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Abstract

This paper examines the predictive power of weather for electricity prices in day-
ahead markets in real time. We find that next-day weather forecasts improve the
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1 Introduction

A decade ago, the electricity industry was strongly regulated and electricity prices

reflected the short-term production costs. Hence, back then the electricity price did

not reflect the temporal effects such as seasonality, weather and business activity. But

this all changed when many governments worldwide started reforming their electricity

industry as of the mid-1990s. Currently, the economic law of demand and supply

determines the price in marketplaces where electricity can be traded in spot or forward

(i.e. hour-ahead, day-ahead, month-ahead, or longer contracts).

Many studies have documented these stylized facts by examining the prices observed

in day-ahead markets1, which are by far the most liquid power wholesale markets, see

Escribano, Pena, and Villaplana (2002), Lucia and Schwartz (2002) and Koopman,

Ooms, and Carnero (2007). Bunn and Karakatsani (2003) provide a thorough re-

view of the stochastic price models presented in these studies and classify these into

three groups: random walk models, basic mean-reversion models, and extended mean-

reversion models that incorporate time-varying parameters (to control for seasonality

and volatility patterns). They conclude that the idiosyncratic price structure has not

been accurately described. Furthermore, the results reported in these studies are often

obtained from in-sample tests; hence they do not resolve the issue of the out-of-sample

predictive value of power models.

Only a few studies have recognized the need for modelling weather directly, but

these mainly addressed the weather effect on electricity sales (see, for example, the

special issue of Journal of Econometrics 1979). Moral-Carcedo and Vicns-Otero (2005)

also study temperature effects on the variability of daily electricity demand in Spain,

and document empirical evidence of a non-linear relationship between variations in

temperature and the demand response. More attention to the relationship between

prices and weather is, however, given in very recent studies. Knittel and Roberts (2005)

compare price models that incorporate seasonal and temperature variables with models

that do not include these variables on hour-ahead electricity prices obtained from the

California market, and provide preliminary evidence that the first-mentioned models

significantly outperform in terms of forecasting accuracy. Kosater (2006) develops

a similar exercise on the European Energy Exchange (the German market), but he

extends the set of weather variables to wind velocity, to proxy for windmill producers,

1On these markets, hourly prices are quoted for delivery of electricity at certain hours on the next
day.
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and uses non-linear models in the class of Markov regime-switching models. He finds

that the significance of the weather-price relationship for forecasting is confined to

certain hours. Huisman (2007), on contrary, focuses on how temperature influences

the probability of a spike and he shows that the difference between the actual and

expected temperature significantly influences this probability.

In this study we focus on the predictive power of weather variables for electricity

prices in real time. As agents submit their bids and offers for delivery of electricity

in all hours of the next day, weather conditions on the delivery day cannot be exactly

known at the time when electricity prices are quoted. Therefore, we introduce weather

forecasts, which are available in real time when prices are traded, in stochastic price

models to forecast day-ahead prices in two bidding areas of the Nordic Power Exchange,

Oslo and Eastern Denmark. We include a set of weather variables (temperature, pre-

cipitation and wind speed) to approximate the fact that both electricity demand and

supply are subject to weather conditions and we implement specific models for different

bidding areas due to the heterogeneity in weather conditions and production plants.

We find that an ARMA model extended with power transformations of next-day

weather forecasts yields the best forecasting results for predicting day-ahead prices.

This model outperforms in terms of forecast accuracy ARMA models extended with

realized weather when prices are traded but not delivered, or extended with only deter-

ministic trends. The improvement is substantial, always higher than 5%, and statisti-

cally significant for applications to different markets and different series (24 hour daily

average prices or peak hour prices). In particular, we show that weather forecasts,

even if subject to forecast errors, have substantial predictive power to anticipate price

jumps. Furthermore, we show that the relation between prices and weather forecasts is

non-linear, and a model that incorporates weather forecasts must be carefully specified

depending on data of interest.

We think that our results have two important implications. First, agents who set

bid and ask electricity prices can partially price the short-term future weather effect or

premium, documented in the aforementioned studies, by using weather forecasts. When

demand does not meet supply, electricity prices increases dramatically. Therefore, a

model that has properties to anticipate spikes can help to cover the risk of (physical and

financial) market participants who have to close their positions at that day. Second,

future research is motivated on the non-linear effects of weather forecasts on electricity

prices.

The remainder of the paper is structured as follows. Section 2 introduces the day-

ahead power markets and presents the data. Section 3 describes the forecasting models.

Section 4 discusses the empirical results. Section 5 concludes.
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2 Data

On January 1, 1991, the Norwegian government started a deregulation process for

its electricity industry that resulted in the establishment of the first national power

market for short-term delivery of power (real-time and day-ahead2) in the world, the

Nordic Power Exchange (NPX). Two years later, in 1993, the range of products was

extended to include financial derivative contracts that have longer maturity horizons.

