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Bootstrapping the Likelihood Ratio Cointegration Test in Error

Correction Models with Unknown Lag Order ∗

Christian Kascha† Carsten Trenkler‡

Norges Bank University of Mannheim
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Abstract

We investigate the small-sample size and power properties of bootstrapped likelihood
ratio systems cointegration tests via Monte Carlo simulations when the true lag order
of the data generating process is unknown. A recursive bootstrap scheme is employed.
We estimate the order by minimizing different information criteria. In comparison to the
standard asymptotic likelihood ratio test based on an estimated lag order we found that
the recursive bootstrap procedure can lead to improvements in small samples even when
the true lag order is unknown while the power loss is moderate.

Keywords: Cointegration Tests, Bootstrapping, Information Criteria
JEL-Codes: C15, C32

1 Introduction

In this note, we compare the performance of likelihood ratio cointegration tests with asymp-
totical and bootstrap critical values in terms of their size and power in the case in which the
true lag order in the vector error correction model (VECM) is not known a priori. To the
best of our knowledge, these tests have been compared only in situations in which the true
lag order is known as the theory on bootstrapping systems cointegration tests has been de-
veloped only recently by Swensen (2006) and extended by Cavaliere, Rahbek & Taylor (2009)
and Trenkler (2009). We conduct Monte Carlo experiments using three different data gener-
ating processes (DGPs) and a recursive bootstrap procedure. The lag order is estimated by
applying different information criteria. In comparison to the asymptotic likelihood ratio test
we found that the bootstrap can lead to improvements in small samples even in the unknown
lag order case.
∗We thank Anders Rygh Swensen and participants of the Econometric Seminar at the University of Kiel

for their helpful comments. The views expressed in this paper are our own and do not necessarily reflect the
views of Norges Bank.
†Norges Bank, Research Department. christian.kascha@norges-bank.no
‡Address of corresponding author: University of Mannheim, Department of Economics, Chair of Empirical

Economics, 68131 Mannheim, Germany; trenkler@uni-mannheim.de
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Most tests for cointegration are formulated in the well-known VECM framework for a
n-dimensional time series yt = (y1,t, . . . , yn,t)′ observed for t = 1, . . . , T ,

∆yt = µ0 + µ1t+ Πyt−1 +
k∑

j=1

Γj∆yt−j + εt, t = k + 2, . . . , T, (1)

where µ0 and µ1 are (n × 1) parameter vectors, Π and Γ1, . . . ,Γk are (n × n) parameter
matrices. For the error term it is usually assumed that εt ∼ i.i.d. (0,Σ) and E(ε4t ) < ∞.
Moreover, k is the lag order of the VECM such that p = k + 1 is the order of the underlying
vector autoregressive (VAR) process for yt. We assume that yt is I(1), i.e. its components
are at most integrated of order one. When the matrix Π has rank r > 0 the series are said
to cointegrate and one can write Π = αβ′ with α being a (n × r) matrix of adjustment
coefficients and β being a (n × r) matrix of cointegrating vectors. The most popular test
for cointegration is the likelihood ratio (LR) test for the null hypothesis H0 : r = r0 versus
H1 : r > r0 proposed by Johansen (1988, 1991).

The asymptotic distribution of the LR test was first derived by Johansen (1988) under the
assumption that the true lag length is used. Even in this favorable case, many authors such as
Toda (1995), Ho & Sorensen (1996) or Gonzalo & Pitarakis (1999) have shown that the size of
the LR test in small samples can substantially differ from its nominal value when asymptotic
critical values are used. The problem has been addressed in two different ways. The first
approach tries to correct or modify the test statistic such that its finite sample distribution
is closer to the one obtained from asymptotic theory. Examples are the corrections proposed
by Reinsel & Ahn (1992), Reimers (1992) and, in particular, Johansen (2002). The second
approach uses bootstrap methods to obtain critical values of the finite sample distribution of
the test statistic (see e.g. Swensen 2006).

In practice, however, the lag order k is unknown and has to be estimated prior to testing
for cointegration. This is usually done by applying information criteria with respect to un-
restricted VAR models fitted to yt. In addition, it might be that the true lag order in (1) is
infinite because the data are generated by a vector autoregressive moving average (VARMA)
process. Saikkonen & Luukkonen (1997) showed that the use of Johansen’s LR test is justi-
fied in the VARMA case in that the test has the same limiting distribution as in the finite
order case under some restrictions on the process and the lag order. Lütkepohl & Saikkonen
(1999) established the corresponding result in the case where the lag order is estimated by
information criteria for finite and infinite-order VECMs.

