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Abstract

We study monetary policy under uncertainty. A policy which ameliorates a worst case may dif-

fer from a policy which maximizes robustness and satisfices the performance. The former strategy

is min-maxing and the latter strategy is robust-satisficing. We show an “observational equivalence”

between robust-satisficing and min-maxing. However, there remains a “behavioral difference” be-

tween robust-satisficing and min-maxing. Policy makers often wish to respect specified bounds on

target variables. The robust-satisficing policy can be more (and is never less) robust, and hence

more dependable, than the min-max policy. We illustrate this in an empirical example where

monetary policy making amounts to selecting the coefficients of a Taylor-type interest rate rule,

subject to uncertainty in the persistence of shocks to inflation.
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1 Introduction

We employ the robust-satisficing approach to derive monetary policy response under parameter

uncertainty. This approach bases decision making on two main premises. First, uncertainty about

some relevant aspect is of the Knightian kind, which cannot be modeled probabilistically (Knight

1921). And second, the decision maker aims to attain performance at some satisfactory level rather

than at the peak level (Simon 1959 and 1979 and references therein).

The robust-satisficing policy maximizes robustness at a given level of acceptable performance

(Ben-Haim 2006). Robustness is measured as the extent of deviation from a decision maker’s

underlying premises at which the performance will not deteriorate beyond some acceptable level.

The performance can, however, deteriorate beyond the acceptable level for larger, unspecified,

deviations from the underlying premises. This is in contrast with the robust control approach that

seeks to limit the maximum potential loss and hence requires specification of a worst case; see e.g.

Hansen and Sargent (2001).

The robust-satisficing approach quantifies the trade-off between the degree of robustness and the

level of acceptable performance. Robustness of a policy can be raised by lowering one’s aspirations

regarding its performance and accepting a higher level of loss (Ben-Haim 2006).

The robust-satisficing approach is attractive when a decision maker wishes to keep losses within

specified bounds. Sometimes a policy maker’s credibility depends on performing within a specified

range of outcomes, for instance keeping inflation within specified limits. A policy which ameliorates

a worst case may be quite unreliable in achieving the specified performance requirements, and may

be costly in terms of forsaken performance in the normal course of events; cf. Cogley and Sargent

(2005).

The robust-satisficing approach is quite general and can be employed to derive decisions under

various kinds of uncertainties separately or jointly.1 However, this approach has so far not been

employed rigorously in monetary policy analysis, though it has been illustrated within the monetary

policy context (Akram et al 2006).

Studies of monetary policy decisions under uncertainty are mainly based on the Bayesian and

the robust control approaches; see e.g. Hansen and Sargent (2001), Onatski and Williams (2003),

1The robust-satisficing approach has been previously applied to a wide variety of decision problems with Knight-
ian uncertainty, including financial risk assessment (Ben-Haim 2005); environmental regulation (Stranlund and
Ben-Haim 2007); search behavior in animal foraging (Carmel and Ben-Haim 2005); policy decisions in marine re-
serve design (Halpern et al 2006); natural resource conservation decisions (Moilanen and Wintle 2006); inspection
decisions by port authorities to detect terrorist weapons (Moffitt et al 2005) and to detect invasive species (Moffitt
et al 2007); technological fault diagnosis (Pierce et al 2006) and testing (Vinot et al 2005); and project management
(Regev et al 2006).
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Levin and Williams (2003), Levin et al (2003), Leitemo and Söderström (2005), Rustem et al

(2005) and Tetlow and von zur Muehlen (2001). The Bayesian approach requires that one select

a probability distribution on the uncertain aspect of the decision problem, e.g. model parameters.

This enables one to choose an expected-loss-minimizing policy. The robust control approach (also

referred to here as min-max) suggests designing policies to perform relatively well in worst-case

scenarios, i.e. when the underlying premises turn out to be false in the most unfortunate way. This

approach enables one to limit the maximum potential loss. Accordingly, a fictitious malevolent

agent who represents a policy maker’s worst fears concerning mis-specification is introduced into

the optimization problem and motivates the policy maker to minimize the loss function under

the worst-case scenario.2 The level of uncertainty can be regulated by adjusting the resources

available to the malevolent agent. Alternatively, Rustem et al (2005) recognize that the uncertain

“range needs to be specified by the policy maker” in terms of the potential deterioration of the

performance.

The main innovation of this paper is the comparison of min-max with robust-satisficing policy-

selection strategies. Our comparison has two elements. First, we identify a mathematical equiv-

alence between these strategies. Second, despite this equivalence between the strategies, there

is a fundamental motivational distinction between them. Very different policy choices are made,

depending on whether the goal is to minimize a maximal loss (min-max) or to maximize the range

of uncertain contingencies within which the outcome is acceptable (robust-satisficing). We argue

that policy makers who face explicit outcome requirements will tend to prefer the robust-satisficing

approach.

The min-max strategy requires the policy maker to specify, before selecting a policy, the worst

possible realization of the uncertain quantities. The min-max policy is the policy for which the

loss under the worst-case realization is minimal (relative to the other policies considered).

The robust-satisficing policy requires the policy maker to specify, before selecting a policy, the

greatest acceptable loss (without specifying a worst case of the uncertain quantities). The robust-

satisficing policy is the policy for which no more than acceptable loss occurs for the greatest range

of realizations of the uncertain quantities.