A few years later, Sweden joined the NPX (1996), soon followed by Finland (1998),

Western-Denmark (1999) and Eastern-Denmark (2000). Since 2003 all customers of

Scandinavian electricity markets may trade freely in the market. The NPX, now also

named Nord Pool ASA, is considered to be the most liquid wholesale market worldwide.

Nord Pool ASA consists of a day-ahead market (Elspot), a financial market (Elbas),

and a clearing service. In the remainder, we mainly focus on the Elspot market. For

more details on Nord Pool ASA we refer to NordPool (2004).

The Nord Pool market is largely dependent on electricity that is generated by

renewable sources. In particular, hydro-plants, which use water stored in reservoirs

or lakes, are dominant in Norway and partly Sweden; wind plants, which use wind to

produce electricity, are dominant in Denmark. We again refer to NordPool (2004) for

more details.

Electricity prices are affected by regional and temporal influences due to the trans-

portation and transmission limits of electricity. This statement is particularly impor-

tant in the Nord Pool market. For instance, when a power plant stops in the eastern

part of Sweden this only affects the power supply in the surrounding region. Hence,

this will not affect the power supply in the western part of Sweden and the rest of the

market. Similarly, rainfall in the southern part of Norway will potentially affect the re-

gional demand and/or supply curve, but not the bidding curves in other regions. Nord

Pool faces the problem by splitting the market into several bidding and price areas.

Therefore, we take into account the Nord Pool bidding area prices separately, rather

than examining the Elspot system price (which is a weighted average of the bidding

prices in all Nord Pool bidding areas). We examine two out of the eleven bidding areas

in Nord Pool, i.e. the Oslo area and Eastern Denmark area. It is interesting to note

that these areas are the most densely populated areas in Scandinavia.

2We recall from section 1 that day-ahead means that prices are quoted on day t for delivery of
electricity at certain hours on the day t + 1.
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2.1 Electricity prices

The dataset used in this study consists of day-ahead prices in EUR/MWh for Oslo and

Eastern Denmark from the period December 24, 2003 to March 14, 20063. Nord Pool

provides bidding area prices both in the local currency and in EUR. We choose EUR

to compare directly the two area prices. Daily prices are computed as the arithmetic

mean of the available 24 hourly price series on the physical market of each country. In

our analysis we also use peak prices, which are defined as the average price of hourly

prices from 8 am to 8 pm.

As in Wilkinson and Winsen (2002) and Lucia and Schwartz (2002), we start from

a statistical analysis of the data we have4. Figure 1 plots the time series, the log

transformations and the first differences of log transformation of the daily day-ahead

electricity prices; Table 1 gives some important descriptive statistics. A first casual look

discloses an erratic behavior of the prices. The series follow a small positive increasing

trend with several spikes. Interestingly, prices in Oslo have more negative spikes than

positive spikes. In Oslo, and in general Southern-Norway, hydro-power plants are

considered producers of “cheap storable” electricity and for them it is convenient to

export electricity to other areas where it is more expensive to produce electricity,

as thermal markets (meaning electricity produced from gas, coal and/or nuclear fuel

plants). Then the Oslo area imports at higher electricity prices to satisfy its demand.

However, electricity in thermal markets is also often offered at discount prices to avoid

costs for ramping up and down later (Bunn and Karakatsani, 2003), for example during

night hours, and the problem of bottlenecks (cable constraints) can occur. This implies

that Oslo producers offer their “cheap” electricity to the Oslo market, decreasing the

prices. The price level observed for Eastern Denmark is substantially higher. Prices

are highly non-normally distributed; their volatility is very high such as the kurtosis;

their skewness is positive. The wind-power drivers of the Danish market can help to

explain it. Oslo has a more regular distribution, but a Jarque-Bera test rejects the

null hypothesis of normality for each of the six series. The series are characterized

by weekly patterns. From Table 1 we can observe that prices are lower during the

weekend than on working days. Moreover, as in Misiorek, Trueck, and Weron (2006)

we find evidence of higher prices on Monday. Yearly patterns, well documented in other

studies, are more difficult to detect probably due to the fact that the series are not

very long. Electricity prices are very persistent and possibly close to non-stationary.

3Electricity prices may be available for a longer sample, but weather forecasts are available to us
only for this sample.

4We briefly discuss some stylized facts; we refer for a more detailed analysis, for example, to Lucia
and Schwartz (2002) and Pilipovic (1997).
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Table 1 shows that the sample autocorrelations are high up to 14-day lags. The Dickey

Fuller test on the series does not reject the null hypothesis of non-stationarity at any

level of significance for Oslo prices and 1% level of significance for Eastern Denmark

prices. This result should prompt us to model the first difference prices. However, the

empirical evidence provided in the literature to forecast electricity prices is in favour of

price levels. For example, Lucia and Schwartz (2002) find that models based on levels

and log levels provide more accurate results than models based on first differences

and log first differences in forecasting Nord Pool electricity prices. And Weron and

Misiorek (2005) find that in terms of out-of-sample statistics, ARMA models (based

on log level) do better than ARIMA models (based on first difference of log prices)

in forecasting electricity prices. Moreover, the Dickey Fuller test does not account for

non-linear trends which may exist but not known to us. Therefore, we consider both

hypotheses. From Figure 1, we can observe another stylized fact: volatility clustering.