The estimation of the lag order can have several effects on the performance of the standard
LR test. First, if the estimated lag length is shorter than the true lag length, the test is based
on an inadequate model. Second, if the used lag length is larger, the test is based on a model
that nests the DGP but additional uncertainty is introduced. Thus, it is no surprise if the
additional uncertainty stemming from the order estimation aggravates the above mentioned
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problems. Indeed, there are many simulation studies pointing to intolerable size distortions
when the wrong lag order is chosen (see e.g. Boswijk & Franses 1992, Cheung & Lai 1993,
Yap & Reinsel 1995). Similar pessimistic results when the lag order is estimated have been
obtained by Lütkepohl & Saikkonen (1999).

Swensen (2006) and Trenkler (2009) found encouraging results for some recursive boot-
strap systems cointegration tests. In a recursive bootstrap, an i.i.d. sample from the residuals
is drawn and the bootstrap data are generated recursively according to the chosen time series
model. The situation of an unknown lag order has not been investigated in these papers.1

The results on the asymptotic LR test suggest, however, that it is crucial to compare boot-
strap cointegration tests with the asymptotic LR test in a setup in which the lag order is
unknown. In the recursive bootstrap, the lag order estimated from the original data is used
in each bootstrap replication when applying the cointegration test to the bootstrapped data.
In other words, this procedure treats the estimated lag length as if it was known for the gen-
eration of the bootstrap data. This treatment of the lag length might therefore have adverse
effects on the performance of the bootstrap. Thus, we analyse via Monte Carlo simulations
how the application of lag selection criteria affects the small sample properties of recursive
bootstrap cointegration tests. Thereby, we can give some directions for applied researchers
on which approach to use.

The rest of the paper is organized as follows. The test procedures are described in Section
2. In Section 3, we explain the design of the Monte Carlo simulations and discuss the results.
Section 4 concludes.

2 Test Procedures

In this section, we describe tests for cointegration in the VECM framework given in (1) that
are used in the Monte Carlo simulations. We focus here on the VECM with a restricted trend
term and r cointegrating relations such that we can write µ1 = αρ with α as above and ρ

being a scalar. Model (1) can then be written as

∆yt = µ0 + α(β′yt−1 + ρt) +
k∑

j=1

Γj∆yt−j + εt. (2)

Given the lag order k, denote by R0t and R1t the residuals obtained from regressing ∆yt
and (yt−1, t)′ on (1,∆yt−1, . . . ,∆yt−k)′, respectively. Define further Sij = T−1

∑T
t=k+2RitR

′
jt

and denote by (λ̂r0+1, . . . , λ̂n) the n− r0 smallest eigenvalues in |λS11 − S10S
−1
00 S01| = 0. For

simplicity, the dependence on the lag order is omitted for all these quantities but it is retained
1Only van Giersbergen (1996) has examined whether a stationary bootstrap can help to reduce distortions

due to lag order misspecification. However, the stationary bootstrap is of limited applicability here because it
relies on critical auxiliary parameters which are difficult to estimate in practice.
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for the test statistics. Johansen’s LR trace test statistic for H0 : r = r0 versus H1 : r > r0 is

LRr0(k) = −(T − k − 1)
n∑

i=r0+1

log(1− λ̂i). (3)

This is the most commonly used test statistic and its (non-standard) asymptotic distribution
can be found in Johansen (1988, 1996). Here we use asymptotical critical values computed by
Doornik (1998). As pointed out in the introduction, Reinsel & Ahn (1992) and Reimers (1992),
among others, have suggested modified LR statistics to improve the size properties of the
standard LR test with mixed success (Cheung & Lai 1993, Hubrich, Lütkepohl & Saikkonen
2001). Furthermore, Johansen (2002) proposed a small sample correction following Bartlett
(1937). Swensen (2006), however, showed that bootstrap approximations work better than
the correction suggested by Johansen (2002) in a number of situations. Our own simulations
have confirmed this. Moreover, we have found that the LR test outperforms the Bartlett-
corrected test version in most of our simulation setups. Therefore, we focus on the former
one in the following and do not report results on the Bartlett-corrected LR test. The use of
the true lag order will be explicitly indicated by the notation LRr0(ktrue).

