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Introduction and Motivation

Overall goal

@ Analyzing the performance of combinations of forecasts of return models and
equity momentum strategies in an uncertain dynamic environment with changing
data features.

Major challenges

@ There exist a Large number of models, which potentially explain stylized return
features.

@ Predicted returns from a specific model do not directly lead to a Practical policy
tool for investors.

o Computational issues: Many potential models (and combinations of these models)
are non-linear and non-Gaussian.
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Introduction and Motivation

Four Contributions

© Combining flexible model structures: Methodology to combine different models
that capture stylized facts of return distributions (FAVAR-SV and components).

@ Incorporating policy decision in modeling: A new dynamic asset-allocation
method mixing alternative models and alternative portfolio strategies.

© Combination method: An extended time-varying density combination scheme for
model and portfolio strategy mixtures.

@ Computational tool: M-Filter: A new filter based on the mixture approximation of
the likelihood in each period, aiming to improve efficiency and computing time for
density combinations.
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Stylized facts - US industry portfolios

Monthly percentage returns.
Data: Ten US industry portfolios between 1926M7 and 2015M6.
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Stylized facts
1 a stationary auto-regressive time-series pattern for all return series.

2 volatility clustering that is common to all series.
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Stylized facts - US industry portfolios

Canonical correlations between 45 pairs
Data: Ten US industry portfolios between 1926 M7 and 2015M6.
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Stylized facts

3 strong cross-section correlation between returns with a time-varying pattern.
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Stylized facts - US industry portfolios

Percentage of explained variation by PCA
Data: Ten US industry portfolios between 1926 M7 and 2015M6.
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Stylized facts

4 total variation in the series can be captured well with one to four components
but explained variation (number of common factors) is time-varying.
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Short and long-run dynamics in alternative models

General state-space representation for all considered /combined models:

Yyt :th+Aft+€t7 Et ~v N(072t)7
fo =¢fia+. .+ ofe+n,  m ~NOQ),

o VAR A =0, x; is the lagged dependent variable, 3 is diagonal.

o DFM 3 = 0 and a normal distribution for the idiosyncratic and latent disturbances
with time-invariant variance-covariance matrices.

o DFM-SV DFM with stochastic volatility component in idiosyncratic disturbances,
Et.

o FAVAR-SV FAVAR with stochastic volatility component in idiosyncratic
disturbances, ;.

o DFM-SV2 DFM with stochastic volatility component in idiosyncratic and latent
disturbances, €, m,.

o FAVAR-SV2 FAVAR with stochastic volatility component in idiosyncratic and latent
disturbances, €, 7m,.

Contribution: We extend the FAVAR model with one or two
SV components, and relate it to relatively simpler models
such as the VAR or DFM.
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Intermezzo: Dynamic Predictive Density Combinations: Basic Idea of DeCo

Consider a basic probabilistic combination of densities consisting of
@ 1 random variable of interest y, with
o K predictions ¥ = (y1, ..., ¥k) from K models.

o Let / denote the information set containing past data and (possibly different) model
specifications.
Step 1
Predictive density of random variable y given information set can be calculated from the
convolution at the r.h.s.:

Fyll) = / Fy.5|1)dy = / F |7, DF(7I1)dy
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Intermezzo: Dynamic Predictive Density Combinations: Basic Idea of DeCo

Step 1 (continued)

Fyl) = / Fy.9I1)dy = / Fy19. DF(711)dy

@ Predictive density of a variable of interest y is a weighted average of the
conditional density of y given values of predictions ¥, times the marginal density of

y.
e Formally, f(y|l) is a mixture density where f(y|l) is the mixing density. In the
paper we make use of a finite mixture approach.
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Intermezzo: Dynamic Predictive Density Combinations: Basic idea of DeCo

Step 2 Specify combination weights w = (wx, ..., wk) which are unobserved
and which connect the predicted values y with the variable to be predicted y as follows:

Ve =Yiwe + € (1)

with e; ~ N(0, 62) which indicates model incompleteness.
i = [ [ #lv.5,windydw
vJw
= [ [ #lw5. 0oz, (5117
vJw

Thus:
o f(y|lw,y,l) is a combination density,in our case a normal one.
o p(wl|y, 1) is the weight density,
@ p(¥|l) is the predictive density of all models.
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Intermezzo: Dynamic Predictive Density Combinations: Basic idea of DeCo

Issue: How to evaluate equations in step 27

Fyll) = / / F(ylw, 3. 1)p(w|. p(71)d5dw %)

@ Suppose the joint density is a normal density. Evaluation is straightforward.

@ Suppose that the weight density is markovian dynamic and updating is done in each
period with normal densities. This generalizes the mixture of experts approach from
Jordan and Jacobs (1994, Journal of Neural Computation).

Wt = Wi—1 + Nt (3)

with 1 ~ N(0,07)
Evaluation is then straightforward using the Normal/Kalman Filter.