The equivalence between min-max and robust-satisficing policies results because any choice of

2Knightian uncertainty can be either structured or non-structured (Tetlow and von zur Muehlen 2004). Under
structured Knightian uncertainty, the true values of one or more specified parameters of the model are supposed to
be bounded between known extreme values. Under unstructured Knightian uncertainty, however, few restrictions
are placed on the uncertain aspects of a model. The numerical example considered in this paper can therefore be
classified as structured Knightian uncertainty.
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the worst case (required by min-max) corresponds to a choice of greatest acceptable loss (required

by robust-satisficing). There is, therefore, a numerical or graphical equivalence between these

policies. We will refer to this as the “observational equivalence” between robust-satisficing and

min-maxing, since it implies that a modeller can always describe the behavior of a policy maker,

either a min-maxer or a robust-satisficer, with either strategy.

However, that equivalence can be illusory from the perspective of policy selection. A robust-

satisficing policy maker might agree with the min-max analyst on the choice of the worst possible

realization. However, if the policy maker’s choice of greatest acceptable loss is not the dual value of

this worst case, then their policy choices can differ. Furthermore, the range of uncertain contingen-

cies which result in acceptable loss is never smaller (and usually larger) with the robust-satisficing

policy than with the min-max policy. We will refer to this as the “behavioral difference” between

robust-satisficing and min-maxing.

To contrast robust-satisficing policy with the min-maxing policy, we employ the robust-satisficing

approach to derive monetary policy response when there is uncertainty about the degree of per-

sistence in the supply shock. Our analysis is based on the aggregated model of the US economy

estimated by Rudebusch and Svensson (1999). Monetary policy is characterized by a simple Taylor-

type interest rate rule, where the decision parameters are the response coefficients associated with

inflation and output gaps as well as degree of interest rate smoothing; see Taylor (1999). The

empirical analysis is mainly intended to illustrate the robust-satisficing approach and highlight

when its policy implications differ from those of the robust control approach, and when they agree.

The empirical analysis suggests that the policy implications of the two approaches can differ sub-

stantially if one seeks to maximize the robustness at relatively low levels of acceptable loss.

The paper is organized as follows. Section 2 formulates the robust-satisficing and min-maxing

strategies for policy selection, and discusses their basic properties in a very general formulation.

The observational equivalence is stated in proposition 3 of section 2.4, which is followed by a dis-

cussion of the behavioral difference between robust-satisficing and min-maxing. Section 3 employs

the robust-saticficing approach to derive robust monetary policy in response to uncertain persis-

tence in the supply shock. A concluding discussion appears in section 4. Proofs and derivations

appear in the appendices.
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2 Robust-Satisficing and Min-Maxing

In section 2.4 we formalize, very generally, the “observational equivalence” between min-maxing

and robust-satisficing, and the “behavioral difference” between these strategies. Sections 2.1–2.3

lay the foundations.

2.1 Decisions, Uncertainties and the Loss Function

The policy maker will make decisions which we denote by Ω. These decisions may be choices of

policy variables such as the parameters of a Taylor rule, or specific interest rates.

The policy maker’s decisions are based on models and data. Probability distributions may be

part of these models. However, these models and data, including the probabilistic elements, may be

uncertain or incomplete or erroneous in various ways. The uncertainty may be either “structured”

or “unstructured” in the sense of Tetlow and von zur Muehlen (2001). The uncertainty may be in

the size or structure of a set of entities, such as uncertain sets of vectors or functions. For instance,

the values of some of the model parameters may be imprecise. The forms of supply and demand

curves, or Philips curves, may be uncertain. The shapes of the tails of the probability distributions

may be unknown. There may be unknown variables missing from the model.

In the following we use θ to denote any specific realization of the uncertain elements, which may

be specific parameter values, functions, missing variables or relations, probability distributions, or

sets of such entities. The assumed or estimated value of θ is denoted θ̃. The uncertainty in θ is

represented by an info-gap model of uncertainty (Ben-Haim 2006), which is an unbounded family

of nested sets, U(ℓ, θ̃), of possible θ-values. At any level of uncertainty, ℓ, the set U(ℓ, θ̃) contains

possible realizations of θ. As ℓ gets larger, the sets become more inclusive. The info-gap model

expresses the decision maker’s beliefs about uncertain variation of θ around θ̃.

Info-gap models obey two axioms:

Contraction: U(0, θ̃) = {θ̃} (1)

Nesting: ℓ < ℓ′ implies U(ℓ, θ̃) ⊆ U(ℓ′, θ̃) (2)

The contraction axiom asserts that θ̃ is the only possibility when there is no uncertainty (ℓ =

0). The nesting axiom asserts that the range of possible realizations increases as the level of

uncertainty increases. Info-gap models entail no probabilistic information and thus are one possible

quantification of Knightian uncertainty.
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The loss resulting from decision Ω, if the uncertain elements take the values θ, is L(Ω, θ). The

loss may be an expectation, or a deterministic model calculation.3 The satisficing policy maker

desires low loss, and can accept loss no greater than the critical value Lc:

L(Ω, θ) ≤ Lc (3)

We treat Lc as a parameter which can be chosen small or large, so the satisficing requirement in

eq.(3) includes minimizing the loss as a special case.