In practice, the lag order in (1) is of course unknown. A researcher might therefore use
some information criterion, IC(k), and choose k̂IC = argmink IC(k), where the minimization
is over k = 0, . . . , kT and kT is a given upper bound on the possible lag orders. Paulsen (1984)
shows that the standard order selection criteria are consistent for multivariate autoregressive
processes with unit roots. Lütkepohl & Saikkonen (1999) show specifically for cointegration
tests that kT →∞ and k3

T /T → 0 as T →∞ suffice to show that the LR test with a lag order
selected by an information criterion has asymptotically the same distribution as LRr0(ktrue).
Therefore, we use k50 = 3, k100 = 4 and k200 = 5, which corresponds to taking the largest
integers such that kT ≤ T 1/3. Using larger values for kT can lead to excessive size distortions
when the sample size is small (e.g. T = 50). The information criteria take the general form

IC(k) = ln |Σ̂(k)|+ CT
kn2

N
, (4)

where N = T −kT −1, Σ̂(k) is an estimate of the covariance matrix Σ̂(k) =
∑T

t=kT+2 ε̂tε̂
′
t and

the ε̂t are obtained by estimating an unrestricted VECM, i.e. a VAR model of order k + 1,
on ykT+2, . . . , yT . We consider Akaike’s (1973) information criterion (AIC) with CT = 2,
the Hannan-Quinn (HQ) criterion (Hannan & Quinn 1979) with CT = ln lnN and Schwarz’s
(1978) Bayesian information criterion (SC), CT = lnN . In addition, we employ the modified
Akaike information criterion (MAIC) of Qu & Perron (2007) that imposes r0 at the lag
specification stage in order to obtain a better estimate of the Kullback-Leibler divergence in
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small samples. It is given by

MAIC(k, r0) = ln |Σ̂(k, r0)|+ 2
L̃Rr0(k) + kn2

N
, (5)

where L̃Rr0(k) = −N∑n
i=r0+1 ln(1 − λ̂i) is just the usual LR test statistic but obtained by

maximizing the likelihood of ykT+2, . . . , yT in the VECM. Thus, the MAIC is almost identical
to the AIC but includes the extra term L̃Rr0(k). Also, the notation Σ̂(k, r0) emphasizes that
the estimate of Σ is based on the VECM form (2) with imposed cointegrating rank r0.

When the LR test in (3) is used with a lag order selected by one of the information criteria
we denote it by LRr0(k̂AIC), LRr0(k̂HQ) and so forth. When we refer to these tests in general
we use the notation LRr0(k̂IC).

The bootstrap procedure calculates p-values as follows.

1. Compute k̂IC and estimate model (2) under H0 : r = r0 to obtain estimates µ̂0, ρ̂, α̂, β̂

and Γ̂i, i = 1, . . . , k̂IC , and the residuals ε̂k̂IC+2, . . . , ε̂T .

2. Check whether the roots of the equation det[Â(z)] = 0, where

Â(z) = (1− z)In − α̂β̂′z − Γ̂1(1− z)z − · · · − Γ̂k̂IC (1− z)zk̂IC ,

are equal to 1 or outside the unit circle and whether α̂′⊥Γ̂β̂⊥ is nonsingular with Γ̂ =
In − Γ̂1 − · · · − Γ̂k̂IC .

3. Compute B bootstrap replications of y∗t , t = k̂IC + 2, . . . , T , recursively by

∆y∗t = µ̂0 + α̂(β̂′y∗t−1 + ρ̂t) +
k̂IC∑

j=1

Γ̂j∆yt−j + ε∗t ,

where the ε∗t are drawn with replacement from the residuals ε̂k̂IC+2, . . . , ε̂T . The starting
values of the recursion, y∗1, . . . , y

∗
k̂IC+1

are set equal to y1, . . . , yk̂IC+1.

4. For each replication b = 1, . . . , B, given k̂IC , estimate model (2) under r0 and compute
the LR test as in (3). Denote the bootstrap statistics by LR∗r0(k̂IC)b.

5. Estimate the p-value of the test statistic as

p∗(LRr0(k̂IC)) =
1
B

B∑

b=1

I(LR∗r0(k̂IC)b > LRr0(k̂IC)), (6)

where I denotes the indicator function.

