE models. In

each component, the agents and the government are assumed to have rational expecta-

tions. There is no learning taking place in any of our component models. In contrast,

Svensson and Williams (2007) consider Markov jump-linear-quadratic systems that nest

several prevalent, but relatively simple, macro models. It remains to be seen whether the

Svensson-Williams approach will yield accurate forecast densities.

We demonstrate below that the EDSGE predictives provide accurate forecast densities

for measured inflation using the same metrics for performance as in the previous (disag-

gregate) example. Simply eyeballing the weights illustrates that all of these components

are quite likely, based on post-data analysis of density fit. The weights are pretty much

18Multivariate extensions and loss-based weighting of components pose no particular conceptual issues.
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uniformly distributed across the components.

Since we have already described how the EDSGE will be constructed, we simply

summarize the DSGE model, before turning to the structure of the components and then

the results.

NEMO is a medium-scale New Keynesian small open economy model with a similar

structure to the DSGE models recently developed in many other central banks. In this

example, we use a simplified version of the model motivated by the need to reduce the

computational burden of producing the recursive forecasts for forecast density combina-

tion. The simplification involves modifications to the Bayesian simulation methodology

and the steady-state behaviour of the model as described below.

An appendix to Bache, Jore, Mitchell and Vahey (2009) describes the NEMO econ-

omy in detail. Here we summarize the main features. There are two production sectors.

Firms in the intermediate goods sector produce differentiated goods for sale in monop-

olistically competitive markets at home and abroad, using labour and capital as inputs.

Firms in the perfectly competitive final goods sector combine domestically produced and

imported intermediate goods into an aggregate good that can be used for private con-

sumption, private investment and government spending. The household sector consists of

a continuum of infinitely-lived households that consume the final good, work and save in

domestic and foreign bonds. The model incorporates real rigidities in the form of habit

persistence in consumption, variable capacity utilization of capital and investment ad-

justment costs, and nominal rigidities in the form of local currency price stickiness and

nominal wage stickiness. The model is closed by assuming that domestic households pay

a debt-elastic premium on the foreign interest rate when investing in foreign bonds. A

permanent technology shock determines the balanced growth path. The fiscal authority

runs a balanced budget each period; and, the central bank sets the short-term nominal

interest rate according to a simple monetary policy rule. The exogenous foreign variables

are assumed to follow autoregressive processes. To solve the model we first transform the

model into a stationary representation by detrending by the permanent technology shock.

We then take a first-order approximation (in logs) of the equilibrium conditions around

the steady-state.

Estimation uses data on the following ten variables: GDP, private consumption, busi-

ness investment, exports, the real wage, the real exchange rate, overall inflation, imported

inflation, the 3-month nominal money market rate, and hours worked. We measure infla-

tion with the (headline) consumer price index adjusted for tax and energy prices—known

as the ‘CPIATE’ measure. The interest rate is the 3-month money market rate, and the

15



Table 3: Forecast performance

LR LS LS-test

AR 0.101 -0.657
EDSGE 0.226 -0.125 0.020

Note: The column LR is the Likelihood
Ratio p-value of the test of zero mean,
unit variance and independence of the
inverse normal cumulative distribution
function transformed PITS, with a main-
tained assumption of normality for trans-
formed PITS. LS is the average logarith-
mic score, averaged over the evaluation
period. LS-test is the p-value of the
KLIC-based test for equal density fore-
casting performance of the AR model and
the EDSGE over the sample 2000Q1 to
20008Q4.

(seasonally adjusted) GDP variable excludes the oil and gas sectors.19 Since the model

predicts that domestic GDP, consumption, investment, exports and the real wage are

non-stationary, these variables are included in first differences. We take the log of the real

exchange rate and hours worked. All variables are demeaned prior to estimation.

We estimate the structural parameters using Bayesian techniques.20 The structural

parameters are re-estimated in each recursion for the evaluation period. We construct the

forecast densities by drawing 10,000 times from a multivariate normal distribution for the

shocks. The standard deviations of the shocks are set equal to their estimated posterior

mode. Note that the (implicit) steady-states vary by recursion through the evaluation

period; we demean the data prior to estimation in each recursion. We emphasize that,

as a result of this simulation approach, our components do not account for parameter

uncertainty and that the resulting predictives from each component are Gaussian.

We work with 14 component DSGE models, distinguished by the assumed start date

for in-sample estimations. The longest sample used starts in 1985Q2; the last sample starts

in 1988Q3. The other variants explore every feasible start date between. Estimation is

based on expanding window samples. The evaluation period for the predictives is 2000Q1

to 2008Q4; the period 1999Q1 to 2000Q1 we use as a ‘training period’ to initialize the

ensemble weights. This application focuses entirely on one-step ahead forecasts.

19The national accounts data relate to the mainland economy, that is, the total economy excluding the
petroleum sector. See table 5 for details about the data and the sources.

