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Abstract

In this paper, we empirically evaluate competing approaches for combining inflation
density forecasts in terms of Kullback-Leibler divergence. In particular, we apply a similar
suite of models to four different data sets and aim at identifying combination methods
that perform well throughout different series and variations of the model suite. We pool
individual densities using linear and logarithmic combination methods. The suite consists
of linear forecasting models with moving estimation windows to account for structural
change. We find that combining densities is a much better strategy than selecting a
particular model ex-ante. While combinations do not always perform better than the
best individual model, combinations always yield accurate forecasts and, as we show
analytically, provide insurance against selecting inappropriate models. Combining with
equal weights often outperforms other weighting schemes. Also, logarithmic combinations
can be advantageous, in particular if symmetric densities are preferred.
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1 Introduction

This paper compares some common approaches for combining density forecasts from a given
suite of models using the Kullback-Leibler divergence as a measure of accuracy. A similar
model suite is applied to data sets from four different countries to forecast inflation. The aim
of the paper is to assess the performance of these combination schemes relative to each other
and to the performance of the individual models. In particular, we base our evaluation on the
combinations’ performance throughout different data sets and variations of the model suite.
We find that some simple combination schemes perform well in all cases considered and often
outperform the best individual model.

The value of a point forecast can be increased by supplementing it with some measure of
uncertainty. Interval and density forecasts are considered an important part of the commu-
nication from policymakers to the public. For example, the Bank of England as well as the
central bank of Norway, Norges Bank, publish so-called fan charts for inflation that commu-
nicate the banks’ views on possible paths of future inflation. However, policymakers usually
have a whole suite of forecast models at hand. In this situation, some questions naturally
arise whether one is just interested in point forecasts or whether one is trying to predict den-
sities. First, should one choose a single model or combine the individual models to form some
sort of consensus forecast? Second, in which way should one possibly combine the individual
forecasts?

For the combination of point forecasts, the literature has reached a relatively mature state
dating back to papers such as Bates and Granger (1969). In their framework, they show that
the forecast error variance resulting from the combined forecast is less or equal to the forecast
error variance of the best individual model in the suite, provided that optimal weights are
chosen. They also show that major improvements are most likely to happen when the individ-
ual forecasts are not highly correlated. Timmermann (2006) provides an extensive summary
of the literature on combining point forecasts and the success of forecast combinations in this
field motivates quite naturally the extension to density forecasts. However, the literature on
density forecasting and on density combinations emerged only recently.

Tay and Wallis (2000) and Corradi and Swanson (2006a) provide surveys on the evaluation
of individual density and interval forecasts. See also Clemen, Murphy and Winkler (1995).
Clements (2006) and Granger, White and Kamstra (1989) have considered a combination of
event and quantile forecasts. While Genest and Zidek (1986) provided a survey on density
combination in a rather decision-theoretic framework, Wallis (2005) is one of the recent papers
in economics on density combinations. Some combination schemes for density forecasts have
been proposed probably because of their success in combining point forecasts (Hendry and
Clements, 2004; Granger and Jeon, 2004; Wallis, 2005). Mitchell and Hall (2005) and Hall and
Mitchell (2007) provide some justification for density combination and propose the Kullback-
Leibler divergence as a unified measure for the evaluation and combination of density forecasts.
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Bayesian approaches naturally lend themselves to density combination schemes. There-
fore, it might not be surprising that various possible approaches have emerged in this field.
For example, Min and Zellner (1993) propose simple combinations based on posterior odds
ratios. Palm and Zellner (1992) propose a combination method that captures the full cor-
relation structure between the forecast errors resulting from different models by explicitly
modeling their dynamic interaction. Following Morris (1974, 1977) and Winkler (1981), Hall
and Mitchell (2004) consider an approach where competing density forecasts are combined
by a “decision maker” who views these forecasts as data that are used to update a prior dis-
tribution. Bayesian model averaging (BMA) methods have been proposed by Leamer (1978),
Raftery, Madigan and Hoeting (1997) and Geweke and Whiteman (2006).1

There are very few studies in economics that take a comparative point of view and evaluate
alternative methods of density forecast combination. Jore, Mitchell and Vahey (2007) provide
some evidence on the performance of the weighting scheme proposed by e.g. Mitchell and
Hall (2005) relative to equal weights and the pairwise equal averaging method of Clark and
McCracken (2007). However, our knowledge of when and why predictive density combinations
work is still very limited. As Hall and Mitchell (2007) state: “It is important to try to build
up both an increased understanding and an empirical consensus about the circumstances in
which density forecast combination works.” Taking inflation density forecasting as a relevant
example, we therefore extend the empirical literature in two ways. First, we compare different
functional forms of density aggregation. Second, we apply a similar model suite to different
data sets and focus on the combination methods’ performance throughout these data sets in
order to obtain results which can be expected to be more robust to variations in the model suite
and sample period. To the best of our knowledge, these features are not simultaneously shared
by any of the other empirical studies focusing on the combination of predictive densities.

Specifically, we compare combinations of density forecasts for inflation using a suite of
linear, univariate and multivariate forecasting models and compare the results over data sets
for the US, the UK, Norway and New Zealand. The size of the model suite is relatively mod-
est. All models are estimated using a moving window of fixed size to account for structural
change. We investigate two possible ways of aggregation. The first method is the “linear
opinion pool” proposed by Stone (1961). This method was used almost exclusively in em-
pirical applications on density forecast combination. The second method is the “logarithmic
opinion pool” (see e.g. Winkler, 1968). We consider three different methods to construct
model weights for each of the aggregation methods: equal weights, recursive log score weights
and (inverse) mean squared error weights. We show that both combination methods always
provide insurance against selecting bad models. Then, we study how predictive density com-
binations perform relative to individual density forecasts and selecting the best performing
model at the forecasting origin.

1Some applied Bayesian approaches can be found in Garratt, Lee, Pesaran and Shin (2003); Jackson and
Karlsson (2004) and Andersson and Karlsson (2007).
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Our results show that combining forecasts provides much more accurate forecasts than
selecting a particular model at the forecast origin in almost all cases. Furthermore, the
performance obtained by combining is in several cases better than the result for the ex-post
best individual model. We do not find clear support for linear or logarithmic combinations.
Equal weights and mean square error weights provide more uniform results over the different
data sets than recursive log score weights. The latter weighting scheme provides marginally
more accurate forecasts for the US but performs worse than selection for the other three
countries. We show that this result is largely due to the presence of two extremely well
performing models in the case of the US. Thus, there is less “model uncertainty” in this special
case. As model uncertainty increases, recursive log score weights become a less adequate
weighting scheme.

The rest of the paper is organized as follows. In section two we discuss the evaluation
and combination of density forecasts. In section three we describe the data and the suite of
density forecast models. Section four contains the results of the out-of-sample experiment.
Section five concludes.

2 Evaluating and Combining Density Forecasts

Since the field of density forecasting is in a relatively infant state in economics and, impor-
tantly, no firm standards exist as in the point forecasting literature, we give a brief overview
of the areas that are most relevant to this study. One is how to evaluate predictive densities
and the problem here is that the true density is never observed - not even after the random
variable is drawn. Another question is how to combine predictive densities and the main
choices to be made are the functional form of aggregation and the weighting scheme for the
individual models.

2.1 Evaluating Density Forecasts

The question of how to measure the accuracy of density forecasts has recently received a lot
of attention in the theoretical literature. Corradi and Swanson (2006a) provide an extensive
survey. This question is decisive because it is central to how we design density combination
schemes (Hall and Mitchell, 2007). The essential problem in evaluating density forecasts is
that the true density is not observed - not even ex-post. Additional difficulties arise if one
wants to compare multiple models that are misspecified and sometimes nested.