The bootstrap test versions with the corresponding criterion are denoted by BOOTr0(k̂AIC),

5



BOOTr0(k̂HQ) et cetera.2

Four remarks on the bootstrap procedure are in order. First, step (2) assures that the
generated pseudo observations are indeed I(1). The crucial requirement is that the charac-
teristic equation has no explosive roots. If this condition is not satisfied, one may refer to a
more appropriate resampling scheme as pointed out by Swensen (2006, Remark 1).3

Second, for the case of a known lag order, Swensen (2006) suggested estimating a VAR
model without imposing the cointegrating rank null hypothesis to obtain residuals and esti-
mates of µ0 and Γi, i = 1, . . . , k. Hence, a combination of estimates from two different models
would be applied. However, this combination can cause inferior small-sample properties in
the case of nonzero deterministic terms as pointed out by Trenkler (2009). Therefore, we do
not consider this bootstrap version in our context.

Third, Swensen (2006) proved the asymptotic validity of the bootstrap in the case of a
known lag order. Our simulation results do not give rise to concerns when pre-estimating
the lag length. However, it is not trivial to rigorously prove the asymptotic validity of the
bootstrap test in this case. A proof is beyond the scope of the paper and is left for future
research. Some comments on the asymptotic problems follow.

The VECM parameter estimators on which the bootstrap data generation is based are
consistent when applying SC, HQ or AIC in conjunction with a fixed lag order upper bound.
This follows from Pötscher (1991, Lemmata 1 and 2). Hence, the corresponding bootstrap
data would asymptotically satisfy the I(1) condition in step 2 of the bootstrap algorithm,
which is crucial for the validity of the bootstrap, compare Swensen (2006). However, one
should not conclude from the consistency of the estimators that an invariance principle au-
tomatically holds for the bootstrap error term vector ε∗t . As pointed out by Leeb & Pötscher
(2005), the unconditional distributions arising in the post-model-selection stage can be quite
different from the distributions obtained for a fixed model setup. However, an invariance
principle has been proven for a sieve bootstrap framework by Chang, Park & Song (2006)
and Palm, Smeekes & Urbain (2009) in related systems cointegration setups. The asymptotic
results of these papers could be a promising starting point for designing a sieve bootstrap
cointegration rank test for which the asymptotic distribution can be derived. Note that by
letting the maximum order increase at a suitable rate, we not only assure asymptotic validity
of the standard LR rank test but our implementation of the bootstrap corresponds to the
idea of the sieve bootstrap.

Fourth, although the bootstrap procedure does not address the uncertainty stemming from
2We also considered the fast double bootstrap (FDB) of Davidson & MacKinnon (2007) as a potential

refinement of the bootstrap procedure. The results for the FDB were, however, very similar to the results of
the standard bootstrap and are therefore not discussed. Note that Ahlgren & Antell (2008) reported slight
improvements when applying the FDB in case of a known lag order.

3The condition was violated in a very small number of cases, typically less than 10 out of 5000 simulations.
In these cases, the null hypothesis was most often not rejected and we set rejections to non-rejections in the
remaining cases.
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lag length estimation, it might still yield improvements in finite samples over the standard LR
test, which uses the estimated lag length together with the asymptotical critical values. In a
different context, Kilian (1998) suggested a so-called endogenous lag order bootstrap which
re-estimates the lag order at each bootstrap replication. He does so in order to take account
of the additional uncertainty due to the lag order estimation when computing confidence
intervals. However, it is not clear whether the endogenization of the lag order choice is
beneficial for our test setup in which only the right-hand-side of a distribution is considered.
While some improvements could be obtained with the MAIC, the endogenous lag order
bootstrap is generally inferior when applied with the AIC, HQ, and SC. Therefore, we do
not discuss the endogenous bootstrap further.

3 Monte Carlo Simulations

We simulate three different DGPs for sample sizes T = 50, 100, and T = 200. These sample
sizes are typical for macroeconomic applications.4 The number of replications is R = 5000.
For determining the quantiles of the empirical bootstrap distributions, we use B = 1000
bootstrap replications. We believe that these numbers of replications are large enough to
obtain sufficiently precise estimates of the tests’ true rejection frequencies. Since the overall
replications are Bernoulli trials, the standard deviation of a rejection frequency is limited
by
√
p(1− p)/R ≤