@ However, the weights w are restricted to the unit interval (they are probabilities).
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Intermezzo: Dynamic Predictive Density Combinations: Basic idea of DeCo

@ In this paper we make use of a dynamic mixture of models approach. A basic
equation is:

K

Flyelh) = >~ wie | FOrlies WP el e (4)
k=1 R

These weights have a logistic dynamics described by the additive logistic transform

K
Wie = exp{xie}/ Y exp{xi}

k=1

@ We have a nonlinear transformation w = g(x) using the logistic function for the
weights x that are connected to past predictive performance and to economic
information. Simulation from the weight density is only through indirect sampling
methods. Then more involved filtering algorithms; see later.
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Intermezzo: Dynamic Predictive Density Combinations: Basic idea of DeCo

Issue: Comparison BMA and DeCO

@ BMA contains true model and for large samples this model is selected

@ DeCo allows for model incompleteness. So not only Bayesian learning but also
error learning

o BMA has fixed unknown weights.

@ DeCo has uncertainty of weights (correlations between weights can be
computed) and time-varying learning of weights given past predictive
performance.
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Combining portfolio models and strategies

@ Portfolio analysis typically compares realized returns from different strategies and
assesses their performance.

@ Econometric models yield in accurate predictive densities as input for a portfolio
strategy.

@ Incorporation of different investment strategies in econometric models is not

straightforward.
This requires a strategy such as mean-variance optimization or a specific utility or

loss function

Contribution: Connecting portfolio strategy decisions di-
rectly with model comparison and combination, without the
need to specify a loss or utility function for the investor.
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Considered portfolio strategies

Two equity momentum strategies based on a specific model.

@ Model Momentum (M.M.):
The investor uses the fitted industry returns in the past period to go long in
assets with the highest posterior mean and to go short in assets with the lowest

posterior mean.

M.M.: Investment decision is based on the model implication
directly.

Big Data Machine Learning 16 / 38
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Considered portfolio strategies

Two equity momentum strategies based on a specific model.

@ Model Momentum (M.M.):
The investor uses the fitted industry returns in the past period to go long in
assets with the highest posterior mean and to go short in assets with the lowest
posterior mean.

M.M.: Investment decision is based on the model implication
directly.

@ Residual Momentum (R.M.):
The investor considers fitted industry returns in the past period for each
industry, and invests in the industries with the highest unexpected returns
during this month, and goes short in stocks with the lowest unexpected returns.

R.M.: Investment decision is based on surprise/unexpected re-
turns.
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Full Bayesian framework to incorporate model and strategy uncertainty

realized return

distributions
t0 t1l t2 t3

L ——— ]

estimation sample for each model
VAR, VAR-SV, DFM, DFM-SV, DFM-SV2,
FAVAR-SV, FAVAR-SV2

- >
strategy decision
M.M. and R.M

sample for
mixing models & strategies

Strategy decision:

o We consider deterministic portfolio strategies Ss with respect to a single underlying
econometric model M p:

Wt,s,m = gs(thPH:t» e(tT)P+l:t)’
with past data points y;_py1.+ and residuals €:—p1:¢.

M.M. and R.M. correspond to different deterministic functions gs(.).

o Given D posterior draws from e'g’;‘f,ﬂ:t ford =1,...,D, we obtain draws from the
weight distribution:

(d)  _ (m,d)
Wt,s,m = 8s(ye—pivt, €t7P+1:t)
@ In the full Bayesian setting, we also obtain draws from realized returns:

real(d) (d)
rip =L Yt+Lit4+P Wi s ms

where yii1.++p is observed data during the investment period.,
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Full Bayesian framework to incorporate model and strategy uncertainty

realized return
distributions
to t1 ©2

B L —8—8—a

estimation sample for each model
VAR, VAR-SV, DFM, DFM-SV, DFM-SV2,
FAVAR-SV, FAVAR-SV2

— >
strategy decision
M.M. and R.M

sample for
mixing models & strategies

Predicted returns from each strategy:
@ Predicted returns from each model and strategy is calculated using the posterior
parameter draws.
o We specifically calculate the one period ahead predictive densities for the ‘skip
period’ in portfolio strategies:

e .d d
r’f‘i’)l = ygzl ) : wg,s),mv

where y(tf’ld) is a draw from the 1 step ahead forecasts of returns.
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Full Bayesian framework to incorporate model and strategy uncertainty

realized return
distributions
t0 t1l t2

=8 &8 8 —4a
estimation sample for each model

VAR, VAR-SV, DFM, DFM-SV, DFM-SV2,
FAVAR-SV, FAVAR-SV2

-
strategy decision
M.M. and R.M

sample for
mixing models & strategies

Mixing models and strategies

@ We use the one period ahead predictive return distributions to mix models and
strategies:

Frh) = 373 wmes / F(rl P 1) F (e K)o s
R

Mpm Ss

@ The one-period ahead predictive density corresponds to the ‘skip period’ in standard
portfolio construction.

