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Abstract

We employ the robust-satisficing approach to derive robust monetary policy when para-

meters of a macro model are uncertain. There is a trade-off between robustness of policies

and their performance. Hence, under uncertainty, the policy maker is assumed to be content

with policy performance at some satisfactory level rather than a level thought to be optimal

based on available information. Our empirical analysis illustrates key properties of robust-

satisficing policies and compares them with min-max policies implied by the robust-control

approach. Intuitively, our empirical results suggest that higher robustness can be achieved

by overstating challenges to the economy and understating the abilities to meet them. How

much to overstate the challenges or understate the abilities depends on the robustness sought.

Robustness is achieved by lowering one’s aspirations regarding the performance of policies

and is therefore costly. Moreover, costs of robustness increase with the level of robustness,

making robustness to apparently extreme parameter values particularly costly. We also find

that robust-satisficing policies are generally less aggressive than min-max policies.
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1 Introduction

Studies of monetary policy decisions under uncertainty are mainly based on the Bayesian and the

robust control approaches; see e.g. Hansen and Sargent (2001), Giannoni (2002), Onatski and

Williams (2003), Levin and Williams (2003), Tetlow and von zur Muehlen (2001), Coenen (2007)

and Leitemo and Söderström (2004). The Bayesian approach requires that one assigns a probability

distribution on the uncertain aspect of a decision problem, e.g. model parameters. This enables

one to choose an expected-loss-minimizing policy. The robust control theory suggests designing

policies to perform relatively well in worst-case scenarios, i.e. when the underlying premises turn

out to be false in the most unfortunate way. Thereby, this approach enables one to limit the

potential loss if the underlying premises turn out to be false.1

However, both of the approaches require some assumption(s) about the probability distribution

of the uncertain entity. Within the Bayesian approach, such an assumption is made explicit while it

is made implicit under the robust control approach, by limiting the outcome space of the uncertain

entity. This may not be innocuous since the outcome space assumed will generally affect the policy

decision. One can also argue that by invoking some probability distribution, explicitly or implicitly,

one would not be deriving policy response to Knightian uncertainty in the strict sense, since it

implies lack of probabilistic information; see Knight (1921).

It has also been argued that robust policies can be quite costly in terms of forsaken performance

in the normal course of events if the policy is geared towards limiting potential losses under extreme

events; cf. Tetlow and von zur Muehlen (2001) and Cogley and Sargent (2005). In particular, the

min-max policy implied by the robust control approach will be sub-optimal under all cases but the

worst case. A similar objection can also be raised against the Bayesian approach where the “worst

case scenario” can have undue influence on the policy decision; cf. Cogley and Sargent (2005).

Relatively high potential costs of robust policies may therefore discourage one from adopting such

policies.

In this paper, we employ the robust-satisficing approach to derive monetary policy response

under parameter uncertainty. This approach does not require any assumption about the probability

distribution of the uncertain entity. And second, potential costs of robustness play a key role in

defining robust policies; see e.g. Ben-Haim (2006). The robust-satisficing approach is quite general

and can be easily employed to derive decisions under various kinds of uncertainties individually or

jointly.2

1Accordingly, a fictitious malevolent agent who represents a policy maker’s worst fears concerning misspecification
is introduced into the optimization problem and motivates her to minimize the loss function under the worst-case
scenario. The level of uncertainty facing the decision maker can be regulated by adjusting the resources available
to the malevolent agent.

2The robust-satisficing approach has been previously applied to a wide variety of decision problems with Knight-
ian uncertainty, including financial risk assessment (Ben-Haim 2005); environmental regulation (Stranlund and
Ben-Haim 2007); search behavior in animal foraging (Carmel and Ben-Haim 2005); policy decisions in marine re-
serve design (Halpern et al 2006); natural resource conservation decisions (Moilanen and Wintle 2006); inspection
decisions by port authorities to detect terrorist weapons (Moffitt et al 2005) and to detect invasive species (Moffitt
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The robust-satisficing approach bases decision making on two main premises. The first premise

is that the decision maker faces uncertainty of the Knightian kind. Hence, it does not require one

to specify either a probability distribution or bounds on the outcome space of the uncertain entity.

The second premise is that the decision maker aims for performance at some satisfactory level

rather than at a level which is deemed to be optimal based for instance on an estimated model;

cf. Simon (1959) and (1979) and the references therein. The policy maker may still use such an

optimal level as a reference, but is assumed willing to accept deviations from it to control her

potential loss in case of faulty assumptions.

The robust-satisficing policy maximizes robustness at a given level of acceptable performance.

Robustness is measured as the extent of deviation from a decision’s underlying premises at which

the performance will not deteriorate beyond some acceptable level. The robust-satisficing approach

offers a trade-off between the robustness and the level of acceptable performance. Robustness of a

policy can be raised by lowering one’s aspirations regarding its performance and accepting a higher

level of loss; see e.g. Ben-Haim (2006). Common with the min-max approach, the robust-satisficing

approach also allows one to cap one’s potential losses when the outcome space is given. Ben-Haim

et al (2007) show that when the level of uncertainty is given, there would exist a robust-satisficing

policy that is observationally equivalent to the min-max policy. Nonetheless, there are important

differences between the two approaches, as shown in Ben-Haim et al (2007) and in this paper.

The robust-satisficing approach is attractive when a decision maker would be content with

performing relatively close to the optimal level derived under a specific set of scenarios, and with

relatively poor performance under an alternative set of scenarios. For example, when a policy

maker’s credibility depends on performing satisfactorily under ordinary events, but not under

(apparently) extreme events, despite heavy losses. This could be the case for instance when private

agents agree on the “ordinary-extreme classification” of events and are conscious of the potential

costs of highly robust policies.

We employ the robust-satisficing approach to derive monetary policy response when there is

uncertainty about key parameters of an aggregate model of the US economy, estimated by Rude-

busch and Svensson (1999).3 These parameters represent degrees of persistence in the demand and

supply shocks, the slope of the Phillip’s curve and the response of the output gap to interest rates.

Uncertainty regarding persistence in shocks can be interpreted broadly as it can proxy uncertainty

regarding omission of relevant variables as well as functional form misspecification, beside repre-

senting uncertainty regarding genuine shock persistence. Monetary policy is characterized by a

simple Taylor-type interest rate rule, where the decision parameters are the response coefficients

associated with inflation and output gaps as well as degree of interest rate smoothing; see Taylor

et al 2007); technological fault diagnosis (Pierce et al 2006) and testing (Vinot et al 2005); and project management
(Regev et al 2006).

3Results based on an alternative model with hybrid New Keynesian Phillips curve and IS curve are available
upon request to the authors.
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(1999). In addition to illustrating key properties of robust-satisficing policies, we also point out

differences and possible observational equivalence with min-max policies. This paper draws on but

goes beyond Ben-Haim et al (2007) who considered the case of uncertainty in the persistence of

supply shock to contrast robust-satisficing policies with the min-max policy.

We find that higher robustness can be achieved by basing policy on relatively high degrees of

persistence in the shocks and relatively weak effects of the output gap on inflation and of interest

rates on the output gap. How much to raise the degree of persistence and lower the effects of the

output gap and the interest rate depends on the level of robustness sought. Robustness is achieved

by lowering one’s aspirations regarding the policy performance and is therefore costly. Such costs

are found to increase with the level of robustness, making robustness to a wide set of parameter

values as well as apparently extreme events particularly costly. This also implies relatively high

costs of adopting min-max policies.

We also show that a policy decision based on the robust satisficing approach offers a higher

degree of robustness than min-max policies if one aims to perform relatively well under a subset

of all possible parameter values conjectured rather than limiting the loss under the worst case

values of the parameters. The policy implications of the two approaches may differ substantially

in such cases. However, both approaches can suggest the same policy if the acceptable level of

loss is equal or higher than the maximum level under the min-max policy. The robust-satisficing

policies are found to be generally less aggressive than min-max policies. They may therefore be

easier to reconcile with observed interest rate setting than min-max policies; see e.g. Giannoni

(2002), Leitemo and Söderström (2004), Tetlow and von zur Muehlen (2001) and the references

therein.