Dramatic spikes tend to occur in clusters, mainly as a result of consecutively exceeding

the system capacity.

In our application we use log prices (and the first difference of them) and not

the level. The log transformation reduces the spike behavior of the prices and makes

moments of the distribution of electricity prices more similar to standard distributions,

in particular for Eastern Denmark.

2.2 Weather forecasts

Our decision to focus on precise bidding areas of Nord Pool is motivated by the nature

of weather variables. Weather observations and relative forecasts refer to a square area

around the measurement station. Hence it is impossible to have single observations

that cover the entire country of the markets under consideration. The combination

of different stations could be applied, but as data from minor cities are scarce, the

weather forecast errors may arise, thereby introducing further noise in the forecasting

process. The areas that we study are, on the contrary, small and homogenous in

terms of weather. Therefore, we use weather observations and forecasts for Oslo and

Copenhagen. The weather around Oslo should well approximate the weather in the

area itself, the most populated zone of this bidding area, and to the south of Oslo

along the seacoast where most of the electricity for south-east Norway is produced.

The weather in the area of Copenhagen may be a proxy for the weather of the city of

Copenhagen, again the most populated zone of this bidding area, and of Zealand, the

main island in Eastern Denmark.

Daily average temperatures in degrees Celsius, total precipitation in mm, and wind

power in m/s are applied. Weather observations on day t and weather forecasts of
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the same day made at time t− 1 are obtained from the EHAMFORE index, which is

provided by Meteorlogix (www.meteorlogix.com)5. We assume that market operators

use the weather forecasts provided by Meteorlogix in their decisions. We think that

this assumption is quite realistic considering the market share of Meteorlogix in provid-

ing real-time information services in the agricultural, energy, and commodity trading

markets, and Bloomberg in providing data to operators.

Figures 2-3 plot the series of observed and forecasted temperature, precipitation

and wind in Oslo, and temperature and wind in Copenhagen6. Temperatures are

highly persistent, have highly seasonal patterns, and forecasts are quite precise. The

correlation between temperature observations and their forecasts made the day before

is higher than 0.9 for both areas. The level of wind is particularly high in Eastern

Denmark, and forecasts are less accurate. The correlation between observations and

forecasts is around 0.5 for both areas. We also notice that wind forecasts have a

quite stable pattern in the initial months of 2004, because the Meteorologix (such as

other meteorological institutes) applies a different scaling forecasting model in those

months. We decide to keep these forecasts to extend the sample period as much as

we can. Moreover, it is logical to assume that market operators had received this

information in real time and used it to take their decisions. Observed precipitation

and forecasted precipitation in the Oslo area are quite different. First, forecasting

precisely precipitation is quite difficult; and second, observations are often zero, but

models always forecast positive (eventually small) numbers.

Some graphical relations between the forecasted weather variables and electricity

prices may be identified. For example, high precipitation in Oslo at the end of May 2004

or in October 2004 corresponds to low prices; few days of very low temperatures in Oslo

in February 2005 correspond to high prices; strong wind in Eastern Denmark at the

end of 2004 and beginning of 2006 is associated with low prices. Using real weather

does not change the conclusion: a graphical analysis is not satisfactory because the

relation between weather variables and electricity prices is possibly highly non-linear

as we will discuss in section 4.1.

Several studies, see e.g. Koopman, Ooms, and Carnero (2007) and Deng (2004),

argue that the water reservoir is the key variable to plan production, even more than

the amount of precipitation. Even if we agree with this view, we emphasize that in

this paper we work with local prices, and local water reservoirs are in most cases not

5Data from the EHAMFORE index are available in Bloomberg. Data on realized (or observed)
precipitation on day t in Oslo from Meteorlogix are partially integrated with values of several different
stations around Oslo from the Meteorological Institute (www.met.no) to fill in missing points.

6The graph of precipitation variables is not reported as those variables are never chosen in the
model selection procedure.
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observable. This is particularly true when the number of electricity producers is high,

as for example in the Oslo area. And we do not yet have a model to construct regional

water reservoirs. Therefore, we opt to apply total precipitation as a proxy for water

reservoirs.

3 Forecasting models

Knittel and Roberts (2005) show that traditional time series approaches such as ARMA

and ARIMA models provide more accurate results in forecasting electricity prices than

their continuous counterparts. Starting from these findings we construct several models

that may cope with the stylized facts of electricity prices.