One branch of the literature is concerned with testing whether predictive densities are
correctly specified (Bierens, 1982; Bierens and Ploberger, 1997). These tests require the
assumption of correct specification of the density forecast under the null hypothesis using all
the relevant information (e.g. Diebold, Gunther and Tay, 1998; Bai, 2003) or conditional
on a given information set (Corradi and Swanson, 2003). Among these measures, the use of
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probability integral transforms (PITs) is popular.
Another branch is concerned with the evaluation of multiple, possibly misspecified mod-

els. One possibility is to evaluate density forecasts in terms of their implied economic value
(Granger and Pesaran, 2000; Clements, 2004). This strategy makes a lot of sense in areas
such as financial econometrics but is less meaningful for policymakers such as central banks.
Therefore we stick to statistical measures. Two approaches have been considered in the re-
cent literature. One is based on a distributional analog of the mean squared error norm
(Corradi and Swanson, 2004, 2006b), the other is based on the Kullback-Leibler divergence
or Kullback-Leibler Information Criterion (KLIC) (Kitamura, 2002; Mitchell and Hall, 2005;
Amisano and Giacomini, 2007).

The measure of distributional accuracy introduced by Corradi and Swanson (2004, 2006b)
is attractive because of its analogy to the usual mean squared error norm in point forecasting.
Given a benchmark density function, a norm over a set of possible density forecasts is defined
in a straightforward manner taking the expectation of the squared, point-wise difference
between a candidate density and the benchmark density over all possible outcomes of the
variable to be forecasted. One problem is the dependence on a benchmark density which
might be difficult to justify in our case unless one uses a nonparametric estimate as in Li and
Tkacz (2006).

On the other hand, measures based on the well-known KLIC can circumvent this prob-
lem. The KLIC is a sensible measure of accuracy, since it chooses the model which on average
gives higher probability to events that have actually occurred. As argued by Mitchell and
Hall (2005), the KLIC is advantageous because it provides a unified framework for evaluating,
comparing and combining density forecasts. Also, the KLIC can be related to other measures
which have been used to evaluate density forecasts ex-post, such as the PITs or Berkowitz’s
(2001) likelihood ratio tests. Measures in terms of the KLIC have also a Bayesian inter-
pretation as the KLIC-best model is also the model with the highest posterior probability
(Fernández-Villaverde and Rubio-Ramirez, 2004). For the i.i.d. case, Vuong (1989) suggests
a likelihood ratio test for choosing the conditional density model that is closest to the true
density in terms of the KLIC. The tests were extended by Amisano and Giacomini (2007)
to cover the case of dependent observations. Also Kitamura (2002) employs a KLIC-based
approach to select between misspecified models.
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Specifically, suppose ft is the true density of a random variable Yt with domain and range
R and we have a set of two densities ft,i, i = 1, 2 obtained from different models. We will
call this set a suite, its elements individual densities and the underlying models individual
models. The KLIC distance between ft and ft,i is defined as

KLICi =
∫
ft(yt) ln

ft(yt)
ft,i(yt)

dyt,

= E[ln ft(yt)− ln ft,i(yt)], (1)

where
∫

means the integral taken over R and E denotes the expectation. We assume here
and in the following that all densities are strictly positive, i.e. ft(y) > 0, ft,i(y) > 0 for all
y ∈ R. In order to compare the KLIC of f1, f2 we only need to evaluate the last term of the
expectation in (1). That is, the expected logarithmic score (ElnS):

ElnSi = E[ln ft,i(yt)]. (2)

Thus, when ElnS1 > ElnS2 then KLIC1 < KLIC2. Under some regularity conditions, a con-
sistent estimate of (2) can be obtained from the average of the sample information, y1, . . . , yT :

lnSi =
1
T

T∑

t=1

ln ft,i(yt). (3)

Therefore, we actually do not need to know ft to compare f1 and f2 and we choose the
model for which the expression in (3) is maximal. The last expression will be called (average)
logarithmic score or simply log score (lnS) in the following.

Turning to density forecasts, let ft+h,t,i denote a prediction of the density for Yt+h, con-
ditional on information up to date t. Density forecasts are also sometimes called predictive
densities. Let yt+h be the realization of Yt+h and suppose that h-step-ahead density fore-
casts have been obtained starting at time T s and given a total number of T observations. A
measure of out-of-sample forecasting performance is the (out-of-sample) log score given by

lnSi,h =
1

T − h− T s + 1

T−h∑

t=T s

ln ft+h,t,i(yt+h). (4)

Models or combination schemes that are associated with a high average log score approximate
well the unknown true density in terms of the KLIC (Hall and Mitchell, 2007). Therefore,
(4) is our preferred measure of forecast accuracy.
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2.2 Combining Density Forecasts

There are two elementary choices in combining predictive densities. One is the way of aggre-
gation or functional form of combining. The other is the construction of the weights attached
to the individual densities. Possible ways of aggregation are described in an early review of
Genest and Zidek (1986). We consider two different functional forms, the linear combination
and the logarithmic combination.2

Consider N competitive h-step-ahead density forecasts obtained using information up to
time t. The easiest combination method is linear combination (Stone, 1961):

f ct+h,t(yt+h) =
N∑

i=1

ωt+h,t,ift+h,t,i(yt+h), (5)

where the suite of individual density forecasts is {ft+h,t,1, . . . , ft+h,t,N} and ωt+h,t,i are the
corresponding weights. The weights have to be a convex linear combination, that is, 0 ≤
ωt+h,t,i ≤ 1 and

∑N
i=1 ωt+h,t,i = 1 for all i = 1, . . . , N such that the resulting combination is

indeed a density function (see also Genest, 1983).
An alternative way of combining densities is logarithmic combination:

f ct+h,t(yt+h) =

∏N
i=1 f

ωt+h,t,i
t+h,t,i (yt+h)

∫ ∏N
i=1 f

ωt+h,t,i
t+h,t,i (yt+h)dyt+h

, (6)

where the non-negative weights are chosen such that the integral in the denominator exists.
In this paper we focus on weighting schemes that satisfy the conditions given for the linear
opinion pool. Winkler (1968) points out that the logarithmic opinion pool has a natural-
conjugate interpretation. The logarithmic combination method has the important property
that it retains the symmetry of individual forecasts whereas linear combination does not.
This is relevant for policymakers that might prefer symmetric forecast densities.

Some reasons to combine density forecasts and to use the above schemes in particular have
been given in the literature. Genest and Zidek (1986) give reasons for the functional forms in
(5) and (6) in a decision-theoretic framework. Logarithmic combination has been put forward
by Winkler (1968) using a specific model. Raftery et al. (1997) and Mitchell and Hall (2005)
argue for linear combination together with weights corresponding to the marginal likelihood
of different models in a Bayesian framework. However, Mitchell and Hall (2005) point out
that using only approximative Bayesian weights might lead to worse density forecasts even
in-sample.

An example in Figure 1 illustrates the main difference between the two aggregation
schemes. Let f1, f2 be the density functions of two normally distributed random variables

2Some alternative approaches are also given in Robertson, Tallman and Whiteman (2005) and Hall and
Mitchell (2004).
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with N(−2, 1) and N(2, 2), respectively. Let the weight for each individual density be 1/2.
Linear combination leads to f lin = 0.5f1 + 0.5f2 with mean 0 and variance 4.5. Logarithmic
combination leads to f log which is the density of a normal random variable with mean −1/2
and variance 4/3, N(−1/2, 4/3) (See Appendix B). From the definition, it is immediately
clear that f lin is typically multimodal while f log is unimodal. Furthermore, f lin is generally
more dispersed than any of the individual densities. The same weighting scheme can therefore
yield substantially different densities, depending on the functional form of aggregation.
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(a) Linear combination
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(b) Logarithmic combination

Figure 1: Individual densities and density combinations using linear and logarithmic com-
bination.