The paper is organized as follows. The next section briefly presents the robust-satisficing

approach. Section 3 presents the empirical model and characterizes monetary policy. Section 4

employs the robust-satisficing approach to deal with uncertainty in parameters individually and

jointly. Section 5 presents the main conclusions followed by an appendix.

2 Robust-Satisficing Decisions

This section presents the basic concepts related to the robust-satisficing approach, definitions of

different decision strategies and their properties.

2.1 Uncertainty and Robustness

We denote a policy maker’s decisions by the parameter vector Ω, which for instance may consist

of parameters of a simple Taylor-type interest rate rule. The policy maker’s decisions are based

on models and data. However, these models and data, including the probabilistic elements and
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parameters, may be incomplete or erroneous in various unknown ways. There may be e.g. relevant

variables missing from the models, the appropriate model specification could be unknown, estimates

of key parameters could be unavailable because of lack of data or one may lack confidence in them

because of measurement errors in the data and so on.

We denote uncertain elements by θ which can be e.g. specific parameters, functions, missing

variables and/or probability distributions. θ̃ symbolizes some specific value of θ which can be an

estimate or one’s choice.

We represent the uncertainty associated with θ by the family of sets U(`, θ̃). Each of these sets

contains possible realizations of θ in the “vicinity” ` of θ̃. U(`, θ̃) is referred to as an information

gap (info-gap) model of uncertainty. Info-gap models entail no probabilistic information and thus

are one possible quantification of Knightian uncertainty; see Ben-Haim (2006) for details. An

info-gap model obeys two axioms:

Contraction: U(0, θ̃) = {θ̃} (1)

Nesting: ` < `′ =⇒ U(`, θ̃) ⊆ U(`′, θ̃) (2)

The contraction axiom asserts that θ̃ is the only possibility when there is no uncertainty (` =0).

Here, we consider ` as an unbounded unidimensional indicator of parameter uncertainty. The

nesting axiom asserts that the range of possible realizations increases as the level of uncertainty

increases, ceteris paribus. That is, the set U(`, θ̃) becomes more inclusive as ` gets larger, implying

that the range of possible realizations of θ in the vicinity θ̃ increases with `. It can therefore be

referred to as the level of uncertainty and is related to the level of robustness as explained later.

The loss resulting from decision Ω when the uncertain elements take the values θ is L(Ω, θ).

The loss may be a statistical expectation or a deterministic value.4 The satisficing policy maker

desires low loss, and would prefer loss no greater than some satisfactory level Ls:

L(Ω, θ) ≤ Ls (3)

We treat Ls as a parameter which can be chosen small or large, so the satisficing requirement in

eq.(3) includes minimizing the loss as a special case. The policy maker is satisficing if she does not

aim to minimize the loss but would be content with a loss no larger than Ls, recognizing that the

loss may exceed Ls for some θ ∈ U(`, θ̃).

4Our discussion can be readily extended to multiple loss functions.
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2.2 Decision strategies: Robust-Satisficing, Conditional Estimation, and

Min-Maxing

We consider three types of decision strategies for choosing a decision or policy Ω from a set R of

feasible policies.

The robustness of decision Ω, with the satisficing requirement Ls of eq.(3), is the greatest level

of uncertainty ` up to which all realizations θ would result in a loss no greater than Ls:

̂̀(Ω, Ls) = max

{
` :

(
max

θ∈U(`,eθ)
L(Ω, θ)

)
≤ Ls

}
(4)

̂̀(Ω, Ls) is a robustness function indicating the robustness of a specific policy Ω at some acceptable

loss level Ls.

The robust-satisficing decision maximizes the robustness (4) while satisficing the loss at the

value Ls:

Ωs(Ls) = arg max
Ω∈R

̂̀(Ω, Ls) (5)

Maximization of ̂̀(Ω, Ls) conditional on some Ls amounts to maximizing U(`, θ̃), by the nesting

axiom.

Conditional optimization is the decision, Ω
eθ, which minimizes the loss based on a specific value

of the uncertain entities, θ̃:

Ω
eθ = arg min

Ω∈R
L(Ω, θ̃) (6)

A special case of conditional optimization is optimization conditional on a value of θ implying the

highest level of loss which defines a min-max policy. A min-max policy may be defined as follows.

The min-max decision minimizes the maximum loss based on a conjecture of the greatest level

of uncertainty, `m:

Ωm(`m) = arg min
Ω∈R

max
θ∈U(`m,eθ)

L(Ω, θ) (7)

The min-max policy Ωm(`m) would not lead to a loss higher than some specific level for any value

of θ from the parameter space defined by `m, U(`m, θ̃).

2.3 Basic properties of the decision strategies

Here, we note several basic properties of the three decision strategies: robust-satisficing Ωs(Ls),

conditional optimization Ω
eθ, and min-maxing Ωm(`m). These properties, presented as propositions

1–3, characterize the relationship between robustness ̂̀(Ω, Ls) and acceptable loss Ls.

Proposition 1 Performance trades-off against robustness, both at any fixed decision, Ω, and at

the robust-satisficing decision Ωs(Ls), if L(Ω, θ) is uniformly continuous in θ.
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At a fixed decision Ω:

Ls < L′
s =⇒ ̂̀(Ω, Ls) ≤ ̂̀(Ω, L′

s ) (8)

At the robust-satisficing decision Ωs(Ls):

Ls < L′
s =⇒ ̂̀[Ωs(Ls), Ls] ≤ ̂̀[Ωs(L′

s ), L′
s ] (9)

Better performance (lower loss Ls), entails lower robustness ̂̀(Ω, Ls). Relation (8) asserts that

this holds at any fixed decision such as the optimal (conditional) decision Ω
eθ or the min-max

decision Ωm(`m) where `m, and hence Ωm(`m), is fixed. Relation (9) asserts that this trade-off

also holds for the robust-satisficing decision Ωs(Ls), which may vary as Ls varies. The proof of

proposition 1 appears in Ben-Haim (2000, thm. 1 and cor. 1/1).

Proposition 2 Conditional-optimization aspirations have no robustness. For any decision Ω for

which L(Ω, θ) is not a local maximum at θ̃,

Ls = L(Ω
eθ, θ̃) =⇒ ̂̀(Ω, Ls) = 0 (10)

Proposition 2 asserts that, for any choice of θ̃, aspiring to a loss level as low as L(Ω
eθ, θ̃) has

no robustness to errors or deviations from θ̃. L(Ω
eθ, θ̃) refers to the optimal loss level when θ turns

out to be θ̃. This loss level need not be attained if θ differs from θ̃. When θ is θ̃, any decision Ω

other than Ω
eθ would be suboptimal. Since this is true for any Ω, it is also true for each of the

decision-strategies in eqs.(5), (6) and (7).5 The proof of proposition 2 derives immediately from

the contraction axiom and will not be elaborated.

Proposition 3 The robust-satisficing and min-maxing policies, Ωs(Ls) and Ωm(`m), are identical

for appropriate choices of the parameters Ls and `m.

• For any `m for which Ωm(`m) exists, there is an Ls such that:

Ωs(Ls) = Ωm(`m) (11)

• For any Ls for which Ωs(Ls) exists, there is an `m such that:

Ωm(`m) = Ωs(Ls) (12)

See Ben-Haim et al (2007) for the proof of proposition 3.

5The condition that “L(Ω, θ) is not a local maximum at eθ” means that outcomes could be worse than the outcome

conditional on eθ, L(Ω, eθ). If the outcomes cannot be worse than L(Ω, eθ), then uncertainty is strictly favorable and
entails only the possibility of better-than-anticipated outcomes.
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Proposition 3 states that both the min-max policy and the robust-satisficing policy can equal

each other for specific values of key parameters: `m and Ls. A modeler can therefore describe a

min-max policy as a robust-satisficing policy and the converse. To equate the robust-satisficing

policy with the min-max policy, one has to upward adjust Ls to, say, Lm such that ̂̀(Ω, Lm) = `m.

