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Abstract
Can long-run identified structural vector autoregressions (SVARs)

discriminate between competing models in practice? Several authors
have suggested SVARs fail partly because they are finite-order approx-
imations to infinite-order processes. We estimate vector autoregres-
sive moving average (VARMA) and state space models, which are not
misspecified, using simulated data and compare true with estimated
impulse responses of hours worked to a technology shock. We find few
gains from using VARMA models. However, state space algorithms can
outperform SVARs. In particular, the CCA subspace method consis-
tently yields lower mean squared errors, although even these estimates
remain too imprecise for reliable inference. The qualitative differences
for algorithms based on different representations are small. The com-
parison with estimation methods without specification error suggests
that the main problem is not one of working with a VAR approxi-
mation. The properties of the processes used in the literature make
identification via long-run restrictions difficult for any method.

Keywords: SVARs, VARMA, State Space Models, Business Cycles
JEL-Codes: E32, C15, C52

1 Introduction

This paper compares structural estimation methods based on different re-
duced form representations of the same economic model in a simulation
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study similar to those undertaken by Chari, Kehoe and McGrattan (2005,
2007) and Christiano, Eichenbaum and Vigfusson (2006). Our aim is to
assess different algorithms’ relative performance and in particular whether
the inclusion of moving average terms alone leads to more precise estimates
of the structural impulse responses. The fact that algorithms based on dif-
ferent representations yield qualitatively similar results illustrates that the
main problem with structural identification in this and similar simulation
studies is not one of working with a specific model class.

Structural vector autoregressions are a widely used tool in empirical
macroeconomics, in particular for the evaluation of dynamic stochastic gen-
eral equilibrium (DSGE) models. Following Sims’s (1989) suggestion, many
applied researchers have used SVARs to uncover economic relationships
without imposing strong theoretical assumptions. Blanchard and Quah
(1989), for example, use SVARs to discriminate between supply and de-
mand shocks. King, Plosser, Stock and Watson (1991) look at the effects
of permanent changes in the economy on transient economic fluctuations.
Christiano and Eichenbaum (1992) investigate the monetary transmission
mechanism and Cogley and Nason (1995) analyze output dynamics in real
business cycle (RBC) models. The results from SVARs are often viewed as
stylized facts that economic models should replicate (see e.g. Christiano and
Eichenbaum, 1999). Stock and Watson (2005) provide a useful overview of
structural identification methods.

In this literature, a recent discussion has focussed on the impact of tech-
nology shocks on hours worked. In a seminal paper, Gali (1999) identifies
productivity innovations using restrictions on the long-run impact matrix of
the structural errors. He finds that hours worked fall in response to a positive
innovation, which is contrary to the central predictions of the mainstream
RBC literature. Many empirical papers have since scrutinized this finding
using different data sets and identification schemes. See, for example, the
contributions of Christiano, Eichenbaum and Vigfusson (2003); Francis and
Ramey (2005a,b) and Gali and Rabanal (2005).

In the context of Gali’s (1999) results, there is some debate whether
SVARs can in practice discriminate between competing DSGE models and,
more generally, whether their sampling properties are good enough to jus-
tify their popularity in applied macroeconomics. Chari et al. (2007) and
Christiano et al. (2006) investigate the properties of SVARs by simulating
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artificial data from an RBC model and by comparing true with estimated
impulse responses. In order to simulate an empirically relevant data generat-
ing process (DGP), the structural parameters of the underlying RBC model
are estimated from the data. According to Chari et al. (2007), long-run
identified SVARs fail dramatically for both a level and difference specifica-
tion of hours worked. Even with a correct specification of the integration
properties of the series, the SVAR overestimates in most cases the impact
of technology on labor and the estimates display high variability. However,
Christiano et al. (2006) argue that the parametrization chosen by Chari et
al. (2005, 2007) is not very realistic. With their preferred parametrization,
Christiano et al. (2006) find that both long-run and short-run identification
schemes display only small biases and argue that, on average, the confi-
dence intervals produced by SVARs correctly reflect the degree of sampling
uncertainty. Nevertheless, they also find that the estimates obtained via a
long-run identification scheme are very imprecise. These results have been
further confirmed by Erceg, Guerrieri and Gust (2005). Kehoe (2006) pro-
vides an overview of this debate. On the one hand, it is often difficult to
even make a correct inference about the sign of the structural impulse re-
sponses with long-run restrictions, and the question is whether one should
use them at all. On the other hand, long-run identification is appealing
from a theoretical point of view, since it is usually less model-specific than
short-run identification (Chari et al., 2007). In any case, long-run identifi-
cation constitutes an additional tool of analysis in applied macroeconomic
research.

The failure of finite-order SVARs is sometimes attributed to the fact that
they are only approximations to VARMA / infinite-order VAR processes or
to the possibility that a VAR representation does not exist at all. King,
Plosser, and Rebelo (1988) are among the first to recognize that DSGE
models imply a VARMA representation. Cooley and Dwyer (1998) give an
example and state: “While VARMA models involve additional estimation
and identification issues, these complications do not justify systematically
ignoring these moving average components, as in the SVAR approach”. As
further shown by Fernández-Villaverde, Rubio-Ramı́rez, Sargent and Wat-
son (2007), DSGE models generally imply a state space system that has a
VARMA and eventually an infinite VAR representation. Christiano et al.
(2006) state that “The specification error involved in using a finite-lag VAR
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is the reason that in some of our examples, the sum of VAR coefficients
is difficult to estimate accurately”. Most importantly, Chari et al. (2007)
argue that a VAR is not able to capture the underlying VARMA process
by showing that the truncation bias, which is the population bias resulting
from applying a finite-order VAR, is the main source of the observed small
sample bias in their simulation studies.

This paper explores the possible advantages of structural VARMA and
state space models that capture the full structure of the time series rep-
resentation implied by DSGE models, while imposing minimal theoretical
assumptions. We investigate whether estimators based on these alternative
representations can outperform SVARs in finite samples. This question is
important for several reasons. First, it is useful to find out to what extent
one can improve on SVARs by including moving average components. Sec-
ond, the question of whether estimators based on alternative representations
of the same DGP have good sampling properties is interesting in itself. Em-
ploying these alternatives enables researchers to quantify the robustness of
their results by comparing different estimates.

In order to assess whether the inclusion of a moving average compo-
nent leads to important improvements, we adhere to the research design of
Chari et al. (2007) and Christiano et al. (2006): We simulate DSGE models
and fit different reduced form models to recover the structural shocks using
the same long-run identification strategy. As in a closely related study by
McGrattan (2006), we then compare the performance of the models by fo-
cusing on the estimated contemporaneous impact of a productivity shock.
We employ a variety of estimation algorithms for the VARMA and state
space representations. One of the findings is that one can indeed perform
better by taking the full structure of the DGP into account: While most of
the algorithms for VARMA and state space representations do not perform
significantly better (and sometimes worse), a subspace algorithm for state
space models consistently outperforms SVARs in terms of mean squared er-
ror. Unfortunately, we also find that even these alternative estimators are
highly variable and are not necessarily much more informative for discrimi-
nating between different DSGE models. After all, the qualitative differences
between the algorithms are small given a particular parametrization of the
DSGE model. The emphasis of many previous studies on truncation bias
suggests that the problems of long-run restrictions are somewhat specific to
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the finite-order VAR approximation. We show that this is not the case. The
bad properties of long-run identification are not confined to the finite-order
VAR. Instead, we point out some properties of the simulated DGPs that
make it hard to identify structural shocks for any method. The main prob-
lem with long-run restrictions is therefore not one of working with a specific
model class.