Similar to Hendry and Clements (2004), one can show that the combination of forecasts
with deterministic weights such as equal weights provides “insurance” against selecting a bad
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model. This means that a combination of density forecasts with equal weights will never be
worse than the worst individual forecast. Let f1(yt+h), f2(yt+h) be the individual density
forecasts obtained in some way. A forecaster unaware of the actual data-generating process
combines both density forecasts with weights λ, 1 − λ, λ ∈ [0, 1] according to either (5) or
(6). Suppose that forecast 1 is better than forecast 2 in terms of the KLIC. This implies

E[ln f1(yt+h)|It] ≥ E[ln f2(yt+h)|It], (7)

where the expectation is taken conditional on the available information at time t, It. For the
linear combination, we get for all yt+h ∈ R:

ln(λf1(yt+h) + (1− λ)f2(yt+h)) ≥ λ ln f1(yt+h) + (1− λ) ln f2(yt+h),

because of the concavity of ln. Since the above relationship is true for all yt+h, we have

E[ln(λf1(yt+h) + (1− λ)f2(yt+h))|It] ≥ λE[ln f1(yt+h)|It] + (1− λ) lnE[f2(yt+h)|It],
≥ E[f2(yt+h)|It],

because λ is deterministic and (7). That is, the linear combination is never worse than the
worst individual forecast. For the logarithmic combination, we get for all yt+h:

ln
fλ1 (yt+h)f1−λ

2 (yt+h)∫
fλ1 (yt+h)f1−λ

2 (yt+h)dyt+h
= λ ln f1(yt+h) + (1− λ) ln f2(yt+h)

− ln
∫
fλ1 (yt+h)f1−λ

2 (yt+h)dyt+h,

≥ λ ln f1(yt+h) + (1− λ) ln f2(yt+h)

− ln
∫
λf1(yt+h) + (1− λ)f2(yt+h)dyt+h,

where we use the fact that for all x1, x2 ∈ R, xi > 0 and λ ∈ [0, 1] it holds that xλ1x
1−λ
2 ≤

λx1 + (1− λ)x2 (Jensen’s inequality). Therefore,

ln
fλ1 (yt+h)f1−λ

2 (yt+h)∫
fλ1 (yt+h)f1−λ

2 (yt+h)dyt+h
≥ λ ln f1(yt+h) + (1− λ) ln f2(yt+h)

− ln
[
λ

∫
f1(yt+h)dyt+h + (1− λ)

∫
f2(yt+h)dyt+h

]
,

= λ ln f1(yt+h) + (1− λ) ln f2(yt+h)

− ln[λ+ (1− λ)],

= λ ln f1(yt+h) + (1− λ) ln f2(yt+h).
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Therefore, combining provides insurance even in this case:

E

[
ln

fλ1 (yt+h)f1−λ
2 (yt+h)∫

fλ1 (yt+h)f1−λ
2 (yt+h)dyt+h

∣∣∣It
]
≥ λE[ln f1(yt+h)|It] + (1− λ) lnE[f2(yt+h)|It],

≥ E[f2(yt+h)|It].

While equal weights provide insurance in the above sense, other weighting schemes might
yield even better density combinations. We therefore consider several recent proposals in the
emerging literature as well as the empirical evidence on the combination of point forecasts.

Equal weights (EW): Equal weights are used in the aggregation of the forecasts in the
Survey of Professional Forecasters to publish a combined density forecast for inflation. Equal
weights for combining densities have also been proposed in the literature by Hendry and
Clements (2004) and Wallis (2005). Formally, ωt+h,t,i = 1/N for all t, h, i.

Recursive log score weights (RLSW): If we are measuring density fit by the logarithmic
score, then it is only natural to base the construction of combination weights on past out-
of-sample forecast performance measured in the same way. A promising candidate weighting
scheme are recursive log score weights as proposed in e.g. Jore et al. (2007). The weights for
the h-step ahead density combination take the form:

ωt+h,t,i =
exp[

∑t−h
τ=t ln fτ+h,τ,i(yτ+h)]

∑N
k=1 exp[

∑t−h
τ=t ln fτ+h,τ,k(yτ+h)]

, (8)

where t is the beginning of the evaluation period and is taken as fixed. The weights can be re-
garded as derived in a Bayesian framework to approximate the models’ posterior probabilities.
Mitchell and Hall (2005) discuss the relation to the KLIC.

Mean squared error weights (MSEW): In point forecast combination, weights are often
derived by the models’ relative inverse mean squared prediction error (MSPE) performances
computed over a window of previous observations. These are not “optimal” weights in a linear
framework as MSPE weights ignore the correlation structure between forecasts (Granger and
Ramanathan, 1984). However, these weights tend to outperform more sophisticated weighting
schemes as the correlation matrix of the forecast errors is quite difficult to estimate. The
weights for the h-step ahead density combination take the form:

ωt+h,t,i =
1/MSPEt+h,t,i∑N
k=1 1/MSPEt+h,t,k

, (9)

MSPEt+h,t,i =
1

t− h− t+ 1

t−h∑
τ=t

(yτ+h − µτ+h,τ,i)2,
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where µτ+h,τ,i denotes the mean (or point) forecast of model i and t is again the beginning
of the evaluation period.

Selection (SELEC): Selecting the best model is the obvious alternative to combining and
therefore we also describe how we implement selection in this section. Our strategy uses
only the information available at the forecast origin (abstracting from real-time issues). It
is natural to assume that a forecaster, if he has to select one model, chooses the model
that performed best in the past. Since we are interested in predictive densities, the relevant
criterion is here the past performance of the models in terms of the average log score for a
given horizon. Note that it is less interesting to compare the performance of the combination
methods to the performance of each individual model ex-post because this kind of comparison
ignores the model uncertainty at the time forecasts are made. For example, the integrated
moving-average model to forecast US inflation proposed in Stock and Watson (2007) performs
very well. However, just the date of Stock and Watson (2007) indicates that probably nobody
would have chosen this particular model, say, 20 years ago. Note that the way we select models
should be closely related to the standard AIC criterion based on the predictive likelihood.

3 Data and Models

3.1 Data

We take inflation density forecasting as a relevant example to evaluate different ways of
combining predictive densities. For each country, there is a sample of available observations,
x1, . . . , xT of size T and xt is a vector of observations including the price level series pt.
We are interested in forecasting quarter-to-quarter inflation measured by the quarterly log
change, πt = ∆1 ln pt = ln pt − ln pt−1. We consider the Personal Consumption Expenditure
(PCE) index for the US, Consumer Price indices (CPI) for the UK and New Zealand and
the Norwegian core CPI.3 The set of potential predictors contains a quarterly M2 money
measure (M1 in the case of New Zealand), Mt, a three-month quarterly interest rate, it, a
quarterly output measure, yt, and a quarterly unemployment rate, urt. We use real output as
a measure of US GDP. Quarterly real GDP series are used for the other three countries. We
use seasonally unadjusted series apart from the New Zealand production and unemployment
series. Also, we abstract from the real time aspects and use the latest available vintage for
simplicity. Data sources can be found in the Appendix.4

We start to compute individual forecasts 1 to h-steps ahead beginning at time t. At
time T s = t + 10 we start to compute forecasts also for the combination methods using the
information on the out-of-sample performance of the individual models for t+ h to T s. The

3We focus on core CPI for Norway as energy prices have a dominant role in the Norwegian CPI. Norwegian
energy prices in turn are affected largely by weather conditions.

4All data are available from the authors upon request.

11



evaluation period for all models and combinations is, depending on the horizon, T s + h to
T − 8 + h since 8 is the maximal forecasting horizon. The following graph illustrates our
approach:

t t+h T s

︷ ︸︸ ︷
Initial Training
Period

T s+h T−8+h

T
︸ ︷︷ ︸

Evaluation Period

We consider sample periods that run from 1960 Q1 to 2007 Q3 for US data (T = 191),
from 1978 Q1 to 2007 Q2 for UK data (T = 118), from 1979 Q2 to 2007 Q3 for Norwegian
data (T = 113), and from 1981 Q1 to 2008Q1 for New Zealand data (T = 109).