To equate the min-max policy with the robust-satisficing policy, one has to downward adjust `m

to the level ̂̀(Ω, Ls), if Ls < Lm. This amounts to assuming away uncertainty, which may not be

reasonable, for example when `m is unbounded in principle.

Even though one can arrive at the same decision from the two different perspectives to decision

making under uncertainty, robust satisficing policies will generally differ from the min-max policy.

This will become evident in the examples considered later, but for now suppose there is a largest

possible level of uncertainty, `m, e.g. when the parameter space is bounded by definition. Let Lm

denote the min-max loss at uncertainty `m. In this case, `m > ̂̀(Ω, Ls) for any Ω, except when Ls is

sufficiently large and equals Lm, as ̂̀(Ω, Ls) would then equal `m. However, the robust satisficing

policies Ωs(Ls) will lead to a lower loss than Lm for parameter values defined by the range ̂̀s
(≡ ̂̀(Ωs(Ls), Ls). On the other hand, a robust satisficing policy would not necessarily offer a

lower loss than the acceptable level, i.e. L(Ωs(Ls), θ) ≥ Ls, for the parameter space corresponding

to the range of uncertainty exceeding ̂̀s, since set U(̂̀s, θ̃) is contained in set U(`m, θ̃). Still, a

robust-satisficing policy maker who aspires to a lower level of loss, L0 < Lm, under a subset of

scenarios (θ values), could prefer a robust-satisficing policy Ωs(L0) to the min-max policy (under

which the loss will not exceed Lm). The reason for this preference is that the robustness of Ωs(L0)

for satisficing the loss at the value L0 is no less (and usually greater) than the robustness of the

min-max policy.

3 Model and monetary policy

This section presents the estimated model of the USA by Rudebusch and Svensson (1999) and

characterizes monetary policy.

3.1 Model

Following is the well known aggregate model of the US economy developed by Svensson and

Rudebusch (1999):

πt = 0.7πt−1 − 0.1πt−2 + 0.28πt−3 + 0.12πt−4 + 0.13yt−1 + uπ,t, (13)

yt = 1.16yt−1 − 0.25yt−2 − 0.1(rt−1 − πt−1) + uy,t. (14)
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Here, πt is the quarterly inflation rate, y is the output gap, while π and r are smoothed values of

quarterly inflation rate and the nominal interest rate, respectively. Precisely, πt = 1
4

∑3
i=0 πt−i,

while rt = 1
4

∑3
i=0 rt−i. Finally, uπ,t and uy,t are unobservable variables representing supply and

demand shocks, respectively. The model has been estimated by OLS on the US quarterly data for

the period 1961q1–1996q2.

We assume that both of these shocks follow AR(1) processes:

uπ,t = ρπuπ,t−1 + επ,t, (15)

uy,t = ρyuy,t−1 + εy,t, (16)

where ρπ and ρy are constant parameters representing persistence in the supply and demand shocks,

respectively. We assume that ρπ ∈ [0, 1) and ρy ∈ [0, 1). The ε’s are assumed to be IID-shocks.

Econometrically, a non-zero degree of persistence can also indicate omission of relevant variables

as well as a misspecified functional form of the model. Uncertainty regarding shock persistence

can therefore be interpreted broadly as uncertainty regarding the structure of the model and the

shock process.

3.2 Monetary policy

We assume that monetary policy authorities have a standard quadratic loss function, which can

be presented in terms of variance of the inflation, output gap and interest-rates, when the discount

factor is close to one:

L = V (π − π∗) + λV (y) + φV (∆r), (17)

where V (.) denotes the unconditional variance of its argument; π∗ is the constant inflation target;

λ denotes the authority’s preference for stabilization of the output-gap, y, relative to that for the

inflation gap, π − π∗; and φ is the relative preference for interest-rate stability. In our empirical

analysis we let λ be, say, 0.5 and φ = 0.1. It is useful to express the loss function, eq.(17), as an

explicit function of policy Ω and uncertain parameters of the models θ, as L(Ω, θ).

We characterize monetary policy response by a simple Taylor-type interest rate rule:

rt = ωrrt−1 + (1− ωr)[rr∗ + π∗ + ωπ(πt − π∗) + ωyyt], (18)

where ω’s are constant coefficients representing the interest rate response to the lagged interest

rate, the inflation gap and the output gap. rr∗ denotes the steady state value of the real interest

rate. The inflation target and the steady state real interest rate sum to the steady state nominal

9



interest rates.

Monetary policy maker chooses the parameters, Ω = (ωr, ωπ and ωy), in the interest rate

rule eq.(18) while facing Knightian uncertainty regarding specific parameters, θ, of the economic

model: (13)–(16). The robust-satisficing policy, Ωs(Ls), maximizes the robustness and satisfices

the relative loss at the value Ls, from a set R of available policies, as in eq.(5).

To limit the number of policies considered, we let robust satisficing policies Ωs(Ls) be selected

from a set R = {Ωθ1 , Ωθ2 , . . . , Ωθn}. This set consists of policies that are optimal with respect

to one from among n specific realizations of the model parameters, θ1, θ2 . . . , θn.6 The optimal

policy, Ω
eθ, defined by minimizing the loss function (17), when θ is assumed to be θ̃ (= θj ; j = 1,

2, ..., n) is defined as in eq.(6). Ω
eθ as well as Ωs(Ls) will depend on the degree of concern for

stability in the real economy and the interest rate, expressed by λ and φ. Moreover, by letting

Ωs(Ls)∈ R, as defined above, the choice of Ω
eθ as Ωs(Ls) becomes dependent on the acceptable

loss Ls (and the set of feasible policies R).

We evaluate a policy in a given state relative to the optimal policy in that state. Therefore, we

employ the relative loss function defined as:

dL(Ω
eθ, θ) ≡

L(Ω
eθ
, θ)

L(Ωθ, θ)
− 1. (19)

L(Ωθ, θ) expresses the loss under optimal policy conditioned on θ being the true value, while

L(Ω
eθ, θ) expresses the loss when policy is conditioned on θ̃, the policy maker’s choice, which can

differ from θ. It follows that dL(Ω
eθ, θ) > 0 for Ω

eθ
6= Ωθ while dL(Ω

eθ, θ) = 0 when Ω
eθ

= Ωθ,

assuming the loss function has a unique minimum. Examining the relative loss implied by a policy

makes it possible to separate its contribution to the performance (loss level) from that of the

realized value of the parameter. This makes it easy to compare the robustness of different policies.

We evaluate a policy Ω
eθ

by inquiring for which set of realized values of θ the associated losses

dL(Ω
eθ
, θ)s would not exceed a given satisfactory level dLs. The robust-satisficing policy at a given

dLs is the policy for which the associated loss does not exceed dLs for the largest set of θ values.

Essentially, robust satisficing policy conditions on that possible value θ̃ of θ, which would keep

dL(Ω
eθ, θ) equal or below some preferred level for the largest range of possible θ values. Thus,

the choice of θ̃ can be thought of as being based on strategic considerations in a game against an

unpredictable nature.
6 In principle one can evaluate any policy, Ω, which is defined by values of ωπ , ωy and ωr in the Taylor-type rule

(18).

10



4 Empirical analysis

We first employ the robust-satisficing approach to deal with uncertainty about key parameters,

individually. These are the degree of persistence in the supply shock and the slope of the Phillips

curve. In Section 4.3, we consider an extension of this approach and employ the approach to deal

with uncertainty in two parameters jointly, persistence in the supply and demand shocks, ρπ and

ρy. The precise formulation of the info-gap model appears in appendix A.