2.2 Decision Strategies: Robust-Satisficing, Conditional Optimization,

and

Min-Maxing

We will consider three types of decision strategies for choosing the decision, Ω, from within a set,

R, of feasible decisions.

To define the robust-satisficing decision we must first define the robustness function. The

robustness of decision Ω, with the satisficing requirement Lc of eq.(3), is the greatest level of

uncertainty ℓ up to which all realizations of θ result in loss no greater than Lc:

ℓ̂(Ω, Lc) ≡ max

{
ℓ :

(
max

θ∈U(ℓ,eθ)
L(Ω, θ)

)
≤ Lc

}
(4)

The robust-satisficing decision maximizes the robustness and satisfices the loss at the value Lc,

without specifying a limit on the level of uncertainty:

Ωs(Lc) ≡ arg max
Ω∈R

ℓ̂(Ω, Lc) (5)

Conditional optimization is the decision, Ωb, which minimizes the loss based on the assumed

or estimated value of θ, which is θ̃:

Ωb ≡ arg min
Ω∈R

L(Ω, θ̃) (6)

The min-max decision minimizes the maximum loss based on an estimate, ℓm, of the greatest

level of uncertainty:

Ωm(ℓm) ≡ arg min
Ω∈R

max
θ∈U(ℓm,eθ)

L(Ω, θ) (7)

3Our discussion can be readily extended to multiple loss functions.
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2.3 Basic Properties of the Decision Strategies

These decision strategies—robust-satisficing Ωs(Lc), conditional optimizing Ωb, and min-maxing

Ωm(ℓm)—have several basic properties which we now identify. The proof of proposition 1 appears

in (thm. 1 and cor. 1/1, Ben-Haim 2000), and derives essentially from the nesting axiom. The

proof of proposition 2 derives immediately from the contraction axiom and will not be elaborated.

Proposition 3 (in section 2.4) is proven in appendix A.

Proposition 1 Performance trades-off against robustness, both at a fixed decision, Ω, and at the

robust-satisficing decision Ωs(Lc), if L(Ω, θ) is uniformly continuous in θ.

At fixed decision Ω:

Lc < L′
c implies ℓ̂(Ω, Lc) ≤ ℓ̂(Ω, L′

c) (8)

At the robust-satisficing decision Ωs(Lc):

Lc < L′
c implies ℓ̂[Ωs(Lc), Lc] ≤ ℓ̂[Ωs(L

′
c), L′

c] (9)

Better performance (lower loss Lc), entails lower robustness ℓ̂(Ω, Lc). Relation (8) asserts that this

holds at any fixed decision such as the conditional-optimum decision Ωb or the min-max decision

Ωm(ℓm) in which ℓm is fixed as Lc and ℓ̂[Ωm(ℓm), Lc] vary. Relation (9) asserts that this trade-off

also holds for the robust-satisficing Ωs(Lc) which may vary as Lc varies.

Proposition 2 Conditional-estimate aspirations have no robustness. For any decision Ω for which

L(Ω, θ) is not a local maximum at θ̃:

Lc = L(Ω, θ̃) implies ℓ̂(Ω, Lc) = 0 (10)

The condition that “L(Ω, θ) is not a local maximum at θ̃” means that outcomes could be worse

than the conditional-estimated outcome, L(Ω, θ̃). If the outcomes cannot be worse than L(Ω, θ̃),

then uncertainty is strictly favorable and entails only the possibility of better-than-anticipated

outcomes.

For any decision, Ω, the resulting loss conditioned on the estimate θ̃ is denoted L(Ω, θ̃). Propo-

sition 2 asserts that, for any decision Ω, aspiring to loss as low as L(Ω, θ̃) has no robustness to error

or uncertainty in θ̃. Since this is true for any Ω, it is also true for each of the decision-strategies

in eqs.(5), (6) and (7).
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Propositions 1 and 2 can be illustrated schematically as in fig. 1. Proposition 1 asserts that

a plot of ℓ̂(Ω, Lc) vs. Lc will be a monotonically increasing curve, where Ω is either constant or

equal to Ωs(Lc). Proposition 2 asserts that the plot of ℓ̂(Ω, Lc) will intersect the Lc-axis at the

anticipated loss, Lc = L(Ω, θ̃).

-

6

L(Ω,eθ)

0

Robustness

ℓ̂(Ω, Lc)

Loss, Lc
-

6

0

Ω1 = Ωs(Lc)

Ω2 = Ωm(ℓm)

-

?

ℓm

Lm

6
�ℓ̂

Lc

Robustness

ℓ̂(Ωi, Lc)

Loss, Lc

Figure 1: Robustness curve. Figure 2: Crossing robustness curves.

The final property we need to discuss is that robustness curves can cross, as illustrated in fig. 2.

Policy Ω1 is more robust than policy Ω2 at low loss and low robustness, and less robust at high loss

and high robustness. Monotonic trade-off (proposition 1) and the crossing of robustness curves

underlie the observational equivalence, and the behavioral difference, between robust-satisficing

and min-maxing, as we now explain intuitively.

Consider first the behavioral difference. Fig. 2 compares two policies. If the level of uncertainty

is known to be ℓm, then Ω2 is the min-max policy choice (between these two options), because its

maximal loss, Lm, is less than for policy Ω1. However, suppose the policy maker is required to

aim at loss no greater than Lc, where Lc < Lm, and Lc is also less than the value at which the

robustness curves cross. Then Ω1 is the robust-satisficing policy (between these two options) since

its robustness at Lc, ℓ̂, exceeds the robustness of Ω2 at Lc, meaning that Ω1 will achieve loss no

greater than Lc for a wider range of contingencies than Ω2.