The rest of the paper is organized as follows. In section 2 we present
the RBC model used by Chari et al. (2007) and Christiano et al. (2006)
that serves as the basis for our Monte Carlo simulations. In section 3 we
discuss the different statistical representations of the observed data series.
In section 4 we present the specification and estimation procedures and the
results from the Monte Carlo simulations. Section 5 concludes.

2 The Data Generating Process

The DGP for the simulations is based on a simple RBC model taken from
Chari et al. (2005, 2007). In the model, a technology shock is the only shock
that affects labor productivity in the long-run, which is the crucial identify-
ing assumption made by Gali (1999) to assess the role of technology shocks
in the business cycle.
Households choose infinite sequences, {Ct, Lt, Kt+1 }∞t=0, of per capita con-
sumption, labor and capital to maximize expected lifetime utility

E0

∞∑

t=0

[β(1 + γ)]t
[
log Ct + ψ

(1− Lt)1−σ − 1
1− σ

]
, (1)

given an initial capital stock K0, and subject to a set of budget constraints
given by

Ct + (1 + τx) ((1 + γ)Kt+1 − (1− δ)Kt) ≤ (1− τl,t)wtLt + rtKt + Tt,(2)

for t = 0, 1, 2, ..., where wt is the wage, rt is the rental rate of capital, Tt are
lump-sum government transfers and τl,t is an exogenous labor tax. The pa-
rameters include the discount factor β ∈ (0, 1), the labor supply parameters,
ψ > 0 and σ > 0, the depreciation rate δ ∈ (0, 1), the population growth
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rate γ > 0 and a constant investment tax τx. The production technology is

Yt = Kα
t (XtLt)1−α, (3)

where Xt reflects labor-augmenting technological progress and α ∈ (0, 1) is
the capital income share. Competitive firms maximize Yt − wtLt − rtKt.
Finally, the resource constraint is Yt ≥ Ct + (1 + γ)Kt+1 − (1− δ)Kt.
The model contains two exogenous shocks, a technology shock and a tax
shock, which follow the stochastic processes

log Xt+1 = µ + log Xt + σxεx,t+1, (4a)

τl,t+1 = (1− ρ)τ̄l + ρτl,t + σlεl,t+1, (4b)

where εx,t and εl,t are independent random variables with mean zero and
unit standard deviation and σx > 0 and σl > 0 are scalars. µ > 0 is the
mean growth rate of technology, τ̄l > 0 is the mean labor tax and ρ ∈ (0, 1)
measures the persistence of the tax process. Hence, the model has two
independent shocks: a unit root process in technology and a stationary
AR(1) process in the labor tax.

3 Statistical Representations

Fernández-Villaverde et al. (2007) show how the solution of a detrended,
log-linearized DSGE model leads to different statistical representations of
the model-generated data. This section presents several alternative ways to
write down a reduced form model for the bivariate, stationary time series

yt =

[
∆log(Yt/Lt)

log(Lt)

]
. (5)

Labor productivity growth, ∆ log(Yt/Lt), and hours worked, log(Lt), are
also the series analyzed by Gali (1999), as well as Chari et al. (2007) and
Christiano et al. (2006).1 Therefore, the section shows how the structural
impulse responses Gali was interested in are related to different statistical

1There are also different information sets that are equally applicable in the present
context, e.g. [∆yt lt]

′ which would be more in line with Blanchard et al. (1989). This de-
cision should be based on the statistical properties of the series. Results for this alternative
information set can be found in a web appendix to this paper.
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models, given the economic model. The appendix provides more detail on
the derivations. Given the log-linearized solution of the RBC model of the
previous section, we can write down the law of motion of the logs

log kt+1 = φ1 + φ11 log kt − φ11 log xt + φ12τl,t, (6a)

log yt − log Lt = φ2 + φ21 log kt − φ21 log xt + φ22τl,t, (6b)

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τl,t, (6c)

where kt = Kt/Xt+1 and yt = Yt/Xt are capital and output detrended with
the unit-root shock and xt = Xt/Xt−1. The φ’s are the coefficients of the
calculated policy rules. Following Fernández-Villaverde et al. (2007), the
system can be written in state space form. The state transition equation is

[
log kt+1

τl,t

]
= K1 + A

[
log kt

τl,t−1

]
+ B

[
εx,t

εl,t

]
, (7)

xt+1 = K1 + Axt + Bεt,

and the observation equation is

[
∆ log(Yt/Lt)

log Lt

]
= K2 + C

[
log kt

τl,t−1

]
+ D

[
εx,t

εl,t

]
, (8)

yt = K2 + Cxt + Dεt,

where K1, A,B,K2, C and D are constant matrices that depend on the co-
efficients of the policy rules and therefore on the “deep” parameters of the
model. The state vector is given by xt = [log kt, τl,t−1]′ and the noise vector
is εt = [εx,t, εl,t]′. Note that the system has a state vector of dimension
two with the logarithm of detrended capital and the tax rate shock as state
components.

The above state space system contains the non-observable state vector
and the structural errors. We now show different reduced form representa-
tions of the system for yt in terms of prediction errors that lead to alternative
estimation algorithms. These representations are derived under the assump-
tions that (i) D, C are invertible and (ii) the eigenvalues of (A− BD−1C)
are strictly less than one in modulus (Fernández-Villaverde et al., 2007). We
checked that this is the case for all models that are used in the Monte Carlo
simulations later.
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Given these invertibility assumptions, there is an infinite VAR represen-

tation:

yt = K3 + C
(
I − (A−BD−1C)L

)−1
BD−1yt−1 + Dεt, (9)

or

yt = K3 +
∞∑

i=1

Πiyt−i + ut, (10)

where K3 and Πi, i = 1, 2, . . . are constant coefficient matrices, L denotes the
lag operator, I denotes an identity matrix of suitable dimensions, ut = Dεt

and ut ∼ iidN(0, Σu), Σu = DD′, where Σu is the covariance matrix of ut.
In practice, it is only possible to approximate this structure by a finite-order
VAR.

Alternatively, the system can be written as a state space representa-

tion in “innovations form”:

xt+1 = K1 + Axt + Kut, (11)

yt = K2 + Cxt + ut,

where the innovation, ut, is defined as above and K = BD−1. In contrast
to the VAR representation in (9), it is possible to estimate (11) without
specification error.
Finally, the underlying DGP can be represented by a VARMA(1,1) rep-

resentation:

yt = K4 + CAC−1yt−1 +
(
D + (CB − CAC−1D)L

)
εt, (12)

yt = K4 + A1yt−1 + ut + M1ut−1,

where the last equation defines the constant coefficient matrices A1, M1, K4

and ut is defined as above. As with the above state space representation,
the VARMA(1,1) representation can also be estimated with no specification
error.

Given the conditions stated in Fernández-Villaverde et al. (2007), all
three representations are equivalent. They are just different ways of writing
down the same process. However, the properties of estimators and tests
depend on the chosen statistical representation. It should be emphasized
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that we are always interested in the same process and ultimately in the
estimation of the same coefficients, i.e. those associated with the first-period
response of yt to a unit shock in εx,t to the technology process. However,
the different representations give rise to different estimation algorithms and
therefore our study can be regarded as a comparison of different algorithms
to estimate the same linear system.