For brevity, we do not present the results for uncertainty in the persistence of the demand shock

as well as those for uncertainty in the effects of interest rates on the output gap. The results for

uncertainty in persistence of the demand shock are qualitatively similar to those for persistence

in the supply shocks while those for uncertainty in interest rate effects are qualitatively similar to

those for uncertainty in the slope of the Phillips curve.7

4.1 Uncertain persistence of supply shocks, ρπ

Here, we consider the case where the parameter space of the uncertain parameter, ρπ, is bounded

within the [0, 1)-space. Specifically, in our simulations we assume that the degree of persistence in

the supply shock ρπ takes on one of the hundred possible values from the set 0, 0.01, 0.02,...0.99 and

investigate robustness of each of the corresponding (optimal) policies: Ω0, Ω0.01, Ω0.02, ...,Ω0.99.

For each ρπ ∈ [0, 0.99], the vector Ωρπ
contains optimal values of the response coefficients in the

Taylor rule eq.(18), ωr, ωπ and ωy, obtained by minimizing the loss function eq.(17) conditional

on the corresponding specific value of ρπ. The interval [0, 0.99] is also the maximum range of

robustness values, or the maximum level of uncertainty conjectured `m.

To summarize our results, we find that the robust-satisficing policies turn out to be those which

are based on ρπ-values in the range 0.3–0.8. In general, an increase in the relative loss implies

a policy based on a relatively higher degree of persistence. However, policies based on neither

relatively low nor high ρπs are most robust. Hence, policies based on ρπ-values below 0.3 and

above 0.8 turn out not to be robust-satisficing policies. Moreover, we find that the min-max policy

is the optimal policy based on ρπ = 0.8 and hence coincides with the most robust robust-satisficing

policy.8

In greater detail, Table 1 shows levels of robustness, ̂̀(Ωρπ , dLs), implied by selected policies

at different levels of acceptable loss. Each column of the table evaluates a specific policy rule

Ωρπ
in terms of robustness at different levels of relative loss dLs. In the unidimensional case

of uncertainty considered here, ̂̀(Ωρπ
, dLs) is defined as the range of ρπ-values for which the

7We have also employed the robust satisficing approach to deal with uncertainty in other parameters as well in
the context of alternative models. While policy implications of uncertainty in the other parameters are different,
presentation of these results would not add much to the illustration of the robust satisficing approach. The results
are available upon request to the authors.

8Interestingly, Angeloni et al (2003) reach the same conclusion regarding the min-max policy using an estimated
DSGE model of the euro area.
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Table 1: Robustness of selected policies at different levels of acceptable loss when uncertain ρπ

dLs
̂̀(Ωρπ

, dLs)
50 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.97 0.99 0.52 0.10
40 0.91 0.92 0.92 0.93 0.93 0.94 0.95 0.96 0.87 0.44 0.08
35 0.9 0.9 0.91 0.92 0.92 0.93 0.94 0.95 0.8 0.39 0.07
30 0.88 0.89 0.9 0.9 0.91 0.92 0.93 0.94 0.72 0.35 0.06
25 0.86 0.87 0.88 0.88 0.89 0.9 0.92 0.93 0.63 0.31 0.05
20 0.83 0.84 0.85 0.86 0.87 0.89 0.90 0.88 0.55 0.27 0.04
15 0.8 0.81 0.82 0.83 0.85 0.86 0.88 0.74 0.46 0.22 0.03
10 0.73 0.75 0.77 0.79 0.8 0.82 0.84 0.59 0.35 0.17 0.02
5 0.61 0.64 0.67 0.7 0.73 0.76 0.57 0.4 0.24 0.11 0.01
1 0.35 0.4 0.46 0.52 0.43 0.33 0.24 0.16 0.09 0.04 0.00
0 0 0 0 0 0 0 0 0 0 0 0

Ω%π
Ω0 Ω0.1 Ω0.2 Ω0.3 Ω0.4 Ω0.5 Ω0.6 Ω0.7 Ω0.8 Ω0.9 Ω0.99

Note: The policies, which are represented by Ωs containing the response coefficients in the Taylor rule, are
optimal conditional on the subscripted values of persistence in the supply shock (ρπ). Bold faced numbers
correspond to the robust-satisficing policies at different levels of acceptable loss (in per cent).

requirement dL(Ωρπ
, ρ′π)≤ dLs is satisfied. Bold faced numbers correspond to the robust-satisficing

policies at different loss levels. Such policies maximize the robustness at given levels of (relative)

losses among the other policies evaluated in the table.

Robustness increases as one moves up each column of Table 1. This illustrates proposition 1:

the robustness of a given policy increases as the desired performance deteriorates, i.e. as dLs

increases. However, robustness of a given policy increases with dLs at a decreasing rate. This

also applies to the robust-satisfying policies which vary with the level of the loss. Therefore, none

of the robust-satisficing policies is robust-satisficing at all levels of relative loss. It results that

robust-satisficing policies at relatively higher loss levels tend to be defined by policies conditional

on relatively higher degrees of persistence. Table 1 also illustrates proposition 2, which asserts that

the robustness for the aspiration, dLs = 0, is zero.

Figure 1 presents robustness curves defined by ̂̀(Ωρπ
, dLs) for the complete set of the policies

evaluated versus ρπ. Each robustness curve is defined by a given relative loss level and depicts

the robustness of optimal policies conditional on the hundred possible values of ρπ noted on the

horizontal axis.

The costs of robustness increase with the level of robustness. At a given policy Ωρπ , the

robustness curves suggest a strongly concave relationship between robustness ̂̀(Ωρπ
, dLs) and dLs.

We note that an increase in robustness is obtained by accepting an increasingly larger rise in dLs.

This is suggested by the decreasing vertical distance between the curves when we vary dLs from

1% to 60%.

At any given loss level, the corresponding robustness curve also suggests a strongly concave

relationship between robustness and the degrees of persistence on which the policies are conditioned

upon; see Figure 1. Hence, a unique robust satisficing policy at a given loss level can be identified
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Figure 1: Robustness of all policies considered at different levels of acceptable loss when ρπ is uncertain.

Level of robustness b`(Ωρπ , dLs) is represented on the vertical axis, while ρπ-values are denoted on the

horizontal axis. Robustness is measured by the length of an interval containing ρπ-values ∈ [0, 0.99]. The

degrees of persistence on which the optimal policies are conditioned, are presented on the horizontal axis.

Different levels of acceptable loss dLs in per cent are indicated by line-style of the robustness curves.

among the set of policies considered. The robust-satisficing policies at different loss levels are

defined by the peaks of the different robustness curves. We note that the peaks correspond to

optimal policies conditional on ρπ-values in the range 0.3–0.8.
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Figure 2: (a) Left frame: Robustness b`(Ωρπ , dLs) offered by robust-satisficing policies (and some other
policies) is indicated on the vertical axis. Robustness is measured by the lengths of intervals containing ρπ-
values ∈ [0, 0.99]. The policies are identified by the degrees of persistence (ρπ) indicated on the horizontal
axis. The set of robust-satisficing policies are conditional on the following set of ρπ-values: 0.30, 0.31,
0.32,...,0.80. (b) Right frame: Robustness (vertical axis) offered by the different policies considered in the
left frame (a) at different levels of acceptable loss, dLs, which is represented on the horizontal axis in per
cent.
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Figure 2.a shows robustness offered by the robust-satisficing policies. The circled line represents

maximal robustness offered by the corresponding policy. The bold face numbers in Table 1 are

points on this curve. It is seen that optimal policies conditional on values below 0.3 and above

0.8 are not robust-satisficing policies. The policy based on ρπ = 0.8 offers maximum robustness

(indicated by 1) at the lowest level of loss compared with policies based on ρπ outside the range

0.3–0.8. Figures 2.a–b suggest that the policy conditional on ρπ = 0.8 would not lead to a loss

higher than 50% under any value of ρπ ∈ [0,0.99]; see also Table 1. The other policies including

those based on ρπ-values strictly larger than 0.8 require willingness to accept higher loss than 50%

for maximum robustness and will therefore not be adopted.