3.1 AR(I)MA

The first model is a traditional time series approach to model electricity prices, the

autoregressive moving average (ARMA) model (Hamilton (1994)). The ARMA(p, q)

model implies that the current value of the investigated process (say, the log price) Pt

is expressed linearly in terms of its past p values (autoregressive part) and in terms of

the q previous values of the process εt (moving average part):

φ(L)Pt = θ(L)εt (1)

where φ(L) and θ(L) are the autoregressive and moving average polynomials in the lag

operator L respectively, defined as:

φ(L) = 1− φ1L− φ2L
2 − ...− φpL

p (2)

θ(L) = 1− θ1L− θ2L
2 − ...− θqL

q (3)

and where εt is an independent and identically distributed (iid) noise process with

zero mean and finite variance σ. The motivation of an ARMA process follows from

the correlogram. Table 1 shows high correlation between the current price and the

previous days’ prices.

The ARMA modelling approaches assume that the time series under study is

(weakly) stationary. If it is not, a transformation of the series to stationarity is neces-

sary, such as first differentiating. The resulting model is known as the autoregressive

integrated moving-average model (ARIMA). We define the ARIMA model as:

φ(L)pt = θ(L)εt (4)

where pt = (Pt − Pt−1).

8



3.2 AR(I)MAX

ARMA models apply information related to the past of the process and do not use

information contained in other pertinent time series. However, as the data analysis

shows, electricity prices are generally governed by various fundamental factors, such as

seasonality and load profiles. The ARMAX(p, q) can be written as:

φ(L)(Pt −Xt) = θ(L)εt (5)

where Xt =
∑k

i=1 ψixi,t, where xt = (x1, x2, ...xk)
′ is the (k × 1) vector of explanatory

variables at time t, and where ψ = (ψ1, ψ2, ..., ψk)
′ is a (k × 1) vector of coefficients.

Following the analysis in the previous section, we use two explanatory variables: a

dummy with values 0 on working days and 1 on holidays, a dummy with values 1 on

Monday and 0 elsewhere. First difference log prices can be used and the ARIMAX

model can be given by:

φ(L)(pt −Xt) = θ(L)εt (6)

In the empirical application, the ARIMAX model will be our benchmark.

3.3 AR(I)MAXW

Adverse weather conditions may change the demand for electricity, and may also affect

the production. Low levels of precipitation and/ or wind speed may cause a reduction

on the supply of energy, in particular in electricity markets which depend on renewable

producer plants, such as Norway and Denmark. Furthermore, producer plants may

study future weather conditions to estimate demand and plan their supply optimally.

Forecasts of the average daily temperature in degrees Celsius, precipitation in mm

and wind speed in m/s are applied as further explanatory variables in models (5) and

(6). The ARMAXW and ARIMAXW models are respectively:

φ(L)(Pt −Xt −Wt) = θ(L)εt (7)

and

φ(L)(pt −Xt −Wt) = θ(L)εt (8)

where Wt =
∑l

j=1 ϕjwj,t, wt = (w1,t, w2,t, ..., wl,t)
′ is the (l × 1) vector of weather

forecast variables at time t, and ϕ = (ϕ1, ϕ2, ..., ϕl)
′ is a (l × 1) vector of coefficients.

This model includes deterministic components that account for genuine regularities in

the behavior of electricity prices and stochastic components that come from weather

shocks.

Knittel and Roberts (2005) apply a similar model for forecasting California electric-

ity prices, where the set of weather variables consists of the level, the square and the
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cubic of realized temperature. As in Knittel and Roberts (2005), we allow non-linearity

in the relation between prices and weather variables by including the level, the square

and the cubic of the temperature forecasts, and the level and the square of the precip-

itation and wind forecasts. Precipitation and wind forecasts are always positive and

therefore we do not consider it useful to include their cubic transformation. Compared

to Knittel and Roberts (2005) we add wind speed since wind may play a role both

in the demand for electricity in such markets where electricity is used for heating -

people associate colder temperature with stronger wind - and in the supply of wind

power plants. We also introduce an explanatory variable to model another dimension of

weather, i.d. precipitation, allowing us to approximate the supply in hydro dominated

plants.

Considering that temperature is so persistent, we specify a further ARIMAXW

model using realized values (at time t− 1 to account for the fact that prices on day t

are traded on the previous day). Weather observations do not have forecasting errors

and this may help to improve electricity price forecasts even if weather refers to the

previous day7.

3.4 ARIMAX-GARCH

AR(I)MA models assume homoscedasticity, i.e. constant variance and covariance func-

tions, but the preliminary data analysis has disclosed that electricity prices exhibit

volatility clustering. We extend previous models by assuming a time-varying condi-

tional variance of the noise term. The heteroskedasticity is modelled by a generalized

autoregressive conditional heteroskedastic GARCH(r, s) model (Bollerslev (1986)). Re-

laxing the assumption of homoscedasticity may change the parameter estimates of

AR(I)MA, and consequently the out-of-sample forecast of the investigated process.