The evaluation periods start at 1986 Q1, 1994Q2, 1995 Q4 and 1996 Q2. Therefore,
T s = 105, 65, 65, 65 and there are 79, 46, 41 and 37 evaluated forecasts for the US, the UK,
Norway and New Zealand, respectively. Table 1 summarizes this information.

3.2 Models and Forecasting

The model suite is composed of a set of univariate and multivariate specifications. The
univariate models may be in part justified as simple “forecasting devices” as in Clements and
Hendry (2006). These simple models also present different assumptions about the orders of
integration of the price level series. They can be quite serious forecasting devices as pointed
out by e.g. Castle and Hendry (2007). We also use two Philips curve-type models which link
inflation to output growth or the unemployment rate, respectively. The multivariate models
are different VARs and VARMAs that contain variables usually considered in the literature on
forecasting inflation. UK and Norwegian data display seasonality, while US and New Zealand
data do not. Therefore, we construct two model suites taking this difference into account.
Each suite consists of 12 models: six univariate models and six multivariate models. The
complete list of models is given in Table 2.

Some comments are in order here. First, we do not claim that the model suites are
optimal in any sense. We do claim, however, that they represent a collection of reasonable
models that might be used in a real world application. Second, a glance at Table 2 reveals
that some choices such as the lag lengths or the size of the estimation windows are quite ad
hoc. However, the focus is not on finding the best possible specification for each individual
model. The question we ask is: How do different forms of density combinations perform given
a set of realistic models? Third, using a similar suite of models for different data sets is
disputable. On the one hand, it might be more realistic to work out a specific model suite for
every country. On the other hand, this strategy lessens to some extent the dependence of the
results on a particular model suite and makes the findings more comparable across data sets.

All models are estimated using a moving window of the last m observations. All our
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models are linear and estimated by least squares regressions. Exceptions are the univariate
MA models and the VARMA models. The MA models are estimated using the Time Series
4.0 package in GAUSS. The parameter estimates of the first iteration of a Gauss-Newton
algorithm for maximizing the (conditional) likelihood are used in the VARMA case (Hannan
and Kavalieris, 1984). We apply iterative forecasting, and we compute density forecasts using
a normal approximation (Lütkepohl, 2005). Since all models are linear, we can express the
inflation series πt as a function of past errors and an initial value as

πt =
t−1∑

i=0

φiεt−i + bπ0, εt ∼ i.i.d.N(0, σ2).

Assuming that the past errors and coefficients are known, the conditional expectation corre-
sponds to the point forecast πt+h,t =

∑t−1
i=h φiεt+h−i + bπ0, and the forecast error is

πt+h − πt+h,t =
t−1∑

i=0

φiεt+h−i −
t−1∑

i=h

φiεt+h−i =
h−1∑

i=0

φiεt+h−i.

It follows that the forecast error variance is given by

σ2(h) = E[(xt+h − xt+h,t)2],

= E



(
h−1∑

i=0

φiεt+h−i

)2

 = σ2

h−1∑

i=0

φ2
i .

The predictive density given by any of the models in the suite is therefore normally distributed
with mean given by the usual point forecast and variance given by the above expression ,
N(πt+h,t, σ2(h)).

4 Results

The results of the out-of-sample evaluation are summarized in Figures 2 - 3 and in Tables
4 - 7. We focus here on one, four and eight-step-ahead density forecasts. Out-of-sample
forecasting performance is measured both in terms of the average log score, lnS, and RMSPE.
We focus mainly on the lnS as a measure of density forecast accuracy and use the RMSPE for
comparison. Tables 4 - 7 tabulate the out-of-sample forecasting performance of the individual
models, the combination schemes and the selection strategy for each of the four countries.
The explanation of the acronyms for the individual models are given in Table 2.

We apply the test of equal accuracy of two density forecasts developed by Mitchell and
Hall (2005) 5. Suppose there are two density forecasts, ft+h,t,1(yt+h and ft+h,t,2(yt+h), and

5See Mitchell and Hall (2005) page 1005 for further details. Amisano and Giacomini (2007) propose an
alternative approach.
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consider the loss differential

dt+h = ln(ft+h,t,1(yt+h)− ln(ft+h,t,2(yt+h).

The null hypothesis of equal accuracy is then:

H0 : E(dt+h) = 0

The sample mean dt+h = 1
T−h−T s+1

∑T−h
t=T s dt+h has, under appropriate assumptions, the

limiting distribution:

√
T (dt+h − dt+h)→ N(0,Ω).

We compare the averaging strategies to selection. Tables show that differences are often
statistically significant.

The results for the individual models show that there is a close relation between a model’s
average lnS and its RMSPE. Models with the highest lnS often have the lowest or one of the
lowest RMSPE. The relationship is, however, not one-to-one. For example, for all horizons
in the case of Norway and for h = 4 and h = 8 in the case of New Zealand, there are some
models that provide good point forecasts but yield poor density forecasts. As expected, the
forecasting performance of the individual models varies considerably over data sets. As in
Stock and Watson (2007), the IMA1D1 model performs very well in terms of RMSPE and lnS
for the US inflation series. However, the same model (in fourth differences) performs poorly
for other data sets such as for the UK data. Some of the multivariate models generate good
predictive densities. The VAR2D1 pi is the best model among the VARs in the case of the
US, the VAR2D4 pi in the case of Norway and the SVAR2D1 py in the case of the UK. In
the case of New Zealand, the evidence over horizons is not in favor of a particular VAR.

Selecting the best model at the forecast origin is generally difficult and can lead to quite
inaccurate density forecasts. This approach, SELEC, never provides the best statistics, and
for the UK and New Zealand there are several models and combination schemes that perform
better. Results are qualitatively similar in terms of point forecast accuracy. Only in the
case of the US is SELEC comparable to the best model, even if the difference in relation
to the IMA1D1 is substantial. For h = 1 with Norwegian data, SELEC yields as accurate
forecasts as the best individual model, RWD4. The explanation is of course that the RWD4
model provides very good forecasts over time such that it is always selected. Excluding this
case, our results suggest that it is quite difficult to select the best individual model at the
forecast origin. However, note that the forecasts obtained by combining are more accurate
than selection even in this situation.

The results for the combination schemes are given in the lower part of Tables 4 - 7.
Combined forecasts dominate the individual models’ forecasts in several but not all cases.
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However, almost all six combination methods provide higher lnSs than the selection strategy.
Therefore, combining is a “safe” approach to minimize density forecast errors and seems
preferable to selecting a model - even when the weights are estimated.

There are important differences between the four data sets. For US data, the IMA1D1
provides more accurate statistics than any of the combination schemes. Also, the evidence in
favor of combining is weaker when we measure forecast accuracy in terms of RMSPE. Com-
bination schemes give the lowest RMSPE only in five cases and often only marginally. This
means that there is scope for combining density forecasts even in cases in which combinations
do not deliver superior point forecasts.

We do not find clear support in favor of one combination method over the other. Log-
arithmic combination provides high lnS with UK data, but the evidence is mixed for other
countries. Importantly, logarithmic combinations never yield much worse forecasts than lin-
ear combinations. Therefore, the logarithmic combination method is superior to the linear
combination method if one prefers to produce symmetric density forecasts. For the different
weighting schemes, our findings are generally mixed. As in Jore et al. (2007), recursive log
score weights give marginally more accurate forecasts than the other weighting schemes for
the US. For the other countries, RLSW weights yield substantially worse forecasts than alter-
native schemes. Moreover, combinations with RLSW weights occasionally provide forecasts
which are less accurate than the ones obtained by SELEC. While RLSW weights are explicitly
based on past density forecast accuracy, the estimation of RLSW weights is apparently rather
difficult in small samples. EW and MSEW weights provide more uniform results over the
different data sets and are in this sense more reliable weighting schemes. Among all the six
combination methods, logarithmic combination with equal weights is one of the combinations
that yielded very good results throughout data sets.