4 The Monte Carlo Experiment

4.1 Monte Carlo Design and Econometric Techniques

To investigate the properties of the various estimators, we simulate 1000
samples of the vector series yt in linearized form and transform log-deviations
to values in log-levels. As in the previous Monte Carlo studies, the sample
size is 180 quarters. We use two different sets of parameter values: The first
is due to Chari et al. (2005, 2007) and is referred to as the CKM-specification,
while the second is the one used by Christiano et al. (2006) and is labeled
the KP-specification, referring to estimates obtained by Prescott (1986).2

The specific parameter values are given in table 1 for the CKM and KP
benchmark specifications. To check the robustness of our results, we also
consider variations of the benchmark models. As in Christiano et al. (2006),
we consider different values for the preference parameter σ and the standard
deviation of the labor tax, σl. These variations change the fraction of the
business cycle variability that is due to technology shocks. The different
values for σ are reported in table 2. For the CKM specification, we also
consider cases where σl assumes a fraction of the original benchmark value.
Christiano et al. (2006) show that the key difference between the specifica-
tions is the implied fraction of the variability in hours worked that is due to
technology shocks.

In the following, we present the long-run identification scheme of Blan-
chard et al. (1989). Consider the following infinite moving average repre-

2Both parameterizations are obtained by maximum likelihood estimation of the the-
oretical model, using time series on productivity and hours worked in the US. However,
because of differences in approach, both papers obtain different estimates.
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sentation of yt in terms of ut:

yt =
∞∑

i=0

Φu,iut−i = Φu(L)ut, (13)

where we abstract from the intercept term and Φu(L) is a lag polynomial,
Φu(L) =

∑∞
i=0 Φu,iL

i. Analogously, we can represent yt in terms of the
structural errors using the relation ut = Dεt:

yt =
∞∑

i=0

Φu,iDεt−i = Φε(L)εt, (14)

where Φε(L) =
∑∞

i=0 Φu,iDLi. The former lag polynomial, evaluated at one,

Φu(1) = I + Φu,1 + Φu,2 + . . . (15)

is the long-run impact matrix of the reduced form error ut. Note that
the existence of this infinite sum depends on the stationarity of the series.
If the stationarity requirement is violated or “nearly” violated, then the
long-run identification scheme is not valid or may face difficulties. Also
note that the matrix D defined in section 3 gives the first-period impact
of shocks in εt. Using the above relations, we know that Φε(1) = Φu(1)D
and further Σu = DD′, where Φε(1) is the long-run impact matrix of the
underlying structural errors. The identifying restriction on Φε(1) is that
only the technology shock has a permanent effect on labor productivity.
This restriction implies that in our bivariate system the long-run impact
matrix is triangular,

Φε(1) =

[
Φ11 0
Φ21 Φ22

]
, (16)

and it is assumed that Φ11 > 0. Using Φε(1)Φ′ε(1) = Φu(1)ΣuΦ′u(1) we
can obtain Φε(1) from the Cholesky decomposition of Φu(1)ΣuΦ′u(1). The
contemporaneous impact matrix can be recovered from D = [Φu(1)]−1Φε(1).
Correspondingly, the estimated versions are

Φ̂ε(1) = chol[Φ̂u(1)Σ̂uΦ̂′u(1)], (17a)

D̂ = [Φ̂u(1)]−1Φ̂ε(1). (17b)
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Only the first column of D̂ is identified and is our estimate of the first-period
impact of the technology shock.3

Next, we comment on the estimation techniques. First, note that for
each representation there is more than one reasonable estimation method.
We tried several algorithms for all representations but chose to present only
the results for the algorithms that worked best for each representation.4 Of
course, it is still possible that there are algorithms that work slightly better
for one of the representations in the current setting. However, the aim of this
study is primarily to quantify whether the inclusion of the moving average
term alone leads to important gains in terms of more precise estimates of
the structural parameters. For all methods described below, we ensure that
stationary and invertible models are obtained.

Vector Autoregressive Models: VARs are well known, so we comment
only on a few issues. As in the previous Monte Carlo studies, the lag length
is set at four and the VAR is estimated by OLS. However, for different
sets of parameter values a VAR with a different number of lags may yield
slightly better results. We have chosen to stick to the VAR(4) because we
want to facilitate comparison with the results of Christiano et al. (2006)
and because there was no lag order that performed uniformly better for all
DGPs.5 Enforcing stationarity of the estimated model improves the VAR
results to some extent.

State Space Models: There are many ways to estimate a state space
model, e.g. maximum likelihood methods based on the Kalman filter or
subspace identification methods such as N4SID of Van Overschee and De
Moor (1994) or the CCA method of Larimore (1983). We use the CCA
subspace algorithm that was previously found to be remarkably accurate
in small samples. As argued by Bauer (2005a), CCA might be the best
algorithm for econometric applications. It is also asymptotically equivalent

3Alternatively, one could solve for D̂ directly using the three restrictions implied by
Σu = DD′ and the long-run identifying restriction (Blanchard et al., 1989), since the
Cholesky decomposition can occasionally produce an ill conditioned matrix. In the present
context, however, the results from both strategies are identical.

4Additional results and programs may be obtained from the authors.
5Data dependent criteria such as AIC are unfortunately not very helpful for these

DGPs. Results for the VAR with AIC selection are presented in a web appendix to this
paper. See also Chari et al. (2007).
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to maximum likelihood (Bauer, 2005b).6 The idea of subspace methods is
that the state, xt, summarizes all information of the past that can be used
for mean square prediction. Thus, the center of attention is the state that
is estimated in a first step. In a second step the coefficient matrices are
estimated by least squares. The different subspace algorithms use the struc-
ture of the state space representation in various ways. See Bauer (2005a)
for a more general introduction to subspace methods and the appendix for
a detailed description of the algorithm that is employed in this paper.

While implementing the algorithm, we chose the correct dimension of the
state vector, n = 2.7 To calculate the long-run effect of the prediction errors,
it is necessary to solve the state space equations xt+1 = Axt + Kut, yt =
Cxt+ut, where the deterministic component is omitted. The lag polynomial
of the infinite moving average representation is given by

Φu(L) = I +
∞∑

j=0

CAjLj+1K = I + LC(I − LA)−1K. (18)

An estimate of the long-run impact matrix Φu(1) can be obtained from the
estimated system matrices, Φ̂u(1) = I + Ĉ(I − Â)−1K̂. Henceforth, the
estimation of the contemporaneous impact matrix is entirely analogous to
long-run identification in a standard VAR setting. That is, we recover Φε(1)
by a Cholesky decomposition and then obtain an estimate of D.

Vector Autoregressive Moving Average Models: The VARMA rep-
resentation in (12) implies that we can represent yt in terms of the innova-
tions as

yt = (I −A1L)−1(I + M1L)ut = A(L)−1M(L)ut, (19)

where A(L) and M(L) are the autoregressive polynomial and the moving
average polynomial, respectively, and the intercept term has been omit-

6We also investigated a maximum likelihood approach using the PEM routine in MAT-
LAB. The results (not reported) were not satisfactory due to reasons discussed below.