20We carry out DSGE estimation in DYNARE; see Juillard (1996) and the following website
http://www.cepremap.cnrs.fr/juillard/dynare/.
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Table 4: DSGE weights

2000Q1 2004Q4 2008Q4

DSGE-1985Q2 0.076 0.072 0.072
DSGE-1985Q3 0.077 0.071 0.072
DSGE-1985Q4 0.072 0.074 0.072
DSGE-1986Q1 0.073 0.077 0.072
DSGE-1986Q2 0.070 0.073 0.070
DSGE-1986Q3 0.061 0.069 0.067
DSGE-1986Q4 0.070 0.073 0.070
DSGE-1987Q1 0.083 0.073 0.073
DSGE-1987Q2 0.083 0.071 0.074
DSGE-1987Q3 0.070 0.067 0.070
DSGE-1987Q4 0.061 0.071 0.073
DSGE-1988Q1 0.067 0.070 0.072
DSGE-1988Q2 0.067 0.070 0.072
DSGE-1988Q3 0.069 0.068 0.071

Note: The columns report the weights, in three spe-
cific time periods, on the 13 components, differenti-
ated by the proposed break-date, in the EDSGE. Each
DSGE component is labeled by its break date.

Before turning to the density evaluations for our EDSGE, we consider the performance

of the point forecasts. The root mean squared prediction error (RMSPE) of EDSGE and

the benchmark AR(4) is 0.074 and 0.027, respectively. That is, unlike the disaggregate

ensemble in the previous example, our DSGE ensemble does not beat an autoregressive

benchmark. This property stems from some mean bias in the components—none of the

component models outperform the benchmark either.21

We turn now to ex post (end of evaluation period) evaluation of forecast densities from

the EDSGE and the AR(4) benchmark. Table 3 has two rows which refer to the EDSGE

and the AR benchmark. The columns report the Berkowitz likelihood ratio test (based on

the PITS ), the log scores (averaged over the evaluation period), and the p-values for the

equal predictive density accuracy test (based on the log scores), respectively. Whereas

both models appear well-calibrated on the basis of the Berkowitz likelihood ratio, the

final column shows that the AR is rejected in favour of EDSGE using the KLIC-based

test. EDSGE delivers a statistically significant, at the 98% level, improvement in the log

score (reported in the second column).

We see in Table 4 that the weights on the different components in EDSGE display

21There may be scope to remove the forecast bias prior to combination. See, for example, Bao et al
(2009).
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Figure 3: Inflation interval forecasts

2000Q1 2005Q1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Note: The figure shows the posterior median (solid line) of the predictive density given by disaggregate
ensemble EDSGE and the actual inflation (in dashed line). The red dashed lines in the graphs are the

25th and 75th percentiles of the predictive density.

little volatility over time. And typically, all the DSGE components receive similar weight,

which gives an indication of the individual plausibility of the components. The data

suggest that a single DSGE model (a single break-date) should not be used for density

forecasting.

In figure 3, we plot the median from our EDSGE density forecast, together with

the 25 and 75 percentiles from the ensemble density. The plot shows that the median

of the EDSGE is typically less volatile than the actual inflation series. Also apparent

from this plot is the tendency for the runs of observations to occur outside the displayed

percentiles. Clearly, there is scope for improving calibration by considering other candi-

date uncertainties—which could then be integrated out using the methods described in

this paper. We leave this avenue to be explored in a more complete analysis of DSGE

ensembles.

Figure 4 provides the ensemble predictive densities at particular observations, namely

2000Q1 and 2008Q4. We see that the EDSGE density is much sharper than the AR

benchmark, and there are also some minor departures from symmetry.

We conclude from this analysis that the ensemble approach provides accurate forecast
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Figure 4: AR and EDSGE density forecasts
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Note: The figures plot the histogram of the density forecasts given by AR benchmark and by the
ensemble EDSGE for two different periods, the first and last forecasts. The realized value for CPIATE

is also provided.

densities for measured inflation based on the DSGE components. The weights on the

components indicate both that none of the DSGE components are implausible and also

that one component alone is not preferred over the others.

4 Conclusions and ideas for further research

We have argued that the next generation of macro modellers at Inflation Targeting central

banks should adapt a methodology from the weather forecasting literature known as

‘ensemble modelling’. In this approach, uncertainty about model specifications (e.g.,

initial conditions, parameters, and boundary conditions) is explicitly accounted for by

constructing ensemble predictive densities from a large number of component models.

The components allow the modeller to explore a wide range of uncertainties; and the

resulting ensemble ‘integrates out’ these uncertainties using time-varying weights on the

components. We have provided two specific examples of this modelling strategy.

The next generation of macro models at Inflation Targeting central banks could set

aside the ‘uncertain instabilities’ problem and focus on these issues from the perspective

of a single model. But a more promising route, we feel, is to explore model uncertainty

explicitly. The computational simplicity of ensemble systems makes them very convenient

for combining the evidence in many, highly-complex DSGE models, such as NEMO. More-

over, as our second example has demonstrated, the ensemble approach has the potential

to produce accurate forecast densities from models used by policymakers in practice.
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In discussing this paper at the Norges Bank Inflation Targeting conference, a number

of participants argued that modelling expectations, learning and monetary policy strategy

would pose serious challenges within the ensemble framework. We agree. But we think it

a worthwhile endeavour.
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