√
1/4R = 0.007. Note, however, that this limit ignores the uncertainty

involved in the bootstrap simulations and in the simulation of the critical values.
The DGPs have mainly been chosen because they were used in the literature to exemplify

the size distortions of the LR test. The first DGP was suggested by Toda (1994, 1995)

xt =

[
a1 0
0 1

]
xt−1 + εt, εt ∼ iid N

([
0
0

]
,

[
1 θ

θ 1

])
. (7)

The parameter a1 determines the cointegrating rank. If |a1| < 1, r = 1 and θ describes
the instantaneous correlation between the stationary and nonstationary components. In the
simulations, we use θ = 0.8. In contrast, if a1 = 1 the cointegrating rank is zero and we
set θ = 0 since the test results do not depend on θ in this case, see Toda (1994, 1995). The
starting values are set to zero. Other bivariate VAR(1) processes of interest can be obtained
from (7) by linear transformations which leave the LR tests invariant, compare (Toda 1994,
1995).

Since the process in (7) is a rather simple one, we also use a more complex, data-based
DGP by referring to an empirical study of King, Plosser, Stock & Watson (1991) (KPSW).
King et al. (1991) analyse a small macroeconomic model for the U.S. which consists of the

4The computations are performed using programs written in GAUSS V8 for Windows. The RNDNS function
with a fixed seed has been used to generate standard normally distributed random numbers.
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logarithms of per-capita private real GNP, per-capita real consumption, and per-capita gross
private domestic fixed investment. We estimate a subset-VECM with one lag and two re-
stricted cointegrating relationships using quarterly data in logarithms for the period 1949:1-
1988:4. Subset restrictions have been imposed by using a Top-Down strategy employing the
AIC.5 We obtain the following process

∆yt =



−0.038
−0.186
0.032


+




0 −0.026
0.217 −0.150
0.126 0



[

1 0 −1
0 1 −1

]
yt−1 +




0 0 0.154
0 0.282 0.660

0.272 0.162 0


∆yt−1 + εt, (8)

where εt ∼ i.i.d. N (0,Σ) with

Σ = 10−4




0.588 0.821 0.465
4.870 1.688

1.376


 .

As starting values, we chose the corresponding empirical data. The same process was used
by Trenkler (2009) in a related study. It turned out that both asymptotic and bootstrap
cointegration tests displayed inferior small-sample properties for this process. Hence, we may
regard the DGP (8) as a demanding reference for the test procedures.

The third DGP is a mixed VARMA process which was also used by Yap & Reinsel (1995)
and Lütkepohl & Saikkonen (1999). This process allows us to obtain results for infinite order
VAR processes. It is given by

∆yt = P−1






λ1 0 0
0 λ2 0
0 0 λ3


− I3


Pyt−1 + εt − Pθ



λθ 0 0
0 0.297 0
0 0 −0.202


P−1

θ εt−1, (9)

where εt ∼ i.i.d. N(0,Σ),

P =



−0.29 −0.47 −0.57
−0.01 −0.85 1.00
−0.75 1.39 −0.55


 ,Σ =




0.47 0.20 0.18
0.32 0.27

0.30


 , Pθ =



−0.816 −0.657 −0.822
−0.624 −0.785 0.566
−0.488 0.475 0.174


 .

The values of the λi, i = 1, 2, 3, determine the cointegration properties of the series. That is,
the number of λi with |λi| < 1 is the cointegrating rank of the system. The precise values are
given in the tables later on. Note that the size of λθ determines how well the VARMA can
be approximated by a VAR. A low value for λθ in modulus implies that all eigenvalues of the
moving-average matrix are small and a finite-order VAR should be able to capture the true

5Computations have been done using JMulTi (Lütkepohl & Krätzig 2004, Chapter 3).
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dynamics well since the other two eigenvalues are small as well. If λθ is large in modulus the
moving-average part has one large eigenvalue and a VAR with a larger lag order is needed to
approximate the DGP. In the simulations we use λθ = −0.5, λθ = 0, and λθ = 0.5.

The results on the size and power of the different test procedures are given in Tables 1 - 5
and Figures 1 - 3. We only report here results for a nominal size of 0.05. Figures 1 and 2 show
for the Toda DGP (7) how frequent a certain order was chosen by the information criteria.
Note again that MAIC can suggest different lag orders depending on the rank tested under
the null hypothesis (Figure 2). Figure 3 comprises graphs that highlight different properties
of testing for cointegration using either the AIC or the MAIC for prior model selection.