The observational equivalence results as follows. When the policy maker chooses Ω1 because

it is the robust-satisficing decision at requirement Lc, the modeller can alternatively explain this

as min-maxing by positing that the policy maker believes the level of uncertainty is ℓ̂. With this

belief, Ω1 is the min-max policy.

In the following subsection we formalize this discussion.

It is worth noting that greater robustness for satisfying the performance requirements does not

necessarily imply greater probability for doing so. That is, when we say that Ω1 will achieve loss no
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greater than Lc for a wider range of contingencies than Ω2, we are not asserting that either range

of contingencies is a subset of the other. However, there are situations in which greater robustness

does imply greater probability, as studied by Ben-Haim (2007).

2.4 Min-Max and Robust-Satisficing: Equivalence and Difference

Before introducing our main result, we first mention a useful way of evaluating the robustness. Let

µ(ℓ,Ω) denote the inner maximum in the definition of the robustness in eq.(4), that is, maxθ L(Ω, θ).

By the nesting axiom, µ(ℓ,Ω) increases monotonically as ℓ increases. By definition, the robustness,

ℓ̂(Ω, Lc), is the greatest value of ℓ for which µ(ℓ,Ω) ≤ Lc. Therefore, by monotonicity, the robust-

ness is the greatest value of ℓ satisfying µ(ℓ,Ω) = Lc. Hence a plot of µ(ℓ,Ω) vs. ℓ is identical to a

plot of Lc vs. ℓ̂(Ω, Lc). In other words, µ(ℓ,Ω) vs. ℓ is the inverse of ℓ̂(Ω, Lc) vs. Lc. It is readily

shown that this also holds for the min-max and the robust-satisficing decisions, Ωm(ℓ) and Ωs(Lc).

Proposition 3 The robust-satisficing and min-maxing policies, Ωs(Lc) and Ωm(ℓm), are identical

for appropriate choices of the parameters Lc and ℓm.

Given: µ[ℓ,Ωm(ℓ)] and µ[ℓ,Ωs(Lc)] are strictly monotonically increasing in ℓ.

Then:

• For any ℓm for which Ωm(ℓm) exists, there is an Lc such that:

Ωs(Lc) = Ωm(ℓm) (11)

• For any Lc for which Ωs(Lc) exists, there is an ℓm such that:

Ωm(ℓm) = Ωs(Lc) (12)

What proposition 3 does not assert is that a policy maker will be indifferent between the

min-maxing and the robust-satisficing decision strategies. We reason as follows.

First of all, if the policy maker does not know, or have an estimate of, the greatest level of

uncertainty, then the min-max strategy cannot be implemented, though robust-satisficing is still

feasible.

But suppose that the policy maker agrees that the greatest level of uncertainty is ℓm. The

corresponding min-max policy is Ωm(ℓm). Let L1 be the loss at which, according to eq.(11) of

proposition 3, the robust-satisficing and min-maxing policies are identical, so Ωs(L1) = Ωm(ℓm).

(L1 is the maximum loss which can accrue to policy Ωm(ℓm) at uncertainty ℓm.) However, suppose
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that the policy maker aspires to a lower level of loss, L0 < L1, and let Ωs(L0) be the corresponding

robust-satisficing policy. If Ωs(L0) 6= Ωs(L1) then the policy maker will achieve aspiration L0

with policy Ωs(L0) for a larger set of contingencies than with policy Ωs(L1). Hence policy Ωs(L0)

could be preferred. We will encounter an example in section 3.4. This is the behavioral difference

between robust-satisficing and min-maxing.

What eq.(12) of proposition 3 does assert is that any robust-satisficing decision Ωs(Lc) is

identical to, and can be modelled as if it were, a min-max decision, Ωm(ℓm). This only requires

the modeller to posit that the policy maker believes the level of uncertainty is ℓm. This is not

problematic for the modeller if the policy maker’s beliefs about uncertainty are private, though

the policy maker, if asked, might disagree. This is the observational equivalence between min-max

and robust-satisficing.

3 Example

In this section we illustrate the preceding general discussion with a simple example. In particular,

we illustrate the observational equivalence and the behavioral difference between the min-max and

robust-satisficing strategies for policy selection.

3.1 Monetary Policy Objectives and Instrument

We assume that monetary policy authorities have a standard quadratic loss function, which can

be presented in terms of variance of the inflation, output gap, and interest-rate stability:

L = V (π − π∗) + λV (y) + φV (dr), (13)

where V (·) denotes the unconditional variance of its argument; π∗ is the inflation target; λ denotes

the authority’s preference for stabilization of the output-gap relative to that for the inflation gap,

π − π∗; and φ is the relative preference for interest-rate stability.

We characterize monetary policy response by a simple interest rate rule:

rt = ωrrt−1 + (1 − ωr)[r
∗ + π∗ + ωπ(πt − π∗) + ωyyt], (14)

where ω’s are constant coefficients representing the interest rate response to the lagged interest

rate, the inflation gap and the output gap. r∗ denotes the steady state value of the real interest
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rate. The inflation target and the steady state real interest rate sum to the steady state nominal

interest rate.