Figure 2.b also suggests that by accepting less than 10% per cent deviation from whatever

would be the optimal loss level, one can perform satisfactorily under about 3/4 of the possible

values of ρπ. However, a higher level of robustness requires willingness to accept a substantially

higher loss. To perform satisfactorily under any value of ρπ ∈ [0,0.99] one would have to accept a

loss of at least 50%.

Table 2: Sets of ρπ-values for which selected policies are robust at different levels of dLs

dLs U(Ωρπ , dLs)

50 0-.93 0-.94 0-.94 0-.94 0-.95 0-.95 0-.96 0-.97 0-.99 .47-.99 .89-.99
40 0-.91 0-.92 0-.92 0-.93 0-.93 0-.94 0-.95 0-.96 .1-.97 .55-.99 .91-.99
35 0-.9 0-.9 0-.91 0-.92 0-.92 0-.93 0-.94 0-.95 .17-.97 .6-.99 .92-.99
30 0-.88 0-.89 0-.9 0-.9 0-.91 0-.92 0-.93 0-.94 .24-.96 .64-.99 .93-.99
25 0-.86 0-.87 0-.88 0-.88 0-.89 0-.9 0-.92 0-.93 .32-.95 .67-.98 .94-.99
20 0-.83 0-.84 0-.85 0-.86 0-.87 0-.89 0-.90 .04-.92 .39-.94 .71-.98 .95-.99
15 0-.8 0-.81 0-.82 0-.83 0-.85 0-.86 0-.88 .16-.9 .47-.93 .75-.97 .96-.99
10 0-.73 0-.75 0-.77 0-.79 0-.80 0-.82 .01-.85 .29-.88 .56-.91 .79-.96 .97-.99
5 0-.61 0-.64 0-.67 0-.7 0-.73 0-.76 .23-.8 .44-.84 .65-.89 .83-.94 .98-.99
1 0-.35 0-.4 0-.46 0-.52 .15-.58 .31-.64 .46-.7 .61-.77 .75-.84 .88-.92 .99-.99
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Ω0 Ω0.1 Ω0.2 Ω0.3 Ω0.4 Ω0.5 Ω0.6 Ω0.7 Ω0.8 Ω0.9 Ω0.99

Note: The policies, which are represented by Ωs containing the response coefficients in the Taylor rule, are
optimal conditional on the subscripted values of persistence in the supply shock (ρπ). Bold faced sets of
ρπ-values correspond to the robust-satisficing policies at different levels of acceptable loss (in per cent).

Table 2 presents sets of ρπ-values, U(Ωρπ , dLs), for which selected policies would be robust at

different levels of (relative) loss. Specifically, at level of robustness/uncertainty ̂̀= ̂̀(Ωρπ
, dLs),

the uncertainty set U(̂̀, dLs) is an interval of ρπ-values of length ̂̀, where U(̂̀, dLs) is alternatively

represented as U(Ωρπ , dLs). These sets correspond to the robustness measures in Table 1 and

display similar properties.

Table 2 illustrates the contraction as well as the nesting axioms. It shows that sets corresponding

to optimal policies for dLs = 0% only contain the single conditioning ρπ. Accordingly, highest

aspirations have zero robustness: ̂̀(Ωρπ
, dLs) = 0 while U(Ωρπ

, dLs) ={ρπ} when dLs = 0. The

table also shows that robustness of policies considered increases as well as those of robust-satisficing

policies with the (relative) loss levels, dLs. The uncertainty sets are non-decreasing as one moves
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up each column of Table 2 and across columns associated with the robust-satisficing policies (while

raising dLs). Figure 3 displays how the uncertainty sets vary with different robust-satisficing

policies as well as with loss levels.
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Figure 3: (a) Left frame: Robustness intervals offered by robust-satisficing policies (and some others) in

terms of sets of ρπ-values. The sets are defined by the minimum and the maximum value in their ranges;

the values within the extreme values are also parts of the sets. The robust-satisficing policies are identified

by values of ρπ (= 0, 0.30, 0.31,...,0.80) indicated on the horizontal axis. (b) Robustness (vertical axis)

in terms of sets of of ρπ-values indicated by the minimum and maximum values offered by the different

policies considered in (a) at different levels of acceptable loss, dLs, which is represented on the horizontal

axis in per cent.

Notably, the costs of robustness increase with the level of robustness and asymmetrically around

the persistence values conditioned upon. Table 2 as well as Figure 3 show that the parameter

sets, U(Ωρπ , dLs)s, expand at a decreasing rate when we raise the relative loss levels, implying

increasing costs of robustness. Hence, inclusion of relative extreme values of ρπ in the parameter

sets demands willingness to accept relatively high costs. It also appears that when the relative

loss level increases, the parameter sets do not expand symmetrically around the parameter values

conditioned on. Hence, the costs of expanding the parameter sets to include particularly high or

low parameter values can be quite high.

We also note that the increase in robustness, i.e. expansions of the sets U(Ωρπ , dLs), is highly

policy dependent. For example, we see in Table 2 that an increase in the loss from 1% to 5% expands

the parameter set associated with policy Ω0.1 from [0, 0.35] to [0, 0.61] while the parameter set

associated with Ω0.9 changes from [0.88, 0.92] to [0.83, 0.94]. Regarding policies that are not

robust-satisficing, we note that policies conditional on degrees of persistence below 0.3 seem to be

more robust, i.e. the associated sets U(Ωρπ , dLs) are larger, than policies conditional on degrees

of persistence higher than 0.8.9

9The robust-satisficing policies indicated in the Table 2 are relative to policies evaluated in this table. Some of
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The min-max policy Ωm is defined as the optimal policy conditioned on ρπ = 0.8, Ω.8, if

we assume that the level of uncertainty `m coincides with the range 0–0.99. Then, this policy

would offer robustness against any ρπ ∈ [0, 0.99] at the lowest loss level, which is 50%. The other

policies do not offer robustness against the complete set of ρπ-values at this level of relative loss.

Specifically, optimal policies conditioned on ρπ ∈ [0, 0.8) imply higher loss than 50% if ρπ turns out

to be e.g. 0.99, while the policies conditioned on ρπ ∈ (0.8, 0.99] imply relatively higher loss than

50% if ρπ turns out to be particularly low. Notably, robust-satisficing polices defined by ρπ ∈ [0.3,

0.8) would imply higher loss than the min-max policy for ρπ-values slightly below and including

0.99. Except for these values, the robust-satisficing policies will imply lower relative loss than the

min-max policy.

The min-max policy and the robust satisficing policy coincide, i.e. Ωm = Ω0.8, if dL(Ω
eρπ

, ρπ) ≤

dLs = 50%. Moreover, at a given level of uncertainty, the robust-satisficing policy will coincide

with the min-max policy even for dL(Ω
eρπ

, ρπ) > dLs = 50%. This is because any policy different

from the min-max policy will imply higher loss than necessary for complete robustness and hence

not be selected.

Thus, a min-max policy and a robust satisficing would be observationally equivalent if the

robust satisficer may not incur more than the maximum loss level under the min-max policy. The

robust-satisficing policy may, however, deviate from the min-max policy and offer higher robustness

if relatively lower levels of loss are required, as shown above.

Theoretically, by assuming away uncertainty a min-max policy can be equated to any robust-

satisficing policy. Moreover, by raising the acceptable level of loss to dLm, any robust-satisficing

policy can be equated to the min-max policy implying dLm; see proposition 3. Such an exercise

may be unreasonable and hence seem artificial in practice, though.