For the simple bivariate Toda-DGP, Table 1 gives a comparison of the empirical size of
the different test procedures. The cointegrating rank is r = 0 in Panel A and r = 1 in
Panels B and C. We can see that using AIC, HQ, or SC to determine the lag choice prior
to employing either asymptotic tests or the bootstrap leads to higher empirical size values
compared to applying the corresponding test with the true lag order if T = 50. Regarding
the larger sample sizes we only observe an upward size effect for AIC, while for HQ and SC
the empirical sizes are rather similar to the ones obtained when ktrue = 0 is used. This results
from the fact that the correct lag order is suggested in about 98% and more of the replications
by HQ and SC if T = 100 and T = 200. By contrast, the fraction of correct suggestions
is only between 0.80 and 0.85 for AIC, compare also Figure 1. Since ktrue = 0, a too high
lag order is chosen in the remaining replications. Thus, an overestimation of the lag length
leads to larger size values and not to smaller ones for the standard criteria. Interestingly, the
size-increasing effect of estimating the lag order is much stronger for the asymptotic tests.
In comparison to these tests, application of the bootstrap reduces the size but much less
so when the corresponding asymptotic test with a particular lag selection criterion is only
slightly oversized. Thus, the bootstrap correction is not mechanically reducing sizes but is
sensitive to the size distortion of the corresponding asymptotic tests. Accordingly, choosing
the bootstrap can be very useful to avoid or reduce excessive size distortions, which we observe
for the standard criteria in a number of cases, compare Panel A and C of Table 1.

MAIC behaves very differently from the other information criteria in that the empirical
size values clearly fall for the asymptotic and bootstrap tests compared to using the true lag
order. As a result, the test procedures are very conservative. From Figure 1 we see that
MAIC does not overestimate k excessively more often than AIC. Yet, the correlations of
the AIC’s and MAIC’s estimates of k are relatively weak. To be precise, the correlations are
between 0.4 and 0.5 for the processes with r = 1 and between 0 and 0.2 for the process with
r = 0. Obviously, this low correlation must explain the different rejection frequencies between
MAIC and the other criteria. Furthermore, note that overestimation of k leads to a size drop
when using MAIC. Hence, no general conclusion can be drawn on whether overfitting results
in size increases or decreases.
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Table 2 provides some results on the power of the tests. The bootstrap tests using AIC,
HQ, or SC have a rather similar power as the bootstrap test with true order. More impor-
tantly, the power is only slightly smaller than those of the asymptotic tests with AIC, HQ,
or SC. Hence, there is no relevant price to pay for bootstrapping in the case of an unknown
lag order for the the Toda-DGP (7).

Given the results for the empirical size, it may not be surprising that BOOTr0(k̂MAIC)
has a very low power. One should remember again that MAIC can choose different lag orders
for H0 : r = 0 than for H0 : r = 1, which is the case considered in Panels B and C of Table
1. The lag order choice of MAIC under H0 : r = 0 fortifies the relative differences between
BOOTr0(k̂MAIC) and LRr0(k̂MAIC). For H0 : r = 0, MAIC overestimates the lag order
clearly more strongly and more often than for H0 : r = 1, as illustrated in Figure 2. Thus,
we should have an additional downward pressure on the power since model overfitting usually
leads to power losses.

Table 3 provides results for the more complex KPSW-DGP (8) with a true cointegrating
rank of two. Thus, Panel A (H0 : r0 = 2) gives results on the tests’ size while Panels B
and C (H0 : r0 = 1 and H0 : r0 = 0) give results on the power of the tests. Since we
now have one lag in the VECM, underestimation of k can occur. In fact, the information
criteria, in particular HQ and SC, underestimate k quite often for T = 50. This may explain
why we observe higher rejection frequencies for the bootstrap tests with estimated lag order
compared to BOOTr0(ktrue) if T = 50 or T = 100. If T = 200, slightly lower rejection
frequencies are obtained, in particular for HQ and SC, compare Panels A and B of Table
3. The low empirical size values seen in Panel A seem to be the result of distortions due to
parameter estimation as even LRr0(ktrue) is undersized and SC and HQ estimate the true
lag length at T = 200. This may also have an negative effect on the tests’ power. In sum, in
the case of the KPSW-DGP the overall effect of the bootstrap on the size of the tests is most
often advantageous for T = 100 and T = 200 but small in any case.