The model is:

φ(L)(pt −Xt) = θ(L)εt (9)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j (10)

where εt is an independent and identically distributed (iid) noise process with zero

mean and conditional time-varying variance ht, and the coefficients have to satisfy

αi ≥ 0 for 1 ≤ i ≤ s, βj ≥ 0 for 1 ≤ j ≤ r, and α0 > 0 to ensure that the conditional

variance is strictly positive.

7We also apply realized weather in an ARMAXW model but the results are worse than for the
ARIMAXW, and therefore reported.
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3.5 ARIMAXW-GARCH

Following the same reasoning for model (9)-(10), the ARIMAX model can be extended

by assuming a noise process with a time-varying conditional variance, that is:

φ(L)(pt −Xt −Wt) = θ(L)εt (11)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j (12)

3.6 ARIMAXW-GARCHW

Koopman, Ooms, and Carnero (2007) find that seasonal factors and other fixed effects

in the variance equation are also important to estimate electricity prices. We follow

these suggestions and assume the conditional variance of the noise term in ARIMAXW

model to be time-varying and modelled with a GARCH expression. The model is

specified as:

φ(L)(pt −Xt −Wt) = θ(L)εt (13)

εt = νth
1/2
t with ht = α0 +

s∑
i=1

αiε
2
t−i +

r∑
j=1

βjht−j +
k+l∑

f=1

%fzf,t (14)

where zt = [x
′
t, w

′
t]
′, and where % = (%1, %2, ..., %k+l)

′ is a ((k + l) × 1) vector of coeffi-

cients. Since Koopman, Ooms, and Carnero (2007) assume autoregressive fractionally

integrated moving average noises, we do consider integration of order one to simplify

the estimation. And Koopman, Ooms, and Carnero (2007) include water reservoir,

which is excluded in this study for the aforementioned reasons. These choices may

reduce the predictive power of the ARIMAX-GARCHW model, but it is also true that

the econometric skills of agents trading in electricity markets and forced to take deci-

sions in a short time are often not so sophisticated and therefore our assumptions can

better approximate the models applied by market participants.

4 Empirical Results

We apply the models described in section 3 to our dataset, and assess which model

performs best in terms of forecasting accuracy. Before the out-of-sample forecast ex-

ercise, we estimate the set of models using the complete sample to have an ex-post

predictability idea.

We describe some assumptions. We apply a non-linear ordinary least square (NLS)

estimator (Davidson and MacKinnon (1993)) for AR(I)MA-type models and the quasi
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maximum likelihood (QML) estimator (Davidson and MacKinnon (1993) and Greene

(1993)) for GARCH family models.

We restrict our AR(I)MA-type models to be AR(I)MA(7,(1,)0). Autocorrelation

analysis and in-sample criteria would suggest more complex AR(I)MA forms. In par-

ticular, lags 14, 21, 28 and 56 still have high correlations for both the ARMA and

ARIMA class of models, suggesting longer weekly and monthly price behaviors. How-

ever, the risk of over-parametrization and the evidence presented in previous studies,

for example Lucia and Schwartz (2002), show that an ARMA(7,0) specification pro-

vides optimal forecasts on daily day-ahead electricity prices. Hence, this induces us to

restrict the models to the aforementioned specification. Following the same reasoning

we choose a GARCH(1,1) specification for this group of models.

The inclusion of the weather variables follows from statistical evidence. We allow

different transformations of the weather forecast variables on the two markets to in-

corporate the fact that the weather may affect only the supply of electricity, which is

different in the two markets. We minimize the Akaike information criteria to specify

the model.

4.1 In-sample analysis

The in-sample analysis is based on the overall sample, from December 24, 2003 to

March 14, 2006. Table 2 reports estimation results. As general evidence, we notice

that ARIMA models select more lags than ARMA models. We now move to specific

models and we start to focus on the ARIMAX model which is considered to be a very

accurate forecasting model. The coefficient estimate of the variable Dhol,t, which is a

dummy variable with value 1 if day t is not a working day or 0 if day t is a working

day, is statistically significant and negative. The coefficient estimate of the variable

DMonday,t, which is a dummy variable with value 1 if day t is Monday and 0 elsewhere, is,

on the contrary, statistically significant and positive. These results confirm evidence in

Table 1 and tell us some important information on how agents quote prices. Prices are

set lower during weekends (or not a working day) when electricity utilization is lower,

but when the market is back to standard working conditions, agents seem initially to

overreact and then adjust their positions.

Even if the fit is quite high, residuals of the ARIMAX model are not normally

distributed. We think that weather variables can explain part of them. Figure 4

shows that the errors of the ARIMAX model have a non-linear relation with the daily

average temperature and the total precipitation, but have a linear-like relation with

the wind speed. Therefore, in the ARIMAXW for temperature forecasts we use the

level, the square and the cubic; for precipitation and wind forecasts we use the level
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and the square. The selection criterium results in the following specific set of weather

variables:

Wt = a1Tempt + a2Temp2
t + a3Temp3

t + b1Prect + b2Prec2
t + γWindt,

where Tempt, Prect and Windt are the forecasts of daily average temperature, total

precipitation and wind speed, respectively, on day t. The square of the wind is then

excluded in the selection procedure. Figure 4 indicates a direct linear relation between

prices and wind speed and the empirical findings are consistent with the graphical

analysis.