Finally, robust-satisficing policies are found to be less aggressive than the min-max policy, in

general. Figure 4 shows the response coefficients of inflation, ωπ, in the coefficient vectors Ω0–Ω0.99

defining the Taylor-type rule. The figure shows that ωπ increases with ρπ. The range of ωπ-values

corresponding to the robust satisficing policies, which are defined by ρπ ∈ [0.3,0.8], is about 3–

4.5. Hence, except for the robust-satisficing policy that coincides with the min-max policy, the

robust-satisficing policies will be generally less aggressive than the min-max policy, for which ωπ

= 4.5. In particular, robust-satisficing policy for relatively low levels of loss which would be based

on relatively low persistence values, will imply relatively weak response to the inflation gap. The

response coefficient of the output gap (ωy), associated with the response coefficients of the inflation

gap (ωπ), displays similar properties. This varies in the range 1.45–2.30 for the robust-satisficing

policies (not shown).

the policies are robust-satisficing at several levels of relative losses. This is an artefact of not evaluating policies
based on a finer grid of ρπ . When we use a finer grid, robust-satisficing policies would vary continuously over the
range 0.30–0.80 with the different relative loss levels, as shown in Figures 1–3.
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Figure 4: Optimal values of the response coefficient associated with the inflation gap in the Taylor rule,

ωπ, conditional on different degrees of persistence in the supply shock ρπ = 0, 0.01, 0.02,...,0.99 (horizontal

axis).

4.2 Uncertain slope of the Phillips curve

In the following we apply the robust-satisficing approach to the case when the coefficient corre-

sponding to the output gap in the inflation equation (13), cy, is uncertain. The results regarding

uncertainty in the response of the output gap to interest rates in the demand equation (14) were

found to the comparable to the case with uncertain slope coefficient cy and are therefore not

reported.

We let the parameter space of cy be unbounded and investigate the robustness of different

policies at different levels of relative loss. For illustration, we evaluate three polices Ω
ecy

= Ω.13,

Ω.25 and Ω.30, where Ω
ecy

is the optimal policy conditional on a specific cy value.10 To calculate

the robustness of a policy Ω
ecy

we find the range and the set of cy values for which dL(Ω
ecy

, cy)

≤ dLs holds, where dLs = 0, 5, 10, 20%. The range of cy-values for which dL(Ω
ecy

, cy) ≤ dLs holds

defines the degree of robustness of policy Ω
ecy

, `(Ωcy , dLs), while the corresponding set of cy-values

defines the uncertainty set U(Ωcy
, dLs). Table 3 presents the results where bold-faced numbers

correspond to robust-satisficing policies.

Table 3 illustrates the characteristics of robust-satisficing policies consistent with propositions

1–2, as above; see Figures 2.a and 3.a and Table 2. The results are also consistent with the

other properties of robust-satisficing policies observed above. In particular, the costs of robustness

increase with the level of robustness and to some extent asymmetrically around the parameter

values conditioned upon.

In greater detail, among the three policies evaluated, Ω0.30 has relatively higher robustness for

acceptable loss up to 10%. The policy defined by Ω0.25, however, becomes slightly more robust

than Ω0.30 when the acceptable loss is raised to 20%. The right panel of the table shows the cy

10Note that defining the set of feasible policies R is not the dual of defining the parameter space of cy . A policy
maker has more information about the set of feasible policies than the parameter space. Hence, it is not unreasonable
to assume that the policy maker compares the robustness of feasible policies, without specifying the boundaries of
the parameter space.
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Table 3: Robustness and corresponding sets of cy-values at different levels of dLs

dLs
̂̀(Ωcy , dLs) U(Ωcy , dLs)

20 0.310 0.430 0.420 .005–.305 .050–.480 .080–.500
10 0.240 0.315 0.345 .015–.255 .100–.415 .135–.480
5 0.170 0.220 0.245 .050–.220 .145–.365 .180–.425
0 0 0 0 .13 .25 .30

Ωcy
Ω.13 Ω.25 Ω.30 Ω.13 Ω.25 Ω.30

Note: The policies, which are represented by Ωs containing the response coefficients in the Taylor rule, are
optimal conditional on the subscripted values of slope coefficients (cy). Bold faced cy-values correspond to
the robust-satisficing policies at different levels of acceptable loss (in per cent).

values for which the losses will not exceed the acceptable levels. When the acceptable loss is 0%,

i.e. one aspires for the optimal levels, the robustness of all policies is zero as any deviation from the

value conditioned on, will lead to a higher loss than aspired. However, by being willing to accept

up to 5% deviation from optimal levels, one can raise the robustness of all policies to a quite large

range of possible cy values. We also observe that robustness, i.e. expansion of U(Ωcy , dLs), does

not increase symmetrically around the parameter values conditioned upon.

Moreover, the policy conditioned on cy = 0.13, Ω0.13, which is the econometrically estimated

value of 0.13, has relatively lower robustness than the other two policies. In general, a robust-

satisficing policy would not be conditioned on the estimated value of a parameter. This is because

when we assume Knightian parameter uncertainty, the estimated value of a parameter does not

receive more weight than any other parameter value. One may also say that the choice of the

parameter value for policy making is based on “strategic” rather than econometric considerations,

in the robust-satisficing approach as well in the robust-control approach.

To ease comparison with the min-max policy, let us now assume that the slope coefficient cy

takes on a value in the range [0.005, 0.5], which is fairly broad suggesting a relatively high level

of uncertainty `m. Figure 5 presents robustness curves implied by optimal policies conditional on

every value of the slope coefficient in the interval 0.005–0.5, differing from each other by just 0.005.

The results support the characteristics of robust-satisficing policies noted above; see Figure

5 and Table 4, which reports uncertainty sets for selected policies. At a given loss level, the

robustness curves in Figure 5 also suggest a strongly concave relationship between robustness and

the different values of the slope coefficient on which the policies have been conditioned on.

Specifically, it is seen that policies based on relatively low values of cy are more robust than

those based on relatively higher values of cy. The robust-satisficing policies are defined by cy-

values in the range [0.25, 0.44]. The policy based on cy = 0.25 offers complete robustness to

any cy ∈[0.005, 0.5] at a relative loss level of 40%, while the policy based on cy = 0.44 is the

robust-satisficing policy at the 1% level of loss and also the least robust policy, among the set of

robust-satisficing policies.

The policy based on cy = 0.25 is also the min-max policy for the full range of parameter
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Figure 5: Robustness of all policies considered at different levels of acceptable loss when the slope of

the Phillips curve, cy, is uncertain. Level of robustness b`(Ωcy , dLs) is represented on the vertical axis,

while cy-values are indicated on the horizontal axis. Robustness is measured by the length of an interval

containing cy-values ∈ [0.005, 0.50]. Policies that are optimal conditional on these slope coefficient values

are represented by these values on the horizontal axis. Different levels of acceptable loss dL in per cent,

are indicated by patterns of the robustness curves.

Table 4: Sets of cy-values for which selected policies are robust at different levels of dLs

dLs U(Ωcy , dLs)
40 .005–.190 .005–.370 .005–.5 .015–.5 .035–.5 .055–.5 .100–.5
30 .005–.170 .005–.345 .015–.5 .040–.5 .065–.5 .090–.5 .140–.5
20 .005–.140 .005–.305 .050–.48 .080–.5 .110–.5 .135–.5 .195–.5
15 .005–.125 .005–.285 .075–.450 .105–.5 .135–.5 .170–.5 .230–.5
10 .005–.105 .015–.255 .100–.415 .135–.480 .170–.5 .205–.5 .275–.5
5 .005–.075 .050–.220 .145–.365 .180–.425 .220–.490 .260–.5 .335–.5
2 .005–.050 .075–.185 .180–.320 .225–.380 .270–.435 .310–.490 .395–.5
1 .005–.035 .095–.170 .200–.300 .245–.355 .290–.410 .335–.465 .425–.5
0 0.005 0.13 0.25 0.3 0.35 0.4 0.5

Note: The policies, which are represented by Ω s containing the response coefficients in the Taylor rule,
are optimal conditional on the subscripted values of slope coefficients (cy). Bold faced sets of cy-values
correspond to the robust-satisficing policies at different levels of acceptable loss (in per cent).

uncertainty conjectured, as any other policy implies relatively higher loss for some of the possible

values of cy within its assumed range. For example, the optimal policies conditional on cy = 0.30

and cy = 0.13 would imply a higher loss than 40% for parameter values in the ranges [0.005, 0.015)

and (0.370, 0.5], respectively; see Table 3.