Comparing the power of corresponding bootstrap and asymptotic tests, we see that a
price in terms of power loss has to be paid when bootstrapping in the case of H0 : r = 0 if
the sample size is small. However, the relative power loss is somewhat lower than in the case
of using a true lag order, in particular for SC with T = 50. As a result, the introduction of
lag order uncertainty tends to favor the bootstrap in relative terms. Finally, we note that all
procedures perform rather poorly in the current setup unless a large sample size is available.

Lastly, we consider two versions of the VARMA-DGP (9) for which Tables 4 and 5 present
the outcomes. First, Table 4 shows results for the size of the tests when λ1 = λ2 = λ3 = 1
such that the true cointegrating rank is r = 0 and H0 : r0 = 0 is tested. Since there is no
true finite lag order, only results for tests that estimate the order are presented. The tests
using asymptotic critical values conditional on an estimated lag length are quite oversized
for different sample sizes and different values of λθ. It appears that the introduction of a
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moving-average component with small eigenvalues in modulus can already lead to severe size
distortions. An exception is LRr0(k̂MAIC) which is much less oversized and almost correctly
sized for T = 200, see Panels A and B. This might be because the MAIC is designed to
take the possibility of an underlying VARMA-DGP explicitly into account when testing for
cointegration, see also Qu & Perron (2007). The tests are less size distorted for λθ = −0.5
and λθ = 0 which imply mostly non-negative eigenvalues of the moving-average part. We do
not think that the differences in the lag order estimates with respect to λθ play a crucial role
in terms of the size distortion since no clear pattern could be detected.

The application of the bootstrap reduces the empirical sizes clearly, in particular if AIC is
used. Note also that BOOTr0(k̂MAIC) can be even a bit undersized. As before, we also note
that the bootstrap correction is sensitive to the degree of size distortion of the corresponding
asymptotic tests. However, even though the bootstrap reduces excessive size distortions, it is
no panacea in this case as even the bootstrap tests are still quite oversized.

Table 5 shows results regarding the size of the tests for λ1 = 1, λ2 = 0.8 and λ3 = 0.7.
Hence the true cointegrating rank is two. All tests are very conservative for T = 50 and their
empirical size increases with the sample size such that they are usually oversized for T = 200,
especially in the case of λθ = 0.5. There is a clear tendency for all information criteria to
suggest larger models, the larger the sample size is. This may have caused the increasing size
values.

The effect of applying the bootstrap procedure on the size depends on the value of λθ and
the sample size. However, the bootstrap generally corrects the size of the asymptotic tests
towards the nominal size depending on whether the LRr0(k̂IC) tests are under- or oversized,
respectively. Hence, for the current DGP, the size of the bootstrap tests may also system-
atically increase compared to the corresponding asymptotic tests. This is in contrast to the
Toda- and KPSW-DGPs, where the empirical sizes of the bootstrap tests fall in general.6

The results of the simulations can be summarized as follow

• When the lag order is not known a priori, the recursive bootstrap remains advantageous
in that it can bring empirical sizes closer to the nominal ones both when the asymptotic
tests are over- or undersized.

• Hence, the introduction of lag order uncertainty does not impair the relative perfor-
mance of the bootstrap. In fact, it even tends to favor the bootstrap in some cases.

• The bootstrap is, however, no panacea in the case of very large size distortions such as
for the VARMA-DGPs.

• In the particular case of the VARMA models, the MAIC is a good choice for large
sample sizes. However, the use of the MAIC leads to far too conservative tests and
severe power loss for other sample sizes and DGPs.

6Due to the observed strong size distortions for the VARMA processes, we do not evaluate the tests’ small
sample power.
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A final remark is in order here on the different behavior of the LR test when applied with
the standard information criteria and the MAIC. Figure 3 exemplifies for the Toda DGP (7)
that the MAIC induces an inward shift of the statistic’s distribution compared to the one
obtained by applying the AIC, as expected from the foregoing results.

A likely reason is that the MAIC introduces a different correlation pattern between the
estimated lag order and test statistic which leads to different test decisions. Consider again
the formula for the MAIC

MAIC(k, r0) = ln |Σ̂(k, r0)|+ 2
L̃Rr0(k) + kn2

N
∼= ln |Σ̂(k)|+ 2

kn2

N
+ 2

L̃Rr0(k)
N

= AIC(k) + 2
L̃Rr0(k)

N
.