7There are two auxiliary parameters in the subspace algorithm, f , p, which determine
the row and column dimension of a Hankel matrix which is estimated in an intermediate
step (see Bauer (2005a) and the appendix). They have been set to f = p = 8. These
parameters are of no importance asymptotically as long as they increase at certain rates
with the sample size. In the literature it has been suggested to set f = p = 2p̂ where p̂ is
the order of the chosen autoregressive approximation (Bauer, 2005a).
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ted. The long-run impact of the innovations can be estimated by Φ̂u(1) =
Â(1)−1M̂(1) and an estimate of the first column of D can be obtained as be-
fore. Instead of estimating the VARMA(1,1) representation in (12) we chose
a specific representation which guarantees that all parameters are identified
and the number of moving average parameters is minimal. For an introduc-
tion to the identification problem in VARMA models see Lütkepohl (2005).
Here we employ a final moving average (FMA) representation that can be
derived analogously to the final equation form (see Dufour and Pelletier,
2004). In our case, this results in a VARMA (2, 1) representation in final
moving average form (see appendix).8

As in the case of state space models there are many different estimation
methods for VARMA models. Examples are the methods developed by
Durbin (1960), Hannan and Rissanen (1982), the generalized least-squares
algorithm (Koreisha and Pukkila, 1990), full information maximum likeli-
hood (Mauricio, 1997) or Kapetanios’s (2003) iterative least-squares algo-
rithm. We tried the mentioned algorithms but report results for the best
performing method which is a simple two-stage least squares algorithm also
known as the Hannan-Rissanen method. The method starts with an initial
“long” autoregression in order to estimate the unobserved residuals. The
estimated residuals are then treated as observed and a (generalized) least
squares regression is performed. We use a VAR with lag length nT = 0.5

√
T

for the initial long autoregression.9

4.2 Results of the Monte Carlo Study

Tables 2 - 3 summarize the results of the Monte Carlo simulation study. Ta-
ble 2 displays Monte Carlo means and standard deviations of the estimates
of the contemporaneous impact of a technology shock on productivity and
hours. That is, the estimates of 100 times the first column of D, 100 ·D[., 1].
Likewise, table 3 shows Monte Carlo means and standard deviations of the
different structural estimators for the percent long-run effect, 100 · Φε[., 1].

8We experimented with other identified representations such as the final equation repre-
sentation or the Echelon representation. However, the final moving average representation
yielded the best results.

9In particular, we also tried full information maximum likelihood maximization as
formulated in Mauricio (1997). However, this procedure proved to be highly unstable and
was therefore not considered to be a practical alternative. One reason is that the roots of
the AR and the MA polynomials are all close to the unit circle.
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We chose to compute means and standard deviations based on a trimmed
sample of estimates for the long-run effects. Trimming of replications associ-
ated with the most extreme upper and lower estimates is beneficial because
of a few outliers.10 In the tables, VAR(4) stands for the SVAR with four
lags estimated by OLS. SS(2) denotes the CCA algorithm based on the state
space representation with state dimension two. VARMA(2,1) stands for the
2SLS algorithm based on the VARMA in final moving average form with
two autoregressive lags and one moving average lag. For all entries, we also
tabulate the Monte Carlo mean squared error (MSE) of the different estima-
tors relative to the MSE of the estimator of the same entry resulting from
the VAR(4).

For the estimates of the contemporaneous impact, our SVAR results con-
firm the findings of both Christiano et al. (2006) and Chari et al. (2005).
While the SVAR is approximately unbiased for the KP-specification (first
row in table 2), the same is not true for the CKM-specification (fourth row
in table 2). Also, for the different variations of the benchmark model we find
that the SVAR is often biased and/or displays high variability. As can be
seen from rows 2, 3, 5 and 6 in table 2, both the biases and standard devia-
tions are larger for the models with higher Frisch elasticities of labor supply
(lower σ), as in the model this decreases the proportion of the variation in
hours worked that is due to the technology shock. From rows 7 and 8 it is
clear that reducing the relative importance of the tax shock by lowering σl

by 1/2 and 1/3 reduces the bias and the standard deviations.
The picture is mixed when it comes to the estimation of the long-run

effects of technology shocks. First, the SVAR estimator of the effect on pro-
ductivity displays a much smaller bias and lower standard deviation com-
pared to the estimator of the long-run effect on hours. Relative to the true
values, the estimator is slightly less biased in the case of the KP parame-
terizations (rows 1 -3) but the corresponding standard deviations are high
relative to those in the case of the CKM parameterizations (rows 4 - 8). The
picture changes for the SVAR estimator of the long-run effects on hours. For
all parameterizations the volatility is enormous. Also the estimator is much
more volatile in the case of the KP parameterizations even though the bias
is sometimes smaller relative to the true values. Overall, the long-run effect

10We present results for a sample of estimates trimmed by 4 %. That is, we disregard
the 20 lowest and the 20 highest estimates out of 1000 simulations.
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on hours is not estimated accurately.
The CCA algorithm, based on the state space representation, performs

quite differently. For the estimates of the contemporaneous impact, we find
that the MSE of the CCA subspace algorithm estimator is almost uniformly
lower for both series and across different specifications. Only for two parame-
terizations (fourth and fifth rows) does the MSE of the CCA-based estimates
exceed the MSE of the SVAR, and only by a relatively small amount. In par-
ticular, the first-period impact on hours worked is estimated more precisely
up to a relative reduction to 87% in terms of MSE for the KP-specification.
In almost all cases the bias is at least slightly reduced. Second, although
the response of hours worked is usually estimated more precisely, the per-
formances of the subspace algorithm and the SVAR are clearly related: in
cases where the SVAR does poorly, the state space model does the same.
For example, both algorithms do relatively well for the KP parametrization
but fail dramatically for the CKM parametrization with indivisible labor.
Third, we also note that the CCA algorithm is most advantageous relative to
the VAR when the VAR is most precise, i.e., for the KP parameterizations.
Fourth, even though the CCA algorithm can be more precise, the structural
estimators are still highly variable and not necessarily much more useful in
a qualitative sense.

For the estimates of the long-run effects, the findings are similar. The
CCA algorithm does better than the SVAR for most parameterizations. No-
table exceptions are the results for the long-run effect on productivity for
two CKM parameterizations (rows four and five). Again, the algorithm
outperforms the VAR for the KP parameterizations and its performance is
positively correlated with the performance of the SVAR over different pa-
rameterizations. The CCA estimator of the long-run effects of a technology
shock can be much more precise than the corresponding SVAR estimator.
For example, the standard deviation is dramatically reduced in case of the
KP parameterizations. Still, even this estimator does not resolve the essen-
tial problem, i.e. the standard deviations are far too large to make a reliable
qualitative judgement.

The results for the VARMA algorithm are either similar to or worse than
those for the VAR approximation. In contrast to the CCA algorithm, we
do not observe any visible improvements from the VARMA-based estima-
tor of the contemporaneous impact. In most of the cases the mean bias
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of the VARMA estimators is somewhat higher than the bias resulting from
the VAR, while the standard deviation might be slightly reduced. Again,
we observe that the performance of the VARMA algorithm is highly corre-
lated with the performance of the VAR over different parameterizations of
the model. Also, we see that the VARMA gets worse in the most difficult
cases (fourth and fifth rows). This finding mirrors the results for the CCA
algorithm. While the VARMA model fully nests the underlying DGP, the
associated algorithm is not very efficient in our context.

Again, the results for the long-run effect of a technology shock are similar
although it seems that the 2SLS algorithm does better in estimating these
effects than in estimating the contemporaneous impact. Also, the perfor-
mance of this estimator is highly positively correlated with the performance
of the SVAR estimator. Therefore, as in the case of the CCA algorithm
based on the state space representation, also this estimator is essentially
uninformative.