The interpretation of estimated coefficients for the weather variables is not often

straightforward due to non-linear relations. For example, the temperature forecasts

affect the day-ahead electricity price via the following function:

f(Tempt) = a1Tempt + a2Temp2
t + a3Temp3

t

Taking the first order derivative, we get

df(Tempt)

dTempt

= a1 + 2a2Tempt + 3a3Temp2
t .

By substituting in the previous equation a1, a2 and a3 with their empirical estimates,

and solving df(Tempt)
dTempt

= 0, we find the roots ' [4.5, 19]. We interpret this to mean that

when the temperature is lower than 4.5, it is negatively influenced, i.e. the lower the

forecasted temperature, the higher the electricity price. When the temperature forecast

is above 19, it is positively influenced, i.e. the higher the forecasted temperature, the

higher the electricity price. When the temperature is in the interval [4.5,19], there

is no relation. Intuitively, this reflects the fact that when the temperature forecast

is relatively higher or lower than the switching points, 4.5 and 19, the consumption

of electricity will rise. Meanwhile the difficulty of producing electricity also increases

when it is extremely hot or cold. Following similar reasoning, we find that precipitation

influences prices negatively such that higher precipitation leads to lower prices. This

is consistent with the hydropower nature of Oslo electricity markets. The coefficient of

the wind speed is not statically different from zero, but excluding it does not minimize

the selection criteria. The estimate is negative and we do not have strong economic

explanations for it. We conclude by noting that the Akaike criterium is the highest

when weather variables are introduced, supporting this strategy.

4.2 Out-of-sample analysis

We forecast Oslo log electricity prices from January 1, 2005 to March 14, 2006. We

repeat the selection procedure in section 4.1 over the initial in-sample period, from
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December 24, 2003 to December 31, 2004. The reduced specific form in this short

sample of all models remains the same as in full sample analysis. This indicates that

relations do not seem to be sample dependent. In forecasting when new values are

available we re-estimate models to produce a new forecast, but we do not re-specify it.

An expanding window is used, which means that to forecast the price of one day, all

the previous data are included.

We compare forecasts from different models using the Root Mean Square Prediction

Error (RMSPE), defined as

RMSPE =

√
1

n
Σn

s=1(PT+s − P̂T+s)2

where PT+s is the log price at time T +s, P̂T+s is the forecasted log price at time T +s,

and n = 438 is the number of days being forecast. Results are given in Table 3. The

key evidence is that weather forecasts improve electricity forecasts. The ARIMAXW

model provides the most accurate forecasts. The improvement with respect to the

ARIMAX model is 6% and it is statistically significant8. Figure 5 can help to interpret

the result. Figure 5 shows the 60-day average RMSPE for the ARIMAX model and the

ARIMAXW model. From the graph, we find that, when the error of the former model

is at a relatively lower level, the errors of the two models are similar, but when there

is a higher error due to possible jumps, the latter model often predicts better. Price

jumps are mainly due to problems of inelasticity of demand, and of non-storability of

electricity with consequent shortages in the supply. These problems often arise when

weather conditions are adverse and weather forecasts have a natural role in signalling

ex-ante them.

The statistics of ARMAXW are also better than those of the ARIMAX model,

but lower than the ARIMAXW. This confirms that weather variables have predictive

power, but ignoring the evidence of non-stationarity of the price series associated with

the strongly non-linearity of the relation between prices and weather variables reduces

predictive accuracy. And, indeed, all the ARIMA models we use outperform the ARMA

counterparts. Adding GARCH specification to approximate evidence of volatility clus-

tering does not provide more accurate results. In particular, the ARMAXW-GARCHW

proposed by Koopman, Ooms, and Carnero (2007) does not outperform the benchmark

model. As we discuss in section 3.6, our ARMAXW-GARCHW model is, however, sim-

pler than the estimated model of Koopman, Ooms, and Carnero (2007) and the set of

variables is different.

8We compare the predictive accuracy of different models by using the t-type statistics proposed by
McCracken (2007).
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Weather variables are very persistent and forecasting them, in particular precipi-

tation and wind speed, is very difficult. Therefore, we decide to test the robustness of

previous results with respect to the assumption of using real-time weather conditions,

i.d. using the weather of today to predict the price of tomorrow. We specify and esti-

mate an ARIMA model with power transformations of realized weather (level, square

and cubic of temperature, level and square of wind speed) and two dummy variables for

describing Monday and non-working days. We call this model ARIMAXRW. Results

are very similar to the ARIMAX model, but the ARIMAXW outperforms it.