The tables give statistics over the full evaluation period but it is also interesting to in-
vestigate how different methods perform over time. In Figures 2 and 3, we compare the log
scores of the logarithmic combination method with equal weights and selection over time.
We choose the logarithmic combination with equal weights since this combination performs
generally very well. As a performance measure over time we use cumulative log scores. That
is, we compute

ClnSt =
t∑

s=T s

ln fs+h,s,C(πs+h)− ln fs+h,s,S(πs+h),

for t = T s, . . . , T − 8 + h and fs+h,s,C and fs+h,s,S are the density forecasts obtained from
logarithmic combining and selection, respectively. Thus, ClnSt increases when ft+h,t,C turns
out to be more accurate than ft+h,t,S . Ideally, we would like to see that ClnSt increases
steadily over time. Apart from the the US data set, the graphs show that this is roughly the
case. For the US, the pattern is less clear even though combining is still superior on average.
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This is because IMA1D1 and AR1D4 perform much better than all other models in the suite.
Selecting the best (or the second best) model is therefore easier and as Hall and Mitchell
(2007) and Geweke and Amisano (2008) discuss, the recursive log score measure selects the
dominant models. When we exclude these two models from the suite, the plot is similar to
the other ones (Figure 3). This explains also why recursive log score weights perform so well
for the US. Assigning higher weights to dominant models is simpler in this case and improves
forecast accuracy.

4.1 Robustness analysis

The presented results might still depend on the predetermined collection of individual fore-
casting models. Therefore, we investigate the out-of-sample performance of the combination
schemes and the selection strategy using different model suites. The models were chosen
based on the results in Tables 4 to 7. That is, they were essentially chosen ex-post. Table 3
describes the new model suites for the four robustness exercises undertaken in this section.

In the first exercise, the model suites are limited to the six best performing models. This
exercise should give an advantage to the SELEC strategy as well as to RLSW. It potentially
informs us about the usefulness of trimming the model space. As can be seen in Table
8, SELEC improves as the chance to choose a poor model is lower but combining is again
superior. Also, RLSW weights become more accurate but EW and MSEW still outperform
them to some extent. An exception is the US for reasons outlined above. The combinations’
lnSs do not always improve, indicating that there are few gains from reducing the model space
even more.

The second exercise and the third exercise are similar to the first one. In both cases, the
model suites contain two well performing models for each country. While we choose models
which are highly correlated in terms of RMSPE in the second exercise, we choose two well
performing but lowly correlated models in the third one. The second exercise should give
an advantage to SELEC (and RLSW), but it is comforting to see that density combinations
still perform very well and provide more accurate forecasts than SELEC (Table 9). The third
exercise (Table 10) basically confirms the results obtained in section 4. Comparing Tables
9 and 10, we see that it is usually advantageous to combine good models which display low
correlation. This is a well known result in the point forecasting literature and it makes sense
that it apparently carries over to density forecasts.

Finally, only the best and the worst model of each collection are used in the model suite.
This exercise should give a disadvantage to combination methods that are based on the EW
weighting scheme. It turns out, however, that combination schemes with equal weights are
still performing satisfactorily. This might be because the best and the worst model also
display low correlation such that there is still scope for combination. Also, SELEC yields the
best forecasts in terms of lnS in the case of the US - exactly equal to those of the IMA1D1.
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For the other countries, combining is still superior to selection but less advantageous than in
the other exercises.

In sum, we think that these exercises confirm broadly the results of the main out-of-sample
evaluation.

5 Conclusion

This paper extends the empirical literature on combining inflation density forecasts by eval-
uating several aggregation schemes over four different data sets. We consider both different
combination methods and weighting schemes. Linear and logarithmic combinations with
equal weights, recursive log score weights and mean squared error weights are used to com-
bine density forecasts from a set of univariate and multivariate models for US, UK, Norwegian
and New Zealand inflation. Results are mainly evaluated in terms of average log score.

Combinations always provide relatively accurate forecasts and, as we show, provide in-
surance against selecting an inappropriate model. We find that the combination schemes do
not always beat the best individual models but always outperform a strategy which selects
an individual model at the forecast origin based on past forecasting performance. We do not
find strong evidence in favor of one combination method over the other. Equal weights and
mean squared error weights were generally superior to recursive log score weights. Only in the
case in which there were a small number of outstanding models in the suite did recursive log
score weights yield competitive forecasts. Thus, the success of this weighting scheme crucially
depends on the degree of “model uncertainty” in the overall suite of models.

Our study ignores some interesting issues which might be explored in the future. First,
all models in the suite are linear. As the focus shifts from the usual MSE framework to
density forecasts, there is a potential for mixtures of linear and non-linear models. Second,
we combine and evaluate density forecasts for each horizon separately. A promising line of
research might be the joint evaluation of sequences of forecasts or “forecasting paths”. Last
but not least, we only evaluate a limited number of functional forms and weighting schemes.
The development and evaluation of other density aggregation schemes is another interesting
topic for future research.
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A Logarithmic Combination of Normal Densities

Consider a collection of normal densities, fi(y), i = 1, ..., N . Their logarithmic combination
is given by

flog(y) =
∏N
i=1 f

ωi
i (y)∫ ∏N

i=1 f
ωi
i (y)dy

, (A-1)

where ωi is the combination weight for the density fi(y). Denote the means and variances of
the individual forecasts by µi and σ2

i , i = 1, ..., N , respectively. In this special case, it follows
that

N∏

i=1

fωii (y) = c

N∏

i=1

(
exp

[
−1

2
(y − µi)2

σ2
i

])ωi
, (A-2)

where c = (2π)−
1
2
∏N
i=1 σ

−ωi
i . Define αi = ωi

σ2
i

and write

N∏

i=1

fωii (y) = c
N∏

i=1

exp
[
− ωi

2σ2
i

(y − µi)2

]
= c

N∏

i=1

exp
[
−αi

2
(y − µi)2

]
,

= c exp

[
−1

2

N∑

i=1

αi(y2 + µ2
i − 2yµi)

]
,

= c exp

[
−1

2

(
y2

N∑

i=1

αi +
N∑

i=1

αiµ
2
i − 2y

N∑

i=1

αiµi

)]
.

The term between square brackets can be decomposed as
(
y2

N∑

i=1

αi +
N∑

i=1

αiµ
2
i − 2y

N∑

i=1

αiµi

)
=

N∑

i=1

αi

(
y2 +

∑N
i=1 αiµ

2
i∑N

i=1 αi
− 2y

∑N
i=1 αiµi∑N
i=1 αi

)
,

=
N∑

i=1

αi



(
y −

∑N
i=1 αiµi∑N
i=1 αi

)2

+
∑N

i=1 αiµ
2
i∑N

i=1 αi
− (
∑N

i=1 αiµi)
2

(
∑N

i=1 αi)2


 ,

=
N∑

i=1

αi (y − µc)2 + d,
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where µc =
∑N

i=1 αiµi/
∑N

i=1 αi and d =
∑N

i=1 αiµ
2
i − (

∑N
i=1 αiµi)

2/
∑N

i=1 αi. We can express
the weighted product of the individual densities compactly as

N∏

i=1

fωii (y) = c exp

[
−1

2

(
N∑

i=1

αi (y − µc)2 + d

)]
,

= c exp

[
−1

2

(
N∑

i=1

αi

)
(y − µc)2

]
exp [−1/2d] ,

= c exp [−1/2d] exp
[
−1

2
1
σ2
c

(y − µc)2

]
.

Since c and exp [−1/2d] do not depend on y, we have

∫ N∏

i=1

fωii (y)dy = c exp [−1/2d]
∫

exp
[
−1

2
1
σ2
c

(y − µc)2

]
dy = c exp [−1/2d] (2π)1/2σc.