Since L̃Rr0(k) is included in the minimization, k̂MAIC should be associated with a smaller
test statistic than k̂AIC on average. To be precise, we should have E[LRr0(k̂MAIC)] ≤
E[LRr0(k̂AIC)] for a given DGP. In Figure 3, Panels (a) and (b) confirm that claim and
also explain that even though AIC and MAIC choose the same lengths with nearly the same
overall frequency, the resulting rejection frequencies differ significantly.

4 Conclusion

In this paper, we investigated the properties of bootstrap LR cointegration tests in terms
of size and power in the vector error correction model when the lag order is not known a
priori and has to be estimated by some information criterion. We performed Monte Carlo
experiments using three different data generating processes and compared the effects of lag
order estimation on a recursive bootstrap procedure that uses the estimated lag order for all
bootstrap replications and on the corresponding asymptotic test procedures.

We found that pre-estimating the lag order by some information criterion has qualitatively
similar effects on the size of the bootstrap tests as it has on the size of the asymptotic tests.
The lag order estimation does not induce power losses which may be a result specific to the
simulated DGPs. We find that the recursive bootstrap remains advantageous in that it can
bring empirical sizes closer to the nominal ones both when the asymptotic tests are over- or
undersized, even when the lag order is not known a priori. Hence, the introduction of lag order
uncertainty does not impair the relative performance of the bootstrap. In fact, it even tends
to favor the bootstrap in some cases. The bootstrap is, however, no panacea in the case of
very large size distortions which we observed in particular for our VARMA-DGPs. Therefore,
an interesting topic for future research is to test for cointegration in a VARMA framework
that allows for lag order uncertainty such that a finite-order VAR model is contained as a
special case, for example, along the lines of Bauer & Wagner (2009). Such a procedure would
ideally perform well both in the VAR as well as in the more general VARMA case.
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Table 2: Rejection Frequencies of Tests for Bivariate Toda DGP (7) with r = 1.
Panel A: Panel B:

a1 = 0.9,H0 : r = 0 a1 = 0.7,H0 : r = 0
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

BOOTr0(ktrue) 0.1192 0.3888 0.9248 0.7016 0.9986 1.0000
BOOTr0(k̂AIC) 0.1666 0.4048 0.9172 0.6878 0.9868 0.9996
BOOTr0(k̂HQ) 0.1404 0.3876 0.9222 0.7040 0.9984 1.0000
BOOTr0(k̂SC) 0.1250 0.3876 0.9254 0.7028 0.9986 1.0000
BOOTr0(k̂MAIC) 0.0326 0.1390 0.5480 0.1168 0.4384 0.9420
LRr0(ktrue) 0.1342 0.4024 0.9294 0.7312 0.9988 1.0000
LRr0(k̂AIC) 0.2094 0.4304 0.9248 0.7408 0.9902 0.9998
LRr0(k̂HQ) 0.1634 0.4086 0.9288 0.7410 0.9984 1.0000
LRr0(k̂SC) 0.1426 0.4034 0.9294 0.7326 0.9988 1.0000
LRr0(k̂MAIC) 0.0486 0.1726 0.6070 0.1902 0.5592 0.9624

Note: The table shows rejection frequencies for replications of the Monte Carlo simulation. The number
of simulations is 5000. The true cointegrating rank is r = 1. The nominal significance level is 0.05. In the
table, LR is Johansen’s likelihood ratio test and BOOT denotes the bootstrap version of the LR test. See
section 2 for explanation.
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(a) Toda-DGP (7), a1 = 0.9 (r = 1)

Figure 1: The figure shows frequencies of lag choices for different criteria and DGPs for
T = 50 (hatched bar), T = 100 (solid bar) and T = 200 (diagonally hatched bar).

(a) Toda-DGP (7), a1 = 0.9 (r = 1)

(b) Toda-DGP (7), a1 = 0.7 (r = 1)

Figure 2: The figure shows frequencies of lag choices for different criteria and DGPs for
T = 50 (hatched bar), T = 100 (solid bar) ant T = 200 (diagonally hatched bar).
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(a) Distribution of Test Statistic of the Asymptotic Tests.

(b) Average Test Statistic for Different Lag Lengths

Figure 3: Comparison of the LR test with AIC and MAIC. All graphs refer to the Toda-
DGP (7), a1 = 0.9 (r = 1).
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