We summarize the findings for all three algorithms as follows:

• The precision of the structural estimators differs more over the differ-
ent parameterizations of the benchmark model than between different
estimators given the same parametrization.

• While the the CCA algorithm appears superior to the VAR in the
simulations, the performances of all reported algorithms do not differ
too much in a qualitative sense given a particular parametrization.

• For all examples considered, the standard deviations of all estimators
of the contemporaneous and long-run effect on hours are quite large,
making the estimates uninformative.

These results illustrate clearly that the question of what is the empirically
relevant parametrization or economic model is quite important. From the
work of Christiano et al. (2006) it seems safe to conclude that the differ-
ences in bias between different parameterizations is mostly due to variation
of the relative importance of technology shocks for the fluctuations in hours
worked. Note, however, that the mean of the estimator is not a good sum-
mary of its small sample behavior because the variance is so large that
almost no weight is attached to values close to the mean. In the case of
the KP benchmark parametrization the effect on hours is estimated with a
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standard deviation of 0.43 given a mean of 0.32. Here, a more relevant loss
function is the MSE or some other measure that takes more than the first
moment into account. In terms of the MSE, long-run restrictions perform
poorly also in this case.

Two questions arise: Why do all estimators perform so poorly and why
do simple methods (e.g. VAR vs. VARMA) perform generally better in the
simulations? Using the VARMA representation we can point out three prob-
lems with the simulated DGPs. The processes are nearly non-stationary,
nearly non-invertible and the correct VARMA representation is close to be-
ing not identified. Estimators based on the state space or VARMA repre-
sentation are more sophisticated and less robust to the near violation of the
assumptions on which they are built. This disadvantage seems to compen-
sate to some extent for the advantage of nesting the DSGE model.

We use a general VARMA(p, q) representation for a K-dimensional pro-
cess to point out the features of the simulated DGPs:

A(L)yt = M(L)ut,

where the constant has been omitted. A(L) = I − A1L − . . . − LApL
p

is the autoregressive and M(L) = I + M1L + . . . + LMqL
q is the moving

polynomial with corresponding eigenvalues λar
i , λma

i , i = 1, 2, . . . which are
the inverse roots of detA(z) and detM(z), z ∈ C, respectively. Now, the
process is stationary and invertible if and only if all eigenvalues are less
than one in modulus (Lütkepohl, 2005). In our case |λar

i | < 1 |λma
i | < 1 for

i = 1, 2. Table 1 provides these eigenvalues for the benchmark specifications.
For example, for the CKM parametrization these are λar

1 = 0.9573 , λar
2 =

0.94, λma
1 = −0.9557 and λma

2 = 0. Note that the moving average part is not
of full rank. These values are very similar for all other parameterizations.
That is, all these processes are nearly non-stationary and non-invertible.11

The fact that one eigenvalue of the moving average part is very close to
one eigenvalue of the autoregressive part in modulus is again not confined to
the CKM parametrization. It is true for all processes. This point suggests
that the VARMA(1,1) representation, though formally correct, is close to
being not identified (Klein, Mélard and Spreij, 2005). We know that a
VARMA representation is identified if and only if the corresponding Fisher

11The near non-stationarity has also been noticed by other authors such as Chari et al.
(2007).
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Information matrix (FIM) is non-singular. Formally, the FIM is the negative
expected second derivative of the likelihood function with respect to the
parameter vector. Klein et al. (2005) prove that the FIM is singular if and
only if it is the case that λar

i = −λma
i for at least one i. According to Klein

et al. (2005), singularity of the FIM is equivalent to singularity of the tensor
Sylvester matrix set forth by Gohberg and Lerer (1976)

S⊗(−M,A) :=




(−IK)⊗IK (−M1)⊗IK ... (−Mq)⊗IK 0 ... 0

0
. . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 ... (−IK)⊗IK (−M2)⊗IK ... (−Mq)⊗IK

IK⊗IK IK⊗(−A1) ... IK⊗(−Ap) 0 ... 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 ... 0 IK⊗IK IK⊗(−A1) ... IK⊗(−Ap)




,

where 0 denotes here the null matrix of dimension (K2 ×K2). Klein et al.
(2005) propose checking the singularity of this matrix instead of checking
the singularity of the FIM directly for numerical reasons. For example,
for the CKM benchmark the determinant of the tensor Sylvester matrix is
0.000276. We can perturb the process by changing slightly the eigenvalue
of the moving average matrix from -0.9557 to -0.9573. The determinant of
the tensor Sylvester matrix jumps to -6.41e-019.12 That is, even though the
DSGE model implies a VARMA(1,1), the process is hard to distinguish from
a lower dimensional process. We think that this feature is the most likely
explanation why Chari et al. (2007) find that the usual VAR lag-selection
criteria are almost always suggesting a VAR(1).13

It is clear that a potential lack of identification can be a severe problem
for the estimation of the impulse responses in general. In addition, it is well
documented that near non-identification is especially problematic for the
estimation of (vector) ARMA models. See e.g. the introduction in Mélard,
Roy and Saidi (2006) or Ansley and Newbold (1980) for an early documenta-
tion. It is also known in the literature on VARMA estimation that processes
which are close to being non-invertible are difficult to estimate. Again, Ans-

12Formally, we compute the eigenvalue decomposition M1 = V ΛV −1 and change the
corresponding entry in Λ. The “perturbed” moving average matrix is then M̃1 = V Λ̃V −1

and the corresponding process is yt = A1yt−1 +ut +M̃1ut−1. Calculations were done with
double precision.

13Unfortunately, estimating a lower-dimensional processes does not yield a uniform im-
provement either.
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ley et al. (1980) provide an early account of this problem as well as Davidson
(1981) for pure moving-average models. Additionally, the stationarity as-
sumption is at the heart of the long-run identification strategy. While we
ensure that the estimated model is stable, the high autoregressive roots will
induce small sample bias. These problems are faced by all representations
and explain why the observed poor performance is not specific to the VAR
methodology. We also hesitate to make any strong recommendation in favor
of a particular class of algorithms because of the special nature of the sim-
ulated processes. However, a sensible strategy might be to consider several
estimators at the same time, such as a VAR and the CCA method, and to
aggregate the results in some way as suggested by a thick modeling approach
(Granger and Jeon, 2004).

How do these results relate to other results in the literature? First, we
think that our results are broadly confirmed by the studies of McGrattan
(2006) and Mertens (2007). Mertens (2007) uses spectral methods, proposed
by Christiano et al. (2006), to estimate technology shocks in a similar setting.
He finds that methods based on the frequency domain, though correctly
specified, do poorly and concludes that the observed bias is a result of the
small sample size used. Since two of the algorithms used in this paper
nest the DSGE model and therefore are also correctly specified, one would
attribute the errors to the limited sample size as well. On the other hand,
Chari et al. (2005, 2007) and Ravenna (2007) stress that the bias in the
SVAR estimates are due to the finite-order truncation used and not to small
sample problems. These different conclusions are largely due to different
terminology, since these authors are referring to the so-called Hurwicz-type
small-sample bias (Hurwicz, 1950). That is, the difference in mean between
a SVAR(4) estimated on a finite sample and a SVAR(4) estimated on an
infinite sample. If the lag length is viewed as a function of the sample
size p(T ) when it comes to approximating infinite VAR processes, then the
bias is simply due to T being small. Our study suggests, however, that
when the true DGP induces a large truncation bias in the VAR estimates,
estimation of other representations is equally difficult. We believe attention
should be shifted away from the evaluation of a particular model class and
towards the study of the statistical processes one is confronted with and,
as in Christiano et al. (2006), the question of whether the usual bootstrap
inference is reliable.
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5 Conclusions