Thus, the logarithmic combination in (A-1) is given by

∏N
i=1 f

ωi
i (y)∫ ∏N

i=1 f
ωi
i (y)dy

=
c exp [−1/2d](

c exp [−1/2d] (2π)−1/2σc
) exp
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−1

2
1
σ2
c

(y − µc)2
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= (2π)−1/2σ−1
c exp

[
−1

2
1
σ2
c

(y − µc)2

]

which is a normal density, N(µc, σ2
c ), with mean and variance µc and σ2

c , respectively, given
by

µc =
∑N

i=1 αiµi∑N
i=1 αi

,

σ2
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N∑
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αi

)−1
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=
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j=1,j 6=i σ

2
j

.
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B Data and Models

We collect US PCE from the NIPA accounts available from the Bureau of Economic Analysis,
US GDP, M2 and the unemployment rate from the Federal Reserve Bank of Philadelphia’s
Real time Data Set for Macroeconomists, US interest rates from the Federal Reserve Economic
Data (FRED database). UK CPI, interest rates, money and unemployment rate are obtained
from the OECD database, and UK GDP from EUROSTAT. Norwegian data are collected
from Norges Bank’s database and New Zealand data from the Reserve Bank of New Zealand
database.

Table 1: Data Sets

sample evaluation period
US 1960 Q1 - 07 Q3 (1986 Q1+h) - (07 Q3-8+h) (79)
UK 1978 Q1 - 07 Q2 (1994 Q1+h) - (07 Q2-8+h) (46)
Norway 1979 Q2 - 07 Q3 (1995 Q3+h) - (07 Q3-8+h) (41)
NZ 1981 Q1 - 08 Q1 (1996 Q2+h) - (08 Q1-8+h) (37)

Note: The table reports the sample period, the forecasting evaluation period and between parenthesis the
number of evaluated forecasts for different countries.
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Table 2: Definitions of Forecasting Models

Name Definition Variables m

US and New Zealand
RWD1 πt = πt−1 + εt 20
AR1D1 πt = µ+ α1πt−1 + εt 20
AR4D1 πt = µ+ α1πt−1 + . . .+ α4πt−4 + εt 40
IMA1D1 πt = πt−1 + εt + θεt−1 40
PC-Y πt+h = µ+ α(L)πt + β(L)∆1yt + εt+h 50
PC-U πt+h = µ+ α(L)πt + β(L)∆1urt + εt+h 50
VAR2D1 pm ∆1xt = µ+A1∆1xt−1 +A2xt−2 + ut xt = (pt, Mt)′ 50
VAR2D1 pi xt = (pt, it)′

VAR2D1 piy xt = (pt, it, yt)′

VAR2D1 pmy xt = (pt, Mt, yt)′

VARMA11D1 pm ∆1xt = µ+A1∆1xt−1 + ut +M1ut−1 xt = (pt, Mt)′ 50
VARMA11D1 pi xt = (pt, it)′

UK and Norway
RWD4 πat = πat−1 + εt 20
AR1D4 πat = µ+ α1π

a
t−1 + εt 20

SAR2D1 πt = µ+ s1d1t + s2d2t + s3d3t 40
+α1πt−1 + α2πt−2 + εt

IMA1D4 πat = πat−1 + εt + θεt−1 40
PC-Y πat+h = µ+ α(L)πat + β(L)∆4yt + εt+h 40
PC-U πat+h = µ+ α(L)πat + β(L)urt + εt+h 40
VAR2D4 pm ∆4xt = µ+A1∆4xt−1 +A2∆4xt−2 + ut xt = (pt, Mt)′ 50
VAR2D4 pi xt = (pt, it)′

VAR2D4 piy xt = (pt, it, yt)′

VAR2D4 pmy xt = (pt, Mt, yt)′

SVAR4D1 py ∆1xt = µ+ s1d1t + s2d2t + s3d3t xt = (pt, yt)′ 50
SVAR4D1 pi +A1∆1xt−1 + . . .+A4xt−4 + ut xt = (pt, it)′

Note: The table shows the definitions of the forecasting models used in the suite together with the
moving window of observations, m, that is used for estimation. In the table, πt and πat are quarter-
to-quarter and year-to-year inflation, respectively; pt is the price level, it is a short-term interest rate,
Mt is a money measure, urt is the unemployment rate, yt is an output measure. In the PC models,
α(L) = α1 + . . .+ αpL

p−1 and β(L) = β1 + . . . + βqL
q−1 are lag polynomials. Lag lengths are estimated

using the BIC in the case of the PC models with maximal order equal to four.
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Table 3: Robustness checks

US
Six best models AR4D1, IMA1D1, PC-U, VAR2D1 pi

VAR2D1 piy, VARMA11D1 pi
Best and high corr AR4D1, IMA1D1
Best and low corr IMA1D1, PC-U
Best and worst RWD1, IMA1D1 pi

UK
Six best models RWD4, AR1D4, IMA1D4, PC-U

SVAR2D1 py, VAR2D4 pmy
Best and high corr RWD4, AR1D4
Best and low corr RWD4, VAR2D4 pmy
Best and worst RWD4, VAR2D4 pm

Norway
Six best models RWD4, IMA1D4, VAR2D4 pm, VAR2D4 pi

SVAR2D1 pi, VAR2D4 piy
Best and high corr RWD4, VAR2D4 pm
Best and low corr RWD4, VAR2D4 piy
Best and worst RWD4, AR1D4

New Zealand
Six best models AR2D1, IMA1D1, PC-Y, PC-U

VAR2D1 piy, VAR2D1 pmy
Best and high corr PC-Y, PC-U
Best and low corr IMA1D1, PC-Y
Best and worst RWD1, PC-Y

Note: The table indicates the model suites used for the robustness checks in section 4.1 for each country.
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C Results

Table 4: Out-of-sample prediction performance, US

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

Individual Models
RWD1 -0.005 0.231 -0.259 0.222 -0.586 0.278
AR1D1 -0.035 0.216 -0.123 0.239 -0.346 0.265
AR4D1 0.093 0.200 0.008 0.218 -0.336 0.285
IMA1D1 0.167 0.196 0.052 0.210 -0.201 0.265
PC-Y 0.022 0.218 -0.034 0.214 -0.562 0.297
PC-U 0.065 0.208 -0.025 0.211 -0.483 0.284
VAR2D1 pm -0.015 0.223 -0.187 0.241 -0.392 0.281
VAR2D1 pi 0.057 0.212 -0.165 0.238 -0.391 0.278
VAR2D1 piy 0.033 0.217 -0.178 0.249 -0.388 0.283
VAR2D1 pmy -0.051 0.230 -0.218 0.259 -0.409 0.295
VARMA11D1 pm -0.000 0.220 -0.266 0.270 -0.466 0.328
VARMA11D1 pi 0.035 0.210 -0.159 0.245 -0.366 0.299
Selection
SELEC 0.097 0.199 -0.009 0.226 -0.415 0.286
Linear Pooling
EW 0.122 0.203 -0.042 0.218 -0.280 0.265
RLSW 0.155∗ 0.195 0.018 0.222 -0.295∗ 0.280
MSEW 0.129 0.202 -0.019 0.213 -0.247 0.258
Log. Pooling
EW 0.114 0.203 -0.014 0.218 -0.254 0.263
RLSW 0.141∗ 0.195 0.014 0.221 -0.317∗∗ 0.277
MSEW 0.120 0.202 0.028 0.216 -0.187∗∗ 0.259

Note: In the table, lnS denotes the average log score evaluated out-of-sample, RMSPE denotes the root
mean squared prediction error. For the Mitchell and Hall (2005) test, ∗ and ∗∗ indicate rejection at the 90%
and 95% significance level, respectively, of the null hypothesis of equal forecasting accuracy of the selection
strategy and a particular combination method. See Table 2 for definitions of the individual models.
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Table 5: Out-of-sample prediction performance, UK