We test the robustness to electricity peak hour prices. Peak hour prices are defined

as the average of the hourly prices from 8 am to 8 pm. As a matter of fact prices are

more likely to be volatile in that specific frame. The Akaike selection criterium often

specifies models as for daily prices9. We could anticipate this considering the role of

peak hours in determining daily prices. Forecasting results are reported in Table 3.

The ARIMAXW is clearly the best model, which seems to confirm our conjecture that

weather forecasts help to anticipate sharp movements in prices.

We implement our analysis in a different Nord Pool bidding area, Eastern Denmark.

We re-estimate and re-specify all the models. We find that the variable precipitation

is not significant, which can be explained by the fact that Denmark does not rely on

hydropower. We develop a forecasting exercise similar to the Oslo study. Again the

ARIMAXW model provides the best forecasts. The improvement is higher than 10%,

and it is statistically significant at the 1% level. Figure 5 shows that also for the

Eastern Denmark example weather forecasts help to partially anticipate price jumps.

Furthermore, from Table 3 we can observe that using realized weather observations

reduces forecast accuracy and results for the ARIMAXW model are robust to peak

hour prices.

5 Conclusion

In this paper we study whether weather variables have predictive power for electricity

prices in real time. We collect forecasts of several weather variables for two bidding

areas of Nord Pool, Oslo and Eastern Denmark, and we use them to predict the respec-

tive prices. Our empirical results suggest that weather forecasts play a central role in

forecasting day-ahead prices. Weather forecasts give relevant information to partially

anticipate spikes in the prices, providing more accurate forecasts compared to several

alternative approaches. Results are robust to using real-time observed weather and to

peak hour price applications. We find that the relation between electricity prices and

9Estimation results using peak prices are available upon request.
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weather forecasts is highly non-linear and depends on the price drivers behind each

bidding area.

There are several topics for further research. First, the set of weather forecasts

might include other weather-related variables, such as water reservoir levels. Obser-

vations of these variables are not available to us, but results support the construction

of specific models to compute forecasts of them. Second, considering the strong non-

linear relation of prices and weather forecasts, weather forecasts might be included

in other non-linear models, such as Markov regime-switching models, jump models or

time-varying models. Finally, models based on weather forecasts might be used in

predicting movements of the forward price curve in power financial markets. The re-

ported evidence that weather has predictive power for the underlying day-ahead price

process could imply that this price factor might be reflected in the price of derivative

instruments for day-ahead electricity contracts as well.
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Table 1: Descriptive statistics

Oslo Eastern Denmark
Level Log Diff Level Log Diff

Mean 30.43 3.403 0.001 32.85 3.446 0.001
St dev 4.965 0.154 0.055 12.74 0.280 0.185
Max 52.45 3.960 0.461 29.69 5.463 1.737
Min 17.16 2.843 -0.252 235.7 2.127 -0.902
Skewness 1.319 0.513 0.963 6.295 1.293 1.310
Kurtosis 6.278 4.768 12.86 79.13 8.181 17.21
Working days 30.90 3.420 0.011 34.81 3.5004 0.0318
No working days 29.35 3.366 -0.023 28.40 3.3232 -0.069
Mondays 31.04 3.424 0.070 36.68 3.525 0.224
ρ1 0.938 0.928 -0.126 0.651 0.778 -0.191
ρ7 0.824 0.78 0.346 0.493 0.671 0.298
ρ14 0.678 0.677 0.351 0.405 0.555 0.273
DF -0.535 -1.678 -7.134∗∗∗ -3.311∗∗ -2.691∗∗ -15.18∗∗∗

Note: The table reports descriptive statistics on level (Level) and logarithm (Log) of electricity
prices, and of logarithm first difference (Diff) in Oslo and Eastern Denmark. Lines Mondays,
working days and no working days give the sample average prices on Mondays, working days
and no working days (weekends and holidays) respectively. Lines ρ1, ρ7 and ρ14 give the 1st, 7th

and 14th sample autocorrelation. The last line refers to the Augmeted Dickey-Fuller test; one,
two or three asterisks denote significance relative to the asymptotic null hypothesis respectively
at 10%, 5% and 1% levels.
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Table 2: In-sample estimation: Oslo

Models ARMA ARMAX ARMAXW ARIMA ARIMAX ARIMAXW

c 3.914 3.387 3.593 0.001 -0.004 0.004
[1.963] [0.035] [0.250] [0.001] [0.002] [0.004]

φ1 0.711 0.779 0.699 -0.254 -0.215 -0.240
[0.023] [0.036] [0.034] [0.035] [0.035]

φ2 0.088 -0.237 -0.189 -0.208
[0.037] [0.035] [0.036] [0.036]

φ3 - - - -0.208 -0.162 -0.183
[0.036] [0.036] [0.036]

φ4 - - - -0.240 -0.189 -0.208
[0.036] [0.036] [0.036]

φ5 - - - -0.191 -0.124 -0.144
[0.036] [0.036] [0.036]