Monetary policy is implemented with the parameters, Ω = (ωr, ωπ, ωy), in the interest rate

rule eq.(14), in the face of Knightian uncertainty regarding specific parameters, θ, of an economic

model. It is useful to express the loss function, eq.(13), as an explicit function of Ω and θ, as

L(Ω, θ).

The optimal policy, in the absence of Knightian parameter uncertainty regarding θ, can be

formally defined as in eq.(6):

Ωb(θ) = arg min
Ω

L(Ω, θ). (15)

That is, if we knew θ, we could calculate the optimal policy, Ωb(θ). This optimal policy will depend

on the degree of concern for stability in the real economy and of the interest rate, expressed by λ

and φ.

We evaluate a policy in a given state relative to the optimal policy in that state. Therefore, we

employ the relative loss function defined as:

dL(Ω, θ) ≡
L(Ω, θ) − L[Ωb(θ), θ]

L[Ωb(θ), θ]
. (16)

L(Ω, θ) denotes the level of loss by choosing Ω conditional on a specific θ-value, while L[Ωb(θ), θ]

expresses the loss under optimal policy given the same specific θ-value. It follows that dL(Ω, θ) > 0

for Ω 6= Ωb(θ) while dL(Ω, θ) = 0 when Ω = Ωb(θ), assuming the loss function has a unique

minimum. The relative loss, eq.(16) for a particular policy Ω, makes it possible to separate the

policy’s contribution to the performance (loss level) from that of the realized value of the parameter.

3.2 Robust Satisficing Policy

The robustness of policy Ω, for satisfying the relative loss requirement dL(Ω, θ) ≤ dLc, is ℓ̂(Ω,dLc),

defined as in eq.(4). The robust-satisficing policy, Ωs(dLc), maximizes the robustness and satisfices

the relative loss at the value dLc, from among a set R of available policies, as in eq.(5).

In this paper we will consider the set R, of available policies, to be those policies which are

optimal with respect to one from among n specific realizations of the model parameters, θ1, . . . , θn.

That is:

R = {Ωb(θj), j = 1, . . . , n} (17)
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The info-gap model, U(ℓ,Ω), for uncertainty in θ, is defined in appendix B. Notice that we

specify the centerpoint of the info-gap model in terms of the policy, Ω, rather than in terms of a

specific value of θ as we have done earlier. The axioms of nesting and contraction still hold.

We will deal with the uncertainty of a single parameter, θ, which, in our subsequent empirical

example, is a shock-persistence. In this case one can understand the info-gap model intuitively as

follows. At level of uncertainty ℓ, the uncertainty set U(ℓ,Ω) is an interval of θ-values of length ℓ.

Specifically, it is the interval of length ℓ for which the relative losses dL(Ω, θ) at the extremes of

the interval are equal to each other. This does not require the loss function to be symmetric or

convex; only weakly convex as defined in appendix B.

3.3 Model

We characterize the economy by the well known aggregate model of the US economy developed by

Svensson and Rudebusch (1999):

πt = 0.7πt−1 − 0.1πt−1 + 0.28πt−3 + 0.12πt−4 + 0.14yt−1 + uπ,t, (18)

yt = 1.16yt−1 − 0.25yt−2 − 0.1(rt−1 − πt−1) + uy,t. (19)

Here, πt is the quarterly inflation rate, y is the output gap, while π and r are smoothed values

of quarterly inflation rate and the nominal interest rate, respectively. Precisely, πt = 1
4

∑3
i=0 πt−i

while rt = 1
4

∑3
i=0 rt−i. Finally, uπ,t and uy,t are unobservable variables representing supply and

demand shocks, respectively.

We assume that both of these shocks follow AR(1) processes:

uπ,t = ρπuπ,t−1 + επ,t, (20)

uy,t = ρyuy,t−1 + εy,t, (21)

where ρπ and ρy are constant parameters representing persistence in the supply and demand shocks,

respectively. We assume that ρπ ∈ [0, 1) and ρy ∈ [0, 1). The ε’s are assumed to be IID-shocks.

It would be interesting to examine how uncertainty regarding the parameters of this model,

(18)–(21), will affect monetary policy selection of Ω, when the policy aim is satisficing rather than

minimizing the loss. In the next subsection we study the effect of Knightian uncertainty in the

persistence in the supply shock, ρπ. In particular, we will illustrate the difference between the
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min-max and the robust-satisficing policies.

3.4 Results: Uncertain Inflation Persistence

In this section we discuss empirical results which illustrate the application of propositions 1–3. We

discuss the observational equivalence between robust-satisficing and min-maxing, as well as the

behavioral difference between these strategies which is important for the policy maker.
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Figure 3: Robustness, bℓ[Ωb(ρπ), dLc], vs. critical loss, dLc, for various policy choices Ωb(ρπ).

Robustness calculations. Fig. 3 shows numerical evaluation of the robustness function,

ℓ̂[Ωb(ρπ),dLc], for uncertainty in the inflation persistence ρπ, with no output shocks or other

uncertainties, for various policies Ωb(ρπ). Thus θ = ρπ in this example. ρπ, by its definition, is

constrained to take values in the unit interval [0, 1), which is therefore the range of robustness

values. Similar results are obtained when considering uncertainty in the persistence of output

shocks, and are not discussed.