It should be noted that when the level of uncertainty, here represented by the range [0.005,

0.5], is given, the robust-satisficing policies (as well as the min-max) policy may be affected. This

is because a rise or reduction in the level of uncertainty, here widening or narrowing of the range,

increases or reduces the set of parameter values for which the robustness of a policy is evaluated.

This is, however, not the case when the parameter space is unbounded.
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Figure 6: Left frame: Optimal values of the response coefficient associated with the inflation gap in the

Taylor rule, ωπ, conditional upon different values of the slope coefficient cy = 0.005, 0.01, 0.015,...,0.50

(horizontal axis). Right frame: Optimal values of the response coefficient associated with the output gap

in the Taylor rule, ωy, conditional on the cy values (horizontal axis). Subsets of these response coefficients

define robust-satisficing policies.

Uncertainty in the slope coefficient implies that the policy is more influenced by the inflation

gap than the output gap in the Taylor rule. Figure 6 presents (optimal) values of the response

coefficients associated with the inflation and the output gaps. These values are optimal conditional

on values of the slope coefficient denoted on the horizontal axes. We note that the response

coefficient associated with the inflation gap increases with the quest for robustness while the

response coefficient associated the output gap decreases. The response coefficients associated with

cy ∈[0.25, 0.44] increase from 2 to 2.5 for the inflation gap and decrease from 2 to 1.3 for the output

gap.

The reason for these choices of the response coefficients is that the policy is conditioned on a

lower value of the slope coefficient cy, within the range 0.25–0.45, the higher robustness one seeks.

Accordingly, policy becomes more effective if interest rates are less influenced by the output gap

than the inflation gap. Thus, the weight on the output gap declines with the values of the slope

coefficient conditioned on.

The relatively higher weight on the inflation gap at the expense of relatively lower weight on

the output gap in the interest rate rule is consistent with earlier studies based on the min-max

approach; see e.g. Smets (2002) and the references therein. However, within the robust-satisficing

approach alteration of the weights depends on the how much robustness one seeks, which depends

on the acceptable level of loss.

As noted above, results for the case when the interest rate effect on the output gap is uncertain

are comparable to those for uncertainty in the slope of the Phillips curves. In the former case,

20



robustness was increased by basing policy on a relatively weak response of the output gap to

interest rates. In both cases, there is uncertainty regarding the policy maker’s ability to control

inflation. And in both cases, the degree of robustness increases if policy is based on understating

the policy maker’s ability to control inflation. Moreover, the higher the robustness one seeks, the

weaker control does one assume; up to some limit, though, as the extreme case would be to assume

no control at all.

4.3 Uncertain persistence in the demand and the supply shocks

This section employs the robust satisficing approach to deal with uncertainty in two parameters,

%π and %y. In this case, θ becomes a vector and U(`, θ̃) becomes a two-dimensional parameter

space, defined in Appendix A. This space will be defined by the optimal policy based on value θ̃

of θ, Ω
eθ. We represent the robustness of a policy, ̂̀(= `(Ω

eθ, dLs)), by the fraction of all possible

vectors θ for which the given policy does not imply a higher loss than some specific level dLs.
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Figure 7: Sets of ρπ and ρy (vertical axis) for which selected policies are robust at different levels of dLs

in per cent, noted on curves defining the boundaries of the sets. The policies are optimal conditional on

the given values of ρπ and ρy in parentheses below the figures.

In the two-dimensional case considered here, ̂̀ is represented by the fraction of the area defined

by all possible parameter values: %π × %π. In our simulations, we let each of the degrees of persis-

tence take on the following values: 0, 0.1, 0.2,...0.9 and evaluate robustness of policies conditional
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on 100 different values of the θ vector.
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Figure 8: Robustness of all policies considered at indicated levels of acceptable losses. The policies

considered are optimal conditional on 100 different combinations of ρπ and ρy values, where both ρπ and

ρy take on the following values: 0, 0.1, 0.2,...,0.9. The policies are identified by the ρπ- and ρy-values

indicated on the axes. Robustness is measured as the share of the 100 different parameter combinations

for which the loss remains below the acceptable losses.

Figures 7.a–d show the parameter spaces for which the losses do not exceed acceptable loss levels

when policies are conditional on given parameter vectors. The parameter spaces vary highly with

the policies as well as with the relative loss levels; see also Figure 8. The figures display the main

properties of the robust-satisficing approach consistent with the results for the case of uncertainty

in single parameters. For example, U(̂̀, θ̃) representing areas associated with a given robustness

level increase with relative loss level dLs and at a decreasing rate. This suggests increasing costs of

robustness. In particular, one would have to accept a relatively large loss to perform satisfactorily

under every possible combination of %π- and %y-values within their assumed ranges. In particular,

the cost of the robust-satisficing policy coinciding with the min-max policy would be high.

Figures 8.a–d compare the robustness of different policies at selected levels of relative loss.

Robustness is portrayed on the z-axis, while the x- and the y-axis indicate the parameter values on

which policies Ω
eθs are conditioned. The surface plots correspond to the strongly concave robustness

curves in Figures 1 and 4.

The surface plots display concavity conditional on given loss levels as in the single parameter
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cases. We observe that the robustness increases with the level of persistence up to some loss-specific

level, as in the case of the uncertainty regarding the supply shock.
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Figure 9: Robustness offered by robust-satisficing policies in terms of sets of ρπ- and ρy-values. The
largest set would include all values of ρπ ∈ [0,0.9] and ρy ∈ [0, 0.9]. The robust-satisficing policies are
identified by values of ρπ and ρy presented in parentheses. The levels of acceptable losses are noted close
to the boundaries defining the sets. Every set has been selected among 100 different sets implied by the
(100) different policies.

The heights of the surface plots representing robustness rise up to some acceptable loss-specific

level when policy is conditioned on a relatively higher %π and/or %y. Also, the robustness increases

at a decreasing rate as suggested by the concavity of the surface plots.

The robust-satisficing policies at the four different loss levels, 1, 2, 5 and 15%, are defined by the

maximum values on these surface plots and are conditioned on the parameter values on the x- and

the y-axis. Figure 9 shows the parameter vectors and the corresponding parameter spaces defining

robust-satisficing policies at different levels of relative losses. For example, the robust satisficing

policies for dLs = 1% and 5% would be optimal policies conditional on (0.3, 0.3) and (0.5, 0.5),

respectively. We also note that if the acceptable loss level is 15%, the optimal policies defined by

(0.7, 0.7) would perform satisfactorily for almost all parameter values within the parameter spaces

of %π and %y. This also defines the min-max policy.

Figure 10 shows the policies corresponding to different combinations of parameter values. Values

of ωπ are given on the z-axis, while the corresponding persistence values are given on the x- and

the y-axis.

Values of the persistence parameters defining robust-satisficing policies are in the range 0.3–

0.7 for both ρπ and ρy. In particular, the min-max policy is equals the robust-satisficing policy

conditional on ρπ = 0.7 and ρy = 0.7. We note that the min-max policy in the case of uncertainty

about persistence in a single shock was based on relatively higher persistence: ρπ = 0.8. The
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Figure 10: Optimal values of the response coefficient associated with the inflation gap in the Taylor rule,

ωπ, conditional on different values ρπ and ρy. Both ρπ and ρy take on the following values: 0, 0.1, 0.2,...,0.9.

Robust-satisficing policies are identified by ρπ- and ρy-values within the range 0.2, 0.3,..., 0.7.

reason for the difference between the single parameter case and the two parameter case is that we

have not evaluated policies for values of ρπ and ρy higher than 0.9.