φ6 0.142 [0.023] 0.128 -0.076 - -
[0.034] 0.172 [0.037] [0.034]

φ7 0.144 0.075 0.240 0.052 0.049
[0.035] [0.036] [0.035] [0.035] [0.035]

dh - -0.040 -0.043 - -0.020 -0.021
[0.004] [0.004] [0.004] [0.004]

dm - 0.019 0.015 - 0.074 0.073
[0.004] [0.004] [0.006] [0.006]

a1 - - -0.005 - - -0.0035
[0.001] [0.0002]

a2 - - 0.0001 - - 4.66E-05
[5.60E-05] [2.48E-05]

a3 - - - - -1.32E-06
[1.52E-06]

b1 - - - - -0.024
[0.007]

b2 - - - - 0.007
[0.004]

γ - - -0.004 - - -7.6700E-004
[0.001] [4.96E-04]

Adj. R-squared 0.893 0.839 0.918 0.214 0.353 0.377
AIC -3.123 -3.319 -3.381 -3.172 -3.366 -3.396

Note: The table reports the coefficient estimates (and their standard errors between square
brackets), and selection criteria tests of the models on Oslo log prices and first difference log
prices for models in section 3.
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Table 3: Out-of-sample forecasting results: RMSPE

Oslo Eastern Denmark
24h Peak 24h Peak

ARIMAX 0.048 0.059 0.170 0.176

ARMA 1.151 1.136 1.099 1.276
ARMAX 1.031 1.018 1.006 1.125
ARMAXW 0.990 0.974∗∗ 0.984∗ 1.101
ARIMA 1.118 1.126 1.101 1.123
ARIMAXW 0.942∗∗ 0.907∗∗ 0.905∗∗ 0.899∗∗

ARIMAXRW 0.988 0.999 0.998 1.002
ARIMAX-GARCH 1.029 1.009 1.028 0.984
ARIMAXW-GARCH 1.010 0.996 1.035 1.019
ARIMAXW-GARCHW 1.008 1.002 1.027 1.013

Note: The table reports forecasting statistics of the alternative models in Oslo and
Eastern Denmark electricity markets using daily average prices (24h) or peak hour
(8am-8pm), (Peak) prices. The first line in the table reports the value of RMSPE for
the ARIMAX model while all the other lines report statistics relative to the ARIMAX
model. Asterisks indicate results of the forecast accuracy comparison t-type statistics
as in McCracken (2007) of the given models against those of the ARIMAX model. The
null hypothesis is that the two forecasts have the same mean square error. Critical
values are reported in table 1 in McCracken (2007). In our case π ' 1.2 and k2 = 6.
One asterisk denotes significance relative to the asymptotic null hypothesis at 5%, two
asterisks denote significance relative to the asymptotic null hypothesis at 1%.
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Figure 1: Prices
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Note: The graphs in this figure present in Panel a) prices (in the left panel) and log prices (in the
right panel) of daily electricity prices in Oslo, Eastern Denmark and the Netherlands; in Panel b)
histograms of daily electricity prices in Oslo (in the left panel) and Eastern Denmark (in the right
panel) markets; and in Panel c) histograms of daily electricity prices in the Netherlands market.
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Figure 2: Weather variables: Oslo

-20

-10

0

10

20

30

2004M01 2004M07 2005M01 2005M07 2006M01

FOR-TEMP REAL-TEMP

0

1

2

3

4

5

2004M01 2004M07 2005M01 2005M07 2006M01

FOR-PREC REAL-PREC

(a)

0

4

8

12

16

20

2004M01 2004M07 2005M01 2005M07 2006M01

FOR-WIND REAL-WIND

(b)

Note: The graphs present in Panel a) realized (REAL-) and forecasted (FOR-) daily average
temperature (in the left panel), and total precipitation (in the right panel); in Panel b) realized
(REAL-) and forecasts (FOR-) on wind speed in the Oslo area.

Figure 3: Weather variables: Eastern Denmark
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Note: The graphs in figures 2 and 3 present realized (REAL-) and forecasted (FOR-) daily average
temperature (in the left panel) and realized (REAL-) and forecasted (REAL-) wind speed in the
Copenhagen area.
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Figure 4: Scatter plot: Oslo
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Note: The graphs in this figure present in Panel a) the scatter plot of the errors of ARIMAX model
against the forecasts of the daily average temperature (in the left panel), and total precipitation (in
the right panel); in Panel b) the scatter plot of the errors of ARIMAX model against the forecasts of
the wind speed in Oslo.
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Figure 5: 60-day average RMSPE
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Note: The graphs in this figure present in Panel a) the 60-day moving average RMSPE given the
ARIMAX and ARIMAXW models in forecasting Oslo log electricity prices; in Panel b) the 60-day
moving average RMSPE given the ARIMAX and ARIMAXW models in forecasting Eastern
Denmark log electricity prices.
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