Each curve in the figure is evaluated for a different policy rule, Ωb(ρπ), defined as follows.

Ωb(ρπ) is the policy rule which minimizes the loss, L(Ω, ρπ), if the inflation persistence equals ρπ.

That is, Ωb(ρπ) is the conditional-optimization strategy defined in eqs.(6) and (15).

For fixed Ωb(ρπ), the relative loss dL[Ωb(ρπ), ρ′π] is evaluated as ρ′π varies from 0 to 0.99 in steps

of 0.01. Each point on the robustness curve is the fraction of ρ′π-values for which the requirement

dL(Ωb(ρπ), ρ′π) ≤ dLc is satisfied. This fraction is a discrete approximation to the robustness,

ℓ̂(Ω,dLc), which (as explained in appendix B) is the length of the interval of tolerable ρπ-value.
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Proposition 1. The positive slopes of the robustness curves in fig. 3 express the trade-off

between robustness and performance. This illustrates proposition 1: the robustness increases as

the performance deteriorates (relative loss increases).

Proposition 2. The relative loss of the best-estimate rule vanishes: dL[Ωb(ρπ), ρπ] = 0.

Proposition 2 asserts that the robustness for this aspiration, dLc = 0, is zero, which is not illustrated

in fig. 3.
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Figure 4: Robustness, bℓ[Ωb(ρπ), dLc], vs. conditioning persistence, ρπ, for various critical losses dLc.
Illustrating the robust-satisficing policy rule, Ωs(dLc). dLc = 1, 3, 5, 7 and 9%, bottom to top curve.

Robust-satisficing policy rule. Finally, before considering proposition 3 and the obser-

vational equivalence and behavioral difference, we illustrate the robust-satisficing policy, Ωs(dLc),

defined in eq.(5) and explained also in section 3.2. Ωs(dLc) is the policy which satisfices the relative

loss at dLc for the greatest level of uncertainty. This is illustrated in fig. 4, which shows the ro-

bustness vs. the inflation-persistence upon which the available policies are conditioned, for various

critical losses dLc. Consider the bottom curve, which is ℓ̂[Ωb(ρπ),dLc] vs. ρπ for dLc = 1%. The

robustness is maximum at ρπ = 0.31, indicating that the robust-satisficing policy is Ωb(0.31). For

other values of dLc, (moving up among the curves) the maximum robustness occurs for ρπ = 0.43,

0.49, 0.53 and 0.58.

Min-max policy rule. The min-max policy rule, Ωm(ℓm) defined in eq.(7), is the vector of

policy-rule coefficients which minimizes the maximum loss, on the info-gap uncertainty set at level

14



of uncertainty ℓm. The maximum relative loss for policy Ω, at level of uncertainty ℓm, is:

max
ρπ∈U(ℓm,Ω)

dL(Ω, ρπ) (22)

The min-max policy at level of uncertainty ℓm minimizes this maximum loss, as in eq.(7):

Ωm(ℓm) = arg min
Ω∈R

max
ρπ∈U(ℓm,Ω)

dL(Ω, ρπ) (23)

where R is the set of available policies in eq.(17).

Proposition 3. Proposition 3 establishes an equivalence between the min-max and robust-

satisficing strategies. Either strategy can be used to describe behavior of an agent who is using the

other strategy. That is, proposition 3 entails an observational equivalence between these strategies

for policy formulation. However, as explained immediately after proposition 3 in section 2.4, this

does not imply that a policy maker would be indifferent between the two strategies. On the

contrary, there is an important behavioral difference between the two strategies.

Eq.(11) of the proposition asserts that, for any level of uncertainty ℓm for which there is a

min-max policy, there exists a dLc for which this is also a robust-satisficing policy. Eq.(12) of

proposition 3 asserts that, for any dLc for which there is a robust-satisficing policy, Ωs(dLc), there

is a level of uncertainty ℓm for which this is also a min-max policy.
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Illustrating distinction between min-max and robust-satisficing policies. Two curves reproduced from fig. 3.

These assertions were illustrated schematically in fig. 2, and the same phenomena are manifested
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in fig. 3. For instance, suppose the level of uncertainty is known to be ℓm = 0.85. From fig. 3 (see

also fig. 5) we find that the policy whose maximal loss is minimal is Ωb(0.6), and that the min-max

loss is 10.5%. This is also the robust-satisficing policy when the critical loss is dLc = 10.5%.

However, suppose the policy maker is required to keep the loss below 3%, even if the level of

uncertainty is acknowledged to be ℓm = 0.85. From figs. 3 and 5 we see that the most robust

policy for keeping the loss below 3% is Ωb(0.4), for which the robustness is 0.68. Ωb(0.4) is the

robust-satisficing policy. But it is also the min-max policy if the level of uncertainty is ℓm = 0.68.

The robustness of the min-max policy Ωb(0.6), when satisficing the loss at 3%, is only 0.43, which

is substantially less robust than the robust-satisficing policy Ωb(0.4). Consequently, the policy

maker may prefer the robust-satisficing policy, Ωb(0.4), over the min-max policy, Ωb(0.6), even

while acknowledging that loss in excess of 3% can occur.

4 Conclusions

This paper is a theoretical and empirical study of the relation between info-gap robust-satisficing

and min-max. We develop, both theoretically and with empirical demonstration, two concepts: (1)

observational equivalence and (2) behavioral difference between robust-satisficing and min-maxing.