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

Individual Models
RWD4 -0.347 0.298 -0.357 0.295 -0.539 0.340
AR1D4 -0.464 0.325 -0.361 0.302 -0.486 0.343
SAR2D1 -0.534 0.405 -0.368 0.333 -0.535 0.409
IMA1D4 -0.468 0.314 -0.409 0.295 -0.694 0.340
PC-Y -0.451 0.314 -0.473 0.441 -0.785 0.607
PC-U -0.496 0.397 -0.340 0.325 -0.698 0.545
VAR2D4 pm -0.542 0.402 -0.487 0.319 -0.764 0.414
VAR2D4 pi -0.459 0.342 -0.483 0.329 -0.778 0.447
SVAR2D1 py -0.353 0.351 -0.376 0.358 -0.524 0.420
SVAR2D1 pi -0.408 0.383 -0.392 0.399 -0.660 0.528
VAR2D4 piy -0.450 0.395 -0.522 0.409 -0.686 0.504
VAR2D4 pmy -0.499 0.423 -0.532 0.420 -0.695 0.511
Selection
SELEC -0.483 0.419 -0.395 0.331 -0.701 0.429
Linear Pooling
EW -0.372 0.307 -0.363 0.310 -0.577 0.410
RLSW -0.430 0.389 -0.351 0.319 -0.578 0.404
MSEW -0.370 0.320 -0.347 0.298 -0.574 0.389
Log. Pooling
EW -0.297∗ 0.308 -0.295∗ 0.313 -0.502∗ 0.428
RLSW -0.419 0.389 -0.349 0.321 -0.577∗ 0.435
MSEW -0.303∗∗ 0.323 -0.287∗ 0.300 -0.489∗ 0.409

Note: See footnote in Table 4.
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Table 6: Out-of-sample prediction performance, Norway

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

Individual Models
RWD4 -0.165 0.268 -0.163 0.269 -0.347 0.331
AR1D4 -0.464 0.304 -0.472 0.321 -0.720 0.448
SAR2D1 -0.435 0.266 -0.346 0.272 -0.578 0.304
IMA1D4 -0.216 0.263 -0.190 0.269 -0.381 0.331
PC-Y -0.315 0.268 -0.245 0.269 -0.580 0.349
PC-U -0.269 0.258 -0.211 0.267 -0.572 0.328
VAR2D4 pm -0.243 0.256 -0.227 0.259 -0.354 0.301
VAR2D4 pi -0.189 0.250 -0.193 0.251 -0.361 0.303
SVAR2D1 py -0.242 0.248 -0.301 0.246 -0.509 0.300
SVAR2D1 pi -0.213 0.248 -0.282 0.251 -0.488 0.305
VAR2D4 piy -0.182 0.259 -0.391 0.273 -0.589 0.307
VAR2D4 pmy -0.235 0.270 -0.362 0.269 -0.581 0.307
Selection
SELEC -0.165 0.268 -0.216 0.271 -0.767 0.324
Linear Pooling
EW -0.019 0.230 -0.126 0.250 -0.323 0.293
RLSW -0.175 0.264 -0.182∗ 0.272 -0.435 0.319
MSEW -0.027 0.235 -0.124 0.252 -0.321 0.297
Log. Pooling
EW -0.023 0.230 -0.127∗ 0.255 -0.296∗ 0.300
RLSW -0.191 0.261 -0.256∗ 0.274 -0.635∗∗ 0.317
MSEW -0.048 0.236 -0.130∗ 0.256 -0.308∗ 0.303

Note: See footnote in Table 4.
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Table 7: Out-of-sample prediction performance, New Zealand

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

Individual Models
RWD1 -0.782 0.458 -0.894 0.480 -1.131 0.496
AR1D1 -0.732 0.382 -0.931 0.387 -0.775 0.385
AR2D1 -0.835 0.404 -0.738 0.410 -0.558 0.393
IMA1D1 -0.731 0.384 -0.719 0.420 -0.584 0.408
PC-Y -0.612 0.385 -0.641 0.410 -0.634 0.410
PC-U -0.657 0.409 -0.725 0.475 -0.685 0.413
VAR2D1 pm -0.573 0.391 -0.710 0.447 -0.758 0.450
VAR2D1 pi -0.623 0.420 -0.705 0.423 -0.734 0.414
VAR2D1 piy -0.644 0.479 -0.688 0.392 -0.732 0.410
VAR2D1 pmy -0.546 0.378 -0.694 0.399 -0.751 0.426
VARMA11D1 pm -0.664 0.421 -0.781 0.474 -0.822 0.459
VARMA11D1 pi -0.737 0.438 -0.831 0.558 -0.847 0.528
Selection
SELEC -0.768 0.404 -1.134 0.433 -1.052 0.428
Linear Pooling
EW -0.531 0.379 -0.598 0.411 -0.593∗ 0.398
RLSW -0.732 0.401 -1.098 0.436 -0.959∗∗ 0.422
MSEW -0.480 0.379 -0.552∗∗ 0.395 -0.556∗∗ 0.394
Log. Pooling
EW -0.490 0.378 -0.549∗ 0.391 -0.526∗∗ 0.392
RLSW -0.755 0.398 -1.113 0.422 -0.917∗∗ 0.400
MSEW -0.508∗ 0.381 -0.586∗∗ 0.395 -0.543∗∗ 0.392

Note: See footnote in Table 4.
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Table 8: Out-of-sample prediction performance, best six models

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

US
SELEC 0.127 0.196 0.032 0.208 -0.300 0.280
Linear Pooling
EW 0.146 0.198 -0.015 0.217 -0.270 0.264
RLSW 0.159 0.194 0.049 0.211 -0.243 0.275
MSEW 0.150 0.197 0.011 0.215 -0.235 0.263
Log. Pooling
EW 0.139 0.197 -0.010 0.215 -0.273 0.261
RLSW 0.148 0.193 0.048 0.211 -0.248 0.271
MSEW 0.141 0.197 0.015 0.213 -0.237 0.260

UK
SELEC -0.421 0.393 -0.395 0.331 -0.615 0.435
Linear Pooling
EW -0.359 0.301 -0.338 0.297 -0.551 0.370
RLSW -0.422 0.389 -0.350 0.319 -0.557 0.380
MSEW -0.361 0.312 -0.326 0.292 -0.547 0.352
Log. Pooling
EW -0.300 0.302 -0.289 0.300 -0.482 0.403
RLSW -0.416 0.389 -0.349 0.321 -0.523 0.417
MSEW -0.303 0.313 -0.287 0.296 -0.476 0.386

Norway
SELEC -0.165 0.268 -0.163 0.269 -0.449 0.332
Linear Pooling
EW -0.045 0.234 -0.139 0.251 -0.316 0.301
RLSW -0.165 0.266 -0.161 0.269 -0.336 0.322
MSEW -0.059 0.241 -0.135 0.252 -0.314 0.304
Log. Pooling
EW -0.056 0.234 -0.134 0.253 -0.299 0.302
RLSW -0.160 0.265 -0.169 0.269 -0.363 0.315
MSEW -0.083 0.242 -0.131 0.254 -0.300 0.305

New Zealand
SELEC -0.816 0.396 -0.764 0.405 -0.562 0.376
Linear Pooling
EW -0.546 0.377 -0.628 0.404 -0.583 0.397
RLSW -0.620 0.377 -0.738 0.410 -0.561 0.393
MSEW -0.518 0.376 -0.619 0.399 -0.587 0.399
Log. Pooling
EW -0.588 0.379 -0.626 0.401 -0.557 0.398
RLSW -0.690 0.382 -0.738 0.403 -0.549 0.393
MSEW -0.628 0.382 -0.651 0.400 -0.572 0.399

Note: The table reports lnS and RMSPE using only the best six models in the suite.
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Table 9: Out-of-sample prediction performance, two good, highly correlated models