5 Conclusions

We have employed the robust-satisficing approach to formulate robust monetary policy under

Knightian parameter uncertainty within the framework of a small macroeconomic model. Ro-

bustness can be interpreted as the extent of deviations from a policy’s underlying premises under

which its performance will not deteriorate beyond some acceptable level. The robust-satisficing

policy maximizes robustness at a given level of acceptable loss, measured relative to the ex-post

optimal loss level. The robust-satisficing approach enables one to focus on attaining satisfactory

performance in the preponderance of plausible scenarios, while also managing unbounded and

non-probabilistic uncertainty.

The empirical analysis has illustrated key features of the robust-satisficing approach and prop-

erties of robustness measures. First, robustness of any given policy, as well as of explicitly robust-

satisficing policies, increases with the level of acceptable loss. Second, robust-satisficing policies

lead to the evaluation of the range of parameter values within which the performance is accept-

able. Third, robustness of a policy increases with the acceptable loss at a decreasing rate. Thus, a

relatively high degree of robustness is particularly costly as it requires willingness to accept rela-

tively high levels of potential loss. Fourth, the increase in robustness may not extend equally in all

directions in the space of uncertain parameters. For example, the range of parameter values, for

which a given policy will not imply higher loss than some accepted loss, may not increase equally
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in both directions. Possible asymmetry in the extension depends on the loss function, the model

used and the uncertain parameter. And fifth, by raising the level of acceptable loss sufficiently, one

can derive a robust-satisficing policy that would be robust to any parameter value from a specified

set of parameter values.

By raising the level of acceptable loss sufficiently, one eventually reaches the point at which the

robust-satisficing policy coincides with the min-max policy. Equivalently, reducing the min-max

estimate of the worst case also causes concurrence of the robust-satisficing and min-max policies.

We have referred to this concurrence of min-max with robust-satisficing as observational equiva-

lence. However, when the worst-case is sufficiently large, or the required level of loss is sufficiently

low, then min-max and robust-satisficing policies differ, which we have called the behavioral dif-

ference. In this situation, the robust-satisficing policy would be generally more robust than the

min-max policy for a less-than-complete set of possible parameter values. However, the loss under

such robust-satisficing policies would be higher than the loss under the min-max policy for extreme

parameter values.

Our empirical results suggest that higher robustness can be achieved by overstating challenges

to the economy and understating the abilities to meet them. How much to overstate or understate

depends on the robustness sought and the performance aspirations. More precisely, we find that

higher robustness can be achieved by basing policy on relatively high degrees of persistence in the

shocks and relatively weak effects of the output gap on inflation and of interest rates on the output

gap. How much to raise the degree of persistence and lower the effects of the output gap and

the interest rate depends on how much robustness one seeks and how much relative loss one can

tolerate.

The level of robustness, and thereby the extent of the over- and understatement of the challenges

and the abilities, respectively, depends on the level of acceptable loss. In particular, robustness to

a broad set of possible parameter values is particularly costly and requires willingness to accept

a relatively high level of potential loss. Furthermore, when the sets of possible parameter values

have been specified, policies based on the assumption of overly high persistence have relatively

low robustness. Similarly, policies based on assuming overly weak response of the inflation to the

output gap or of the output gap to interest rates have relatively low robustness.

The main policy implications of parameter uncertainty in terms of the response coefficients in

the Taylor-type rule are qualitatively the same as for assuming a relatively high degree of shock

persistence and relatively weak responses of the inflation to the output gap and of the output

gap to interest rates. These assumptions imply that the response coefficient associated with the

inflation gap increases with desired robustness. In the case of uncertainty regarding persistence in

the shocks, the response coefficient associated with the output gap also increases with robustness

sought. In the case of the response coefficients, however, the output gap coefficient decreases with
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the robustness. This is because it is less effective to respond to the output gap as its importance in

the model is down played, by assuming weaker and weaker response coefficients. We also observe

that the robust-satisficing policies are less aggressive than the min-max, except when they coincide.

Finally, our analysis points to the importance of using available information efficiently to reduce

the level of uncertainty. The potential costs of robust policies informed by a high level of uncertainty

can be substantial. More information can be helpful in determining how much robustness one

actually needs.

A Appendix: Info-Gap Model of Uncertainty

We now formulate the info-gap model, U(`,Ω), for uncertainty in a vector θ. The analyst has

complete Knightian uncertainty: the probability distribution of θ is unknown. One has no estimate,

in any statistical sense, of the value of θ.11

Even though the true value of θ is not known, it is still useful to talk about values of θ that

would motivate any particular choice of the parameters Ω = (ωr, ωπ, ωy) of the policy rule. For

instance, if we are considering a specific choice of Ω, one may ask: given our economic models,

what should θ be in order to make this a good choice of Ω? The value of θ which, were it the true

value, would justify a particular Ω, will be denoted θ̃(Ω) and is defined by the solution for θ in the

relation:

Ω = Ω̃(θ), (20)

where Ω̃(θ) is the loss-minimizing policy if the uncertain parameter equals θ, defined in eqs.(6).

We now posit a “weak convexity” of the loss function. We assume that, for any fixed Ω, the loss

function dL(Ω, θ) rises increasingly above the full-knowledge value, dL[Ω, θ̃(Ω)] = 0, as θ deviates

from θ̃(Ω). This does not assert that dL(Ω, θ) is convex vs. θ, but only that it has a unique

minimum vs. θ , for any given Ω. We posit that this weak convexity holds for dL(Ω, θ).

The weak convexity property implies that, for any non-negative bound on the loss function,

the corresponding set of θ-values is a connected region, which we define as:

D(x, Ω) = {θ ∈ Θ : dL(Ω, θ) ≤ x} , (21)

where Θ is the set of meaningful values for the vector θ. For any level of loss x, the set of θ values

for which the loss (with policy Ω) does not exceed x is the set D(x,Ω). Because the loss function

has the property of weak convexity, this set is a connected region whose length (or area, or volume,

etc., depending on the dimension of θ) we denote by |D(x, Ω)|. Since dL(Ω, θ) = 0 at its unique

minimum, θ̃(Ω), we note that D(0,Ω) = {θ̃(Ω)}.
11This example could be extended to consider info-gap uncertainty in the probability distribution of θ. Examples

of info-gap analysis of uncertainty probability distributions are found in Ben-Haim (2005, 2006).
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The weak convexity property implies that the sets D(x,Ω) are nested:

x < x′ implies D(x,Ω) ⊆ D(x′,Ω). (22)

This states that any value, θ, whose loss is no less than x, also has loss no less than x′, when the

same policy is used.

We use this concept to define an info-gap model for uncertainty in θ. For any contemplated

policy parameters Ω, the info-gap model is the following family of nested sets of uncertain θ-values:

U(`,Ω) = {θ : θ ∈ D(x,Ω), x ≥ 0, |D(x,Ω)| ≤ `} , ` ≥ 0. (23)

At any level of uncertainty `, the set U(`,Ω) contains all values θ which belong to sets D(x,Ω)

no larger than `, regardless of the loss value x. The level of uncertainty is unknown so ` can take

any non-negative value. The info-gap model is a family of nested sets and obeys the axioms of

contraction and nesting (Ben-Haim 2006).

In light of eq.(22) we see that, for any `, there exists an x(`) such that:

U(`,Ω) = D(x(`),Ω). (24)

Combining eqs.(21) and (24) we see that the uncertainty set, evaluated at a level of uncertainty

equal to the robustness, is:

U [̂̀(Ω,dLs), Ω] = D(dLs,Ω). (25)

We emphasize that this info-gap model depends on a contemplated policy parameters Ω. The

sets U(`,Ω) are an expression of epistemic (rather than objective or ontological or aleatoric) uncer-

tainty: if we use policy Ω, then the info-gap model contains all θ-values for which the loss will not

exceed some specific value. We don’t know which θ value will occur or the value of `, so there is no

known worst case (other than the limits on meaningful values of θ, such as unbounded persistence,

expressed by the set Θ).
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