Observational equivalence is the assertion that a modeller can always describe the behavior of

a policy maker, either a min-maxer or a robust-satisficer, with either strategy. However, that

equivalence can be illusory from the perspective of policy selection. Behavioral difference is the

assertion that a robust-satisficing policy maker might agree with the min-max analyst on the

choice of the worst possible realization, and still disagree on policy selection. We formulate and

study the observational equivalence and behavioral difference theoretically, and demonstrate their

occurrence with a commonly employed, though simple, econometric model of the US economy.

The present article clarifies the important distinction between min-maxing and robust-satisficing

policy selection strategies.

If the level of loss which is acceptable to the decision maker is no less than the maximum loss

under a min-max approach, the two approaches will lead to the same policy decision. However,

if the decision maker is prohibited from losing as much as the min-max value, then the robust-

satisficing policy will differ from the min-max policy. Furthermore, the robust-satisficing policy

will be at least as robust (and usually more so) than the min-max policy. True, by reducing the

budget of a fictitious evil agent, a min-max policy can be equated to the robust-satisficing policy.
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However, this amounts effectively to reducing the level of uncertainty or modifying the worst case

scenario, which the policy maker may be unable or unwilling to do.

We have employed the info-gap robust-satisficing approach to derive satisficing monetary policy

responses in the face of Knightian uncertainty about a key parameter, persistence in the supply

shock. We have found that for relatively high level of acceptable loss, the robust satisficing policy

suggests conditioning on relatively high degree of persistence. This is in line with the policy

suggested by min-max. However, for lower levels of acceptable loss, we find that conditioning on

a relatively low degree of persistence would offer higher robustness, i.e. loss below the required

level is guaranteed for a larger range of parameter values, than all alternative policies including

the min-max policy. Accordingly, a policy maker who prefers to deviate little from whatever is the

optimal level of loss in an unknown state (degree of persistence), would be advised to base policy

on a low degree of persistence, while accepting the risk that in some states, the loss will exceed

that implied by the min-max policy.

We have dealt with uncertainty in one dimension in this paper to easily interpret and highlight

the difference between policies based on the robust-satisficing and min-max approaches. An ex-

tension of the robust satisficing approach to uncertainty in several dimensions is straightforward,

theoretically and empirically, and is currently being implemented.

A Appendix: Proof of Proposition 3
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Figure 6: Inverse of the min-max
robustness curve.

Figure 7: Inverse of the robust-
satisficing robustness curve.

Recall from section 2.4 that µ[ℓ,Ωm(ℓ)] and µ[ℓ,Ωs(Lc)] both necessarily increase monotonically

as ℓ increases. The proposition assumes that this increase in strictly monotonic, as illustrated in

figs. 6 and 7. Let Rs denote the set of all robust-satisficing decisions, Ωs(Lc), for all Lc values.

17



Likewise, let Rm denote all min-max decisions Ωm(ℓm) for all ℓm-values.

Proof of eq.(11). Eq.(11) is equivalent to the assertion that Rm ⊆ Rs, which we will prove. For

any value of ℓm, let Ωm(ℓm) be the min-max decision. As illustrated in fig. 6, let Lc be the unique4

value specified by:

max
θ∈U(ℓm,eθ)

L[Ωm(ℓm), θ] = Lc (24)

The lefthand side of eq.(24) is µ[ℓm,Ωm(ℓm)], which is the inverse of ℓ̂[Ωm(ℓm), Lc]. Thus eq.(24)

implies that the robustness of Ωm(ℓm), at aspiration Lc, is:

ℓ̂[Ωm(ℓm), Lc] = ℓm (25)

Now, for the value of Lc in eq.(24), Ωs(Lc) denotes a robust-satisficing decision. From the definition

of robustness, eq.(4), this implies:

max
θ∈U(ℓm,eθ)

L[Ωs(Lc), θ] ≤ Lc (26)

Ωm(ℓm) is the min-max decision so its loss at uncertainty ℓm cannot exceed the loss of Ωs(Lc) at

uncertainty ℓm. Thus strict inequality in (26) contradicts the definition of Ωm(ℓm) in eq.(7), hence

(26) must be an equality:

µ[ℓm,Ωs(Lc)] = Lc (27)

µ[ℓm,Ωs(Lc)] is the inverse of ℓ̂[Ωs(Lc), Lc], so eq.(27) implies:

ℓ̂[Ωs(Lc), Lc] = ℓm (28)

Comparing the equality in eq.(25) with eq.(28) we see that Ωm(ℓm) is a robust-satisficing decision

at aspiration Lc. We have proven that any min-max decision is also a robust-satisficing decision:

Rm ⊆ Rs.

Proof of eq.(12). Eq.(12) is equivalent to the assertion that Rs ⊆ Rm, which we will prove.