There has been some debate whether long-run identified SVARs can in prac-
tice discriminate between competing DSGE models and whether their sam-
pling properties are good enough to justify their widespread use. Several
Monte Carlo studies indicate that SVARs based on long-run restrictions
are often biased and usually imprecise. Some authors have suggested that
SVARs do poorly because they are only approximate representations of the
underlying DGPs. Therefore, we replicate the simulation experiments of
Chari et al. (2007) and Christiano et al. (2006) and apply more general
models to their simulated data. In particular, we use algorithms based on
VARMA and state space representations of the data and compare the re-
sulting estimates of the underlying structural model. For our simulations,
we found that one can do better by taking the full structure of the DGP into
account. While our VARMA-based estimation algorithms and some algo-
rithms for state space models were not found to perform significantly better
and often even worse, the CCA subspace algorithm seems to consistently
outperform the VAR approximation. However, the estimators display high
variability and are often biased, regardless of the reduced form model used.
Furthermore, the performances of the different estimators are strongly corre-
lated. The comparison with estimation methods without specification error
suggests that the the main problem is not one of working with a VAR ap-
proximation insofar as the properties of the processes used in the literature
make identification via long-run restrictions difficult for any method.
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Appendix A: Final MA Equation Form

Consider a standard representation for a stationary and invertible VARMA
(p, q) process

A(L)yt = M(L)ut.

Recall that M−1(L) = M∗(L)/|M(L)|, where M∗(L) denotes the adjoint
of M(L) and |M(L)| its determinant. We can multiply the above equation
with M∗(L) to get

M∗(L)A(L)yt = |M(L)|ut.

This representation therefore places restrictions on the moving average poly-
nomial which is required to be a scalar operator, |M(L)|. Dufour et al. (2004)
show that this restriction leads to an identified representation. More specif-
ically, consider the VARMA(1,1) representation in (12). Since the moving
average part is not of full rank we can write the system as

[
1− a11L −a12L

−a21L 1− a22L

]
yt =

[
1 + m11L αm11L

m21L 1 + αm21L

]
ut,

where α is some constant not equal to zero and the intercept is omitted.
Clearly, det(M(L)) = 1 + (m11 + αm21)L and therefore




1+αm21L −αm11L

−m21L 1+αm11L






1−a11L −a12L

−a21L 1−a22L


yt=[1+(m11+αm21)L]ut.

Because of the reduced rank we end up with a VARMA (2, 1). Note that
the moving average part is indeed restricted to be a scalar operator.

Appendix B: Statistical Representations

This section elaborates on the derivation of the infinite VAR, VARMA and
state space representations that result from our DSGE model in order to
get an insight into the relationship between the economic model and the
implied time series properties. The derivation follows Fernández-Villaverde
et al. (2007). An alternative way to derive a state space system for the
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purpose of maximum likelihood estimation can be found in Ireland (2001).
Consider again the law of motion of the logs

log kt+1 = φ1 + φ11 log kt − φ11 log xt + φ12τl,t,

log yt − log Lt = φ2 + φ21 log kt − φ21 log xt + φ22τl,t,

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τl,t,

and the exogenous states

log xt+1 = µ + σxεx,t+1,

τlt+1 = (1− ρ)τ̄l + ρτl,t + σlεl,t+1.

From these equations the state space representation can be derived as fol-
lows. First, write down the law of motion of labor productivity in differences:

∆ log(Yt/Lt) = log xt + φ21∆log kt − φ21∆log xt + φ22∆τl,t.

Thus the observed series can be expressed as

∆ log(Yt/Lt) = φ21 log kt − φ21 log kt−1 + (1− φ21) log xt

+φ21 log xt−1 + φ22τl,t − φ22τl,t−1,

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τl,t.

Next, rewrite the law of motion for capital as

log kt−1 = −φ−1
11 φ1 + φ−1

11 log kt + log xt−1 − φ−1
11 φ12τl,t−1,

in order to substitute for capital at time t− 1:

∆ log(Yt/Lt) = φ21φ
−1
11 φ1 + φ21(1− φ−1

11 ) log kt

+(1− φ21) log xt + φ22τl,t + (φ21φ
−1
11 φ12 − φ22)τl,t−1.
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Using the laws of motion for the stochastic shock processes, substitute the
current exogenous shocks to get

∆ log(Yt/Lt) =
[
φ21φ

−1
11 φ1 + (1− φ21)µ + φ22(1− ρ)τ̄l

]

+φ21(1− φ−1
11 ) log kt + (φ21φ

−1
11 φ12 − (1− ρ)φ22)τl,t−1

+(1− φ21)σxεx,t + φ22σlεl,t,

log Lt = [φ3 − φ31µ + φ32(1− ρ)τ̄l] + φ31 log kt + φ32ρτl,t−1

−φ31σxεx,t + φ32σlεl,t.

Next, consider the law of motion for capital and express future capital in
terms of the current states as

log kt+1 = [φ1 − φ11µ + φ12(1− ρ)τ̄l] + φ11 log kt + φ12ρτl,t−1

−φ11σxεx,t + φ12σlεl,t.

Collecting the above equations, the system can be written in state space
form according to Fernández-Villaverde et al. (2007). The state transition
equation is

[
log kt+1

τl,t

]
= K1 + A

[
log kt

τl,t−1

]
+ B

[
εx,t

εl,t

]
,

where the system matrices are given by

K1 =

[
φ1 − φ11µ + φ12(1− ρ)τ̄l

(1− ρ)τ̄

]
, A =

[
φ11 φ12ρ

0 ρ

]

and

B =

[
−φ11σx φ12σl

0 σl

]
.

The observation equation is

[
∆log(Yt/Lt)

log Lt

]
= K2 + C

[
log kt

τl,t−1

]
+ D

[
εx,t

εl,t

]
,
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with system matrices

K2 =

[
φ21φ

−1
11 φ1 + (1− φ21)µ + φ22(1− ρ)τ̄l

φ3 − φ31µ + φ32(1− ρ)τ̄l

]
,

C =

[
φ21(1− φ−1

11 ) φ21φ
−1
11 φ12 − (1− ρ)φ22

φ31 φ32ρ

]
,

and

D =

[
(1− φ21)σx φ22σl

−φ31σx φ32σl

]
.

This representation permits us to derive the infinite VAR and VARMA
representation in compact form.
Let yt denote the vector of observables, xt the vector of states, and εt the
white noise shocks. Then we have

xt+1 = K1 + Axt + Bεt,

yt = K2 + Cxt + Dεt.

If D is invertible, it is possible to use εt = D−1 (yt −K2 − Cxt) in the
transition equation to obtain

xt+1 = K1 + Axt + BD−1(yt −K2 − Cxt),

(I − (A−BD−1C)L)xt+1 = [K1 −BD−1K2] + BD−1yt.

If the eigenvalues of (A−BD−1C) are strictly less than one in modulus we
can solve for xt+1:

xt+1 =
(
I − (A−BD−1C)L

)−1 (
[K1 −BD−1K2] + BD−1yt

)
.