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

US
SELEC 0.127 0.196 0.032 0.208 -0.300 0.280
Linear Pooling
EW 0.175 0.194 0.062 0.211 -0.214 0.271
RLSW 0.162 0.194 0.049 0.212 -0.243 0.276
MSEW 0.174 0.194 0.060 0.211 -0.211 0.268
Log. Pooling
EW 0.157 0.194 0.059 0.211 -0.227 0.270
RLSW 0.150 0.194 0.048 0.211 -0.249 0.272
MSEW 0.158 0.194 0.060 0.209 -0.215 0.265

UK
SELEC -0.347 0.298 -0.406 0.301 -0.537 0.344
Linear Pooling
EW -0.363 0.306 -0.350 0.298 -0.508 0.339
RLSW -0.349 0.298 -0.364 0.298 -0.510 0.340
MSEW -0.361 0.305 -0.351 0.297 -0.512 0.339
Log. Pooling
EW -0.377 0.308 -0.352 0.297 -0.504 0.339
RLSW -0.344 0.298 -0.366 0.298 -0.506 0.339
MSEW -0.372 0.307 -0.352 0.297 -0.507 0.338

Norway
SELEC -0.165 0.268 -0.163 0.269 -0.347 0.331
Linear Pooling
EW -0.124 0.256 -0.125 0.262 -0.304 0.313
RLSW -0.165 0.268 -0.161 0.269 -0.327 0.330
MSEW -0.127 0.256 -0.119 0.263 -0.303 0.314
Log. Pooling
EW -0.136 0.261 -0.126 0.264 -0.283 0.313
RLSW -0.166 0.268 -0.162 0.269 -0.340 0.331
MSEW -0.140 0.261 -0.129 0.265 -0.288 0.314

New Zealand
SELEC -0.619 0.386 -0.642 0.417 -0.692 0.414
Linear Pooling
EW -0.624 0.379 -0.663 0.436 -0.644 0.411
RLSW -0.624 0.377 -0.653 0.431 -0.648 0.411
MSEW -0.626 0.381 -0.664 0.437 -0.646 0.411
Log. Pooling
EW -0.626 0.377 -0.669 0.436 -0.657 0.411
RLSW -0.626 0.377 -0.657 0.432 -0.661 0.411
MSEW -0.628 0.379 -0.669 0.438 -0.658 0.411

Note: The table reports lnS and RMSPE using two good, highly correlated models.
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Table 10: Out-of-sample prediction performance, two good, lowly correlated models

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

US
SELEC 0.167 0.196 0.052 0.210 -0.201 0.265
Linear Pooling
EW 0.156 0.195 0.051 0.204 -0.277 0.260
RLSW 0.167 0.195 0.052 0.210 -0.201 0.265
MSEW 0.161 0.194 0.052 0.209 -0.217 0.264
Log. Pooling
EW 0.158 0.195 0.042 0.206 -0.287 0.267
RLSW 0.168 0.195 0.052 0.210 -0.201 0.265
MSEW 0.164 0.195 0.051 0.209 -0.214 0.266

UK
SELEC -0.499 0.423 -0.357 0.295 -0.554 0.368
Linear Pooling
EW -0.338 0.316 -0.379 0.316 -0.570 0.379
RLSW -0.499 0.422 -0.354 0.292 -0.563 0.375
MSEW -0.358 0.344 -0.351 0.294 -0.545 0.350
Log. Pooling
EW -0.290 0.312 -0.319 0.321 -0.500 0.407
RLSW -0.502 0.421 -0.343 0.293 -0.526 0.397
MSEW -0.314 0.335 -0.315 0.301 -0.483 0.378

Norway
SELEC -0.165 0.268 -0.163 0.269 -0.347 0.331
Linear Pooling
EW 0.017 0.232 -0.119 0.256 -0.317 0.302
RLSW -0.165 0.267 -0.162 0.269 -0.331 0.329
MSEW 0.001 0.238 -0.112 0.258 -0.320 0.309
Log. Pooling
EW 0.005 0.231 -0.148 0.267 -0.337 0.315
RLSW -0.159 0.265 -0.163 0.269 -0.345 0.330
MSEW -0.037 0.239 -0.157 0.269 -0.358 0.318

New Zealand
SELEC -0.771 0.388 -0.725 0.422 -0.715 0.403
Linear Pooling
EW -0.539 0.374 -0.631 0.418 -0.562 0.400
RLSW -0.649 0.384 -0.726 0.419 -0.620 0.401
MSEW -0.535 0.379 -0.674 0.414 -0.588 0.406
Log. Pooling
EW -0.618 0.379 -0.643 0.405 -0.561 0.400
RLSW -0.752 0.387 -0.723 0.416 -0.620 0.400
MSEW -0.671 0.383 -0.696 0.413 -0.582 0.405

Note: The table reports lnS and RMSPE using two good models with low correlation.

32



Table 11: Out-of-sample prediction performance, best and worst model

h=1 h=4 h=8
lnS RMSPE lnS RMSPE lnS RMSPE

US
SELEC 0.167 0.196 0.052 0.210 -0.201 0.265
Linear Pooling
EW 0.125 0.207 -0.061 0.209 -0.330 0.266
RLSW 0.165 0.197 0.047 0.210 -0.208 0.265
MSEW 0.135 0.204 -0.057 0.208 -0.322 0.265
Log. Pooling
EW 0.128 0.205 0.005 0.207 -0.237 0.264
RLSW 0.165 0.197 0.048 0.210 -0.206 0.265
MSEW 0.138 0.203 0.008 0.207 -0.233 0.264

UK
SELEC -0.491 0.393 -0.392 0.313 -0.641 0.384
Linear Pooling
EW -0.411 0.326 -0.388 0.299 -0.631 0.368
RLSW -0.478 0.391 -0.385 0.301 -0.598 0.372
MSEW -0.404 0.325 -0.380 0.297 -0.610 0.369
Log. Pooling
EW -0.368 0.327 -0.357 0.298 -0.590 0.367
RLSW -0.463 0.388 -0.369 0.299 -0.575 0.369
MSEW -0.363 0.326 -0.352 0.296 -0.574 0.369

Norway
SELEC -0.165 0.268 -0.216 0.271 -0.445 0.335
Linear Pooling
EW -0.245 0.281 -0.253 0.290 -0.452 0.366
RLSW -0.174 0.268 -0.192 0.271 -0.415 0.334
MSEW -0.235 0.280 -0.249 0.289 -0.453 0.364
Log. Pooling
EW -0.286 0.283 -0.290 0.292 -0.468 0.366
RLSW -0.185 0.268 -0.207 0.272 -0.432 0.335
MSEW -0.273 0.281 -0.283 0.290 -0.469 0.364

New Zealand
SELEC -0.782 0.458 -0.893 0.473 -1.013 0.476
Linear Pooling
EW -0.557 0.391 -0.646 0.415 -0.689 0.426
RLSW -0.782 0.458 -0.872 0.476 -0.994 0.480
MSEW -0.553 0.408 -0.695 0.443 -0.863 0.460
Log. Pooling
EW -0.517 0.401 -0.520 0.393 -0.536 0.407
RLSW -0.778 0.457 -0.857 0.482 -0.935 0.473
MSEW -0.574 0.412 -0.553 0.419 -0.633 0.414

Note: The table reports lnS and RMSPE using only the best and the worst model in the suite.
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Figure 2: Cumulative Log scores

(a) US – UK

(b) Norway – New Zealand

Note: The graphs show the inflation series (solid lines) and the cumulative difference between the realized log

scores of the log pooling combination with equal weights and selection (dashed lines).
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Figure 3: US excluding AR4D1 and IMA1D1

Note: The graph shows the US inflation series (solid line) and the cumulative difference between the realized

log scores of the log pooling combination with equal weights and selection (dashed line) when AR4D1 and

IMA1D1 are excluded from the model suite.
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