For any Lc, let Ωs(Lc) be the robust-satisficing decision. As illustrated in fig. 7, let ℓm be the

unique value defined by:

µ[ℓm,Ωs(Lc)] = Lc (29)

4Uniqueness results from the assumption of strict monotonicity.
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Consequently, because µ[ℓm,Ωs(Lc)] is the inverse of ℓ̂[Ωs(Lc), Lc]:

ℓ̂[Ωs(Lc), Lc] = ℓm (30)

Now, for this ℓm, Ωm(ℓm) is a min-max decision. From eq.(29) and the definition of min-max

decisions in eq.(7) we conclude:

µ[ℓm,Ωm(ℓm)] ≤ Lc (31)

From this we conclude that:

ℓ̂[Ωm(ℓm), Lc] ≥ ℓm (32)

Ωm(ℓm) cannot be more robust than the robust-satisficing decision Ωs(Lc). So, in light of eq.(30),

we conclude that eq.(32) must be a strict equality:

ℓ̂[Ωm(ℓm), Lc] = ℓm (33)

This implies that eq.(31) is also an equality:

µ[ℓm,Ωm(ℓm)] = Lc (34)

Comparing eqs.(29) and (34) we see that Ωs(Lc) is a min-max decision. We have proven that any

robust-satisficing decision is also a min-max decision: Rs ⊆ Rm.

B Appendix: Info-Gap Model of Uncertainty in Section 3

Here, we formulate the info-gap model, U(ℓ,Ω), for uncertainty in a single parameter θ. The

analyst has complete Knightian uncertainty: the probability distribution of θ is unknown. One

has no estimate, in any statistical sense, of the value of θ.5

Even though the true value of θ is not known, it is still useful to talk about values of θ that

would motivate any particular choice of the parameters Ω = (ωr, ωπ, ωy) of the policy rule. For

instance, if we are considering a specific choice of Ω, one may ask: given our economic models,

what should θ be in order to make this a good choice of Ω? The value of θ which, were it the true

5This example could be extended to consider info-gap uncertainty in the probability distribution of θ. Examples
of info-gap analysis of uncertainty probability distributions are found in Ben-Haim (2005a, 2006).
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value, would justify a particular Ω, will be denoted θ̃(Ω) and is defined implicitly in the relation:

Ω = Ωb(θ), (35)

where Ωb(θ) is the loss-minimizing policy if the uncertain parameter equals θ, defined in eqs.(6)

and (15). The solution of this relation, for θ, may not be unique, in which case we define θ̃(Ω) as

the lowest such solution:

θ̃(Ω) = min {θ : Ω = Ωb(θ)} . (36)

We now posit a “weak convexity” of the loss function. We assume that, for fixed Ω:

∂ [dL(Ω, θ)]

∂|θ − θ̃(Ω)|
> 0. (37)

That is, for a fixed Ω, the loss function dL(Ω, θ) rises increasingly above the full-knowledge value,

dL[Ω, θ̃(Ω)] = 0, as θ deviates from θ̃(Ω). Relation (37) does not assert that dL(Ω, θ) is convex

vs. θ, but only that it has a unique minimum vs. θ , for any given Ω. We posit that this weak

convexity holds for dL(Ω, θ).

The weak convexity property implies that, for any non-negative bound on the loss function,

the corresponding set of θ-values is a simple interval, which we define as:

D(x,Ω) = {θ ∈ Θ : dL(Ω, θ) ≤ x} , (38)

where Θ is the set of meaningful values for the parameter θ. For instance, if θ is a persistence,

then Θ = [0, 1). Or, if θ is a model coefficient, then Θ might be the entire set of real numbers. For

any level of loss x, the set of θ values for which the loss (with policy Ω) does not exceed x is the

set D(x,Ω). Because the loss function has the property of weak convexity, this set is an interval

whose length we denote by |D(x,Ω)|. Since dL(Ω, θ) = 0 at its unique minimum, θ̃(Ω), we note

that D(0,Ω) = {θ̃(Ω)}.

The weak convexity property implies that the sets D(x,Ω) are nested:

x < x′ implies D(x,Ω) ⊆ D(x′,Ω). (39)

This states that any value, θ, whose loss is no less than x, also has loss no less than x′, when the

same policy is used.
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We use this concept to define an info-gap model for uncertainty in θ. For any contemplated

policy parameters Ω, the info-gap model is the following family of nested sets of uncertain θ-values:

U(ℓ,Ω) = {θ : θ ∈ D(x,Ω), x ≥ 0, |D(x,Ω)| ≤ ℓ} , ℓ ≥ 0. (40)

At any level of uncertainty ℓ, the set U(ℓ,Ω) contains all values θ which belong to sets D(x,Ω)

no larger than ℓ, regardless of the loss value x. The level of uncertainty is unknown so ℓ can take

any non-negative value. The info-gap model is a family of nested sets and obeys the axioms of

contraction and nesting (Ben-Haim 2006).

In light of eq.(39) we see that, for any ℓ, there exists an x(ℓ) such that:

U(ℓ,Ω) = D(x(ℓ),Ω). (41)

Combining eqs.(38) and (41) we see that the uncertainty set, evaluated at a level of uncertainty

equal to the robustness, is:

U [ℓ̂(Ω,dLc), Ω] = D(dLc,Ω). (42)

We emphasize that this info-gap model depends on a contemplated policy parameters Ω. The

sets U(ℓ,Ω) are an expression of epistemic (rather than objective or ontological or aleatoric) uncer-

tainty: if we use policy Ω, then the info-gap model contains all θ-values for which the loss will not

exceed some specific value. We don’t know which θ value will occur or the value of ℓ, so there is no

known worst case (other than the limits on meaningful values of θ, such as unbounded persistence,

expressed by the set Θ).
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