Using this relation in the observation equation yields the infinite VAR rep-
resentation for yt:

yt =K2 + C
(
I − (A−BD−1C)L

)−1([K1 −BD−1K2] + BD−1yt−1

)
+ Dεt,

yt =K3 + C
(
I − (A−BD−1C)L

)−1
BD−1yt−1 + Dεt,

where K3 is defined by the last equation. Note that the condition for the
existence of an infinite VAR-representation is that I − (A − BD−1C) is
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invertible. If this condition does not hold, impulse responses from a VAR
are unlikely to match those from the model.
If C is invertible, it is possible to rewrite the state as

xt = C−1 (yt −K2 −Dεt) ,

and use it in the transition equation:

C−1 (yt+1 −K2 −Dεt+1) = K1 + AC−1 (yt −K2 −Dεt) + Bεt,

yt+1 − CAC−1yt = CK1 + K2 − CAC−1K2

+(CB − CAC−1D)εt + Dεt+1.

Therefore, we obtain a VARMA(1,1) representation of yt:

yt = K4 + CAC−1yt−1 +
(
I + (CBD−1 − CAC−1)L

)
Dεt,

where K4 is defined by the equation.

Appendix C: Estimation Algorithms

Two-Stage Least Squares

This simple estimator uses VAR modeling in a first step to estimate the un-
known residuals. In the second step these are used to replace the true inno-
vations in the VARMA equations and the coefficient matrices are estimated
by least squares. The procedure is easy to implement and is sometimes called
the Hannan-Rissanen method or Durbin’s method (Durbin, 1960; Hannan et
al., 1982). The resulting estimators are not asymptotically efficient (Hannan
and Deistler, 1988, chapter 6). We discuss the method in the framework of
a standard VARMA (p, q) representation

yt = A1yt−1 + . . . + Apyt−p + ut + M1ut−1 + . . . + Mqut−q.

Usually, additional restrictions need to be imposed on the coefficient matri-
ces to ensure identification of the parameters.
Given that the moving average polynomial is invertible, there exists an infi-
nite VAR representation of the process, yt =

∑∞
i=1 Πiyt−i + ut. In the first

step of both algorithms, this representation is approximated by a “long”
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VAR to get an estimate of the residuals. More precisely, the following re-
gression equation is used

yt =
nT∑

i=1

Πiyt−i + ut,

where nT is large and goes to infinity as the sample size grows. For the
choice of nT data-dependent methods such as AIC or BIC (Hannan and
Kavalieris, 1984) or deterministic rules such as 0.5

√
T ,

√
T (Koreisha et al.,

1990) have been suggested. The estimated residuals are denoted by û
(0)
t .

Given these estimates, we might obtain estimates of the parameter matrices
by performing a (restricted) regression in

yt = A1yt−1 + . . . + Apyt−p + ut + M1û
(0)
t−1 + . . . + Mqû

(0)
t−q.

Write the above equation compactly as

yt = [A1, . . . , Ap,M1, . . . ,Mq]Y
(0)
t−1 + ut,

where Y
(0)
t−1 := [y′t, y′t−1, . . . , y′t−p, (û(0)

t−1)
′, . . . , (û(0)′

t−q)
′]′. Collecting all

observations we get

Y = [A1, . . . , Ap,M1, . . . , Mq]X(0) + U, (C-1)

where Y := [ynT +m+1, . . . , yT ], U := [unT +m+1, . . . , uT ] is the matrix of
regression errors, X(0) := [Y (0)

nT +m , . . . , Y
(0)
T−1] and m := max{p, q}. Thus,

the regression is started at nT + m + 1. Denote the vector of parameters by
β = vec[A1, . . . , Ap,M1, . . . , Mq]. In order to impose the zero restrictions of
the FMA form on β we introduce a restriction matrix R that relates β to
the vector of free parameters γ by β = Rγ (Lütkepohl, 2005). Vectorizing
equation (C-1) yields

vec(Y ) = (X(0)′ ⊗ IK)Rγ + vec(U),

where ⊗ is the Kronecker product. The estimator is given by

γ̃ = [R′(X(0)X(0)′ ⊗ Σ̂−1)R]−1R′(X(0) ⊗ Σ̂−1)vec(Y ).

where Σ̂ is the covariance matrix estimator based on the residuals û
(0)
t .
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Subspace Algorithms

Subspace algorithms rely on the state space representation of a linear sys-
tem. The CCA algorithm is originally due to Larimore (1983). The estima-
tor’s theoretical properties, including consistency and asymptotic normality,
have been developed in a number of papers. Deistler, Peternell and Scherrer
(1995) state conditions for the consistency of the transfer function estimates
and Bauer (2005b) shows the equivalence of the system matrix estimators to
the pseudo maximum likelihood approach. The paper of Bauer (2005a) pro-
vides a comprehensive overview. Moreover, the algorithm is also applicable
in the unit root context (Bauer and Wagner, 2002).

The basic idea behind subspace algorithms lies in the fact that if we knew
the unobserved state, xt, we could estimate the system matrices, A, K, C,

by linear regressions as can be seen from the basic equations

xt+1 = Axt + Kut,

yt = Cxt + ut.

Given the state and the observations, Ĉ and ût could be obtained by a
regression of yt on xt and Â and K̂ could be obtained by a regression of
xt+1 on xt and ût. Therefore, the problem is to obtain in a first step an
estimate of the n-dimensional state, x̂t. This is analogous to the idea of
a long autoregression in VARMA models that estimates the unobserved
residuals in a first step which is followed by a least squares regression.
Solving the state space equations, one can express the state as a function of
past observations of yt and an initial state for some integer p > 0 as

xt = (A−KC)pxt−p +
p−1∑

i=0

(A−KC)iKyt−i−1,

= (A−KC)pxt−p +KpY
−
t,p, (C-2)

where Kp = [K, (A−KC)K, . . . , (A−KC)p−1K] and Y −
t,p = [y′t−1, . . . , y

′
t−p]

′.
On the other hand, one can express future observations as a function of the
current state and future noise as

yt+j = CAjxt +
j−1∑

i=0

CAiKut+j−i−1 + ut+j , (C-3)
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for j = 1, 2, . . .. Therefore, at each t, the best predictor of yt+j is a function
of the current state only, CAjxt, and thus the state summarizes in this sense
all relevant information in the past up to time t.
Define Y +

t,f = [y′t, . . . , y′t+f−1]
′ for some integer f > 0 and formulate equation

(C-3) for all observations contained in Y +
t,f simultaneously. Combine these

equations with (C-2) in order to obtain

Y +
t,f = OfKpY

−
t,p +Of (A−BC)pxt−p + EfE+

t,f ,

where Of = [C ′, A′C ′, . . . , (Af−1)′C ′]′, E+
t,f = [u′t, . . . , u′t+f−1]

′ and Ef is a
function of the system matrices. The above equation is central for most
subspace algorithms. Note that if the maximum eigenvalue of (A−KC) is
less than one in absolute value, we have (A −KC)p ≈ 0 for large p. This
condition is satisfied for stationary and invertible processes. This reasoning
motivates an approximation of the above equation by

Y +
t,f = βY −

t,p + N+
t,f , (C-4)

where β = OfKp and N+
t,f is defined by the equation. Most popular subspace

algorithms use this equation to obtain an estimate of β that is decomposed
into Of and Kp. The identification problem is solved implicitly during this
step.
For given integers, n, p, f , the employed algorithm consists of the following
steps:

1. Set up Y +
t,f and Y −

t,p and perform OLS in (C-4) using the available data
to get an estimate β̂f,p.

2. Compute the sample covariances

Γ̂+
f =

1
Tf,p

T−f+1∑

t=p+1

Y +
t,f (Y +

t,f )′ , Γ̂−p =
1

Tf,p

T−f+1∑

t=p+1

Y −
t,p(Y

−
t,p)

′,

where Tf,p = T − f − p + 1.

3. Given the dimension of the state, n, compute the singular value de-
composition

(Γ̂+
f )−1/2β̂f,p(Γ̂−p )1/2 = ÛnΣ̂nV̂ ′

n + R̂n,
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where Σ̂n is a diagonal matrix that contains the n largest singular
values and Ûn and V̂n are the corresponding singular vectors. The
remaining singular values are neglected and the approximation error
is R̂n. The reduced rank matrices are obtained as

Ôf K̂p = [(Γ̂+
f )1/2ÛnΣ̂1/2

n ][Σ̂1/2
n V̂ ′

n(Γ̂−p )−1/2].

4. Estimate the state as x̂t = K̂pY
−
t,p and estimate the system matrices

using linear regressions as described above.

Although the algorithm looks quite complicated at first sight, it is actually
very simple and is believed to lead to numerically stable and accurate esti-
mates. There are certain parameters which have to be determined prior to
estimation, namely the dimension of the state and the integers f and p. For
the asymptotic consequences of various choices see Bauer (2005a).
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Tables and Figures

Table 1: Benchmark Calibrations and Time Series Properties
Common CKM KP

Parameters Benchmark Benchmark
α 0.33
β 0.981/4

σ 1
δ 1− (1− 0.6)1/4

ψ 2.5
γ 1.011/4 − 1
µ 0.00516
L̄ 1
τ̄l 0.243
τx 0.3
ρ 0.94 0.993
στ 0.008 0.0066
σx 0.00568 0.011738
Selected time series properties
eig(A1) 0.9573, 0.9400 0.9573, 0.9930
eig(M1) −0.9557, 0 −0.9505, 0

Parameter values of the CKM and KP benchmark calibrations. In the last two rows
eig(A1) and eig(M1) denote the eigenvalues of the autoregressive and the moving
average matrix of the associated VARMA representations.
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Table 2: Simulation Results - Estimated Contemporaneous Impact
VAR(4) SS(2) VARMA(2,1)

Variable True Value Mean Std. MSE Mean Std. MSE Mean Std. MSE

KP Benchmark

Prod. 0.69 0.55 0.19 1.00 0.58 0.17 0.77 0.55 0.19 1.00
Hours 0.28 0.32 0.43 1.00 0.29 0.41 0.87 0.33 0.43 1.01

KP, σ = 0 (Indivisible Labor)

Prod. 0.65 0.47 0.23 1.00 0.50 0.22 0.87 0.47 0.23 0.98
Hours 0.43 0.58 0.56 1.00 0.53 0.52 0.85 0.61 0.55 1.01

KP, σ = 6 (Frisch Elasticity=0.63)

Prod. 0.75 0.61 0.15 1.00 0.64 0.13 0.65 0.61 0.15 0.97
Hours 0.11 0.10 0.19 1.00 0.10 0.17 0.82 0.11 0.19 1.02

CKM Benchmark

Prod. 0.34 0.11 0.16 1.00 0.11 0.18 1.05 0.09 0.16 1.07
Hours 0.14 0.65 0.38 1.00 0.62 0.40 0.98 0.69 0.36 1.09

CKM, σ = 0 (Indivisible Labor)

Prod. 0.31 -0.11 0.21 1.00 -0.14 0.24 1.17 -0.15 0.20 1.11
Hours 0.21 1.25 0.49 1.00 1.27 0.55 1.08 1.35 0.46 1.12

CKM, σ = 6 (Frisch Elasticity=0.63)

Prod. 0.36 0.30 0.08 1.00 0.31 0.08 0.92 0.30 0.08 0.98
Hours 0.05 0.12 0.17 1.00 0.10 0.17 0.90 0.13 0.17 1.03

CKM, σl/2

Prod. 0.34 0.26 0.09 1.00 0.26 0.09 0.94 0.26 0.09 1.00
Hours 0.14 0.25 0.21 1.00 0.24 0.21 0.89 0.27 0.21 1.03

CKM, σl/3

Prod. 0.34 0.28 0.06 1.00 0.29 0.07 0.91 0.29 0.06 0.96
Hours 0.14 0.19 0.14 1.00 0.17 0.14 0.89 0.19 0.14 1.01

Percent contemporaneous impact on productivity and hours of one standard de-
viation shock to technology. The entries are Monte Carlo means and standard
deviations (Std) for the estimates based on the vector autoregressive (VAR), state
space (CCA) and vector autoregressive moving average (VARMA) representation.
Mean squared errors (MSE) are relative to the MSE of the (structural) VAR
estimates.
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Table 3: Simulation Results - Estimated Long-Run Effect
VAR(4) SS(2) VARMA(2,1)

Variable True Value Mean Std. MSE Mean Std. MSE Mean Std. MSE

KP Benchmark

Prod. 1.17 1,01 0,39 1,00 0,91 0,23 0,68 1,01 0,39 0,99
Hours 6.66 12,38 22,40 1,00 8,92 14,58 0,41 12,93 22,49 1,02

KP, σ = 0 (Indivisible Labor)

Prod. 1.17 1,04 0,39 1,00 0,95 0,28 0,75 1,05 0,40 1,04
Hours 8.71 19,88 26,50 1,00 15,28 18,47 0,46 20,80 26,91 1,05

KP, σ = 6 (Frisch Elasticity=0.63)

Prod. 1.17 1,01 0,39 1,00 0,91 0,23 0,67 1,01 0,40 1,04
Hours 3.10 5,15 12,57 1,00 3,37 6,81 0,29 5,10 12,42 0,98

CKM Benchmark

Prod. 0.57 0,47 0,11 1,00 0,46 0,11 1,12 0,48 0,10 0,91
Hours 3.23 8,26 6,00 1,00 7,80 5,70 0,87 8,66 5,92 1,05

CKM, σ = 0 (Indivisible Labor)

Prod. 0.57 0,53 0,13 1,00 0,53 0,15 1,33 0,54 0,13 0,91
Hours 4.22 14,42 8,69 1,00 14,68 8,51 1,01 15,32 8,55 1,09

CKM, σ = 6 (Frisch Elasticity=0.63)

Prod. 0.57 0,42 0,08 1,00 0,41 0,06 1,03 0,42 0,07 0,96
Hours 1.50 1,64 2,48 1,00 1,45 2,30 0,86 1,73 2,42 0,96

CKM, σl/2

Prod. 0.57 0,43 0,09 1,00 0,42 0,08 1,03 0,43 0,08 0,93
Hours 3.23 3,37 2,98 1,00 3,01 2,86 0,92 3,48 2,94 0,98

CKM, σl/3

Prod. 0.57 0,43 0,10 1,00 0,42 0,08 1,03 0,43 0,09 0,95
Hours 3.23 2,65 2,26 1,00 2,31 2,03 0,92 2,69 2,22 0,97

Percent long-run effect on productivity and hours of one standard deviation shock
to technology. The entries are Monte Carlo means and standard deviations (Std)
for the estimates based on the vector autoregressive (VAR), state space (SS) and
vector autoregressive moving average (VARMA) representation. All statistics are
computed over 4% trimmed estimation results. See the text for explanation. Mean
squared errors (MSE) are relative to the MSE of the (structural) VAR estimates.
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