Herman K. van Dijk (EUR and Norges Bank) Dynamic Models & Momentum Strategies Big Data Machine Learning 19 / 38



Full Bayesian framework to incorporate model and strategy uncertainty

realized return
distributions
to t1 2

B 3 3—a —a

estimation sample for each model
VAR, VAR-SV, DFM, DFM-SV, DFM-SV2,
FAVAR-SV, FAVAR-SV2

—
strategy decision
M.M. and R.M

sample for
mixing models & strategies

Mixing models and strategies

f(rt“K Zwmst/f(rt|rm,s,tylk) (rmst“k)d?m,s,ty

Mm Ss

@ Difference from a standard model combination scheme: The objective of the
combination scheme is to maximize realized return r¢, not the returns of individual
stocks.

@ An ‘optimal’ r: needs to be defined in order to assess the predictive power of each
model and strategy combination, hence to infer time-varying weights of these
combinations.

o We define this ‘optimal return’ as the maximum possible return given the information
during the skip month t, under the constraint that portfolio weights sum up to 0.

Big Data Machine Learning
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Empirical application

@ Data: Ten monthly US industry portfolios between 1926 M7 and 2015M6.

@ 43 models: VAR, SV, VAR-SV, DFM, DFM-SV, DFM-SV2, FAVAR-SV, FAVAR-SV2
with different autocorrelation structures (number of factors, number of AR lags in
the latent variable).

@ 2 investment strategies (M.M. and R.M.) for each model.
@ In total, we have 86 components that can potentially be compared/combined.
@ Investment decisions are made once a year, strategies are based on the return

performance during the last 12 months.

realized return
distributions

to June '12 June '13 July '14
-] o B—B—82
July '13

Estimation sample: 240 months

strategy decision
12 months

'skip month' for
mixing models & strategies
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Realized returns from different models

Residual momentum typically leads to higher returns.
Model momentum typically leads to lower risk.
Model choice, together with the autocorrelation patterns (K,L) are important.

SV component in idiosyncratic errors is important, particularly for M.M..

SV component in latent errors does not contribute to realized returns substantially.
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Mixture of three basic models and two investment strategies

Three basic models: VAR-N (AR pattern), SV (time-varying volatility), DFM

(cross-sectional correlation).
Two investment strategies: M.M. and R.M.

Model Strategy Mean Vol. S.R. L.L.
Mixture of basic models and two strategies
VAR-N & SV M.M. & R.M. 0.10 3.9 0.025 -23.0
& DFM-N(4,2) (0.01,0.18) (3.6,4.2) (0.002,0.047) (-28.8,-17.5)
Mixture of strategies per model
VAR-N M.M. & R.M. 0.09 4.7 0.019 -32.6
(-0.03,0.20)  (4.0.4,5) (-0.007,0.043)  (-35.6,-20.9)
SV M.M. & R.M. 0.13 4.3 0.032 -22.2
(-0.02,0.28)  (3.9,4.6) (-0.005,0.065)  (-29.9,-16.1)

0.03 43 0.006 -24.4
(-0.12,0.17)  (4.0,47) (-0.028,0.041)  (-31.1-16.8)

Standard momentum: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2.

DFM-N(4,2)  M.M. & RM.

@ Substantial reduction in variances both due to the mixture of strategies and due
to mixture of models.

@ Mean returns have large uncertainty, hence the mixture of models and strategies also
have high uncertainty in mean returns.

Big Data Machine Learning
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Mixture of three basic models and two investment strategies

Three basic models: VAR-N (AR pattern), SV (time-varying volatility), DFM
(cross-sectional correlation).
Two investment strategies: M.M. and R.M.

Cumulative model weights (post. mean)

Cumulative strategy weights (post. mean)

@ Model and strategy weights vary over time.
o Time variation is particularly relevant for strategies.
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Mixture of two flexible models and a mixture of investment strategies

Two flexible models:

o VAR-SV.

o DFM-SV with 1-4 factors and 1-2 AR lags.
Two investment strategies: M.M. and R.M.

Model Strategy Mean Vol. S.R. L.L.

Mixture of two flexible models and strategies

M.M. & R.M.

VAR-SV 0.15 3.7 0.041 -21.6
& DFM-SV(1:4,1:2) (0.08,0.22)  (3.5,3.9) (0.021, 0.061) (-26.4, -16.4)

Mixture of strategies per model

VAR-SV M.M. & R.M. 0.23 45 0.051 -37.2
(0.11,0.35) (42, 49) (0.024,0.080) (-37.3,-36.8)
DFM-SV(1:4,1:2)  M.M. & R.M. 0.06 34 0.018 -14.4
(0.00,0.12)  (32,35) (0.000, 0.036)  (-20.1, -11.0)

Standard momentum: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2.

@ In our approach Mixture of models and strategies again improve risk measures
in general.

@ Mean returns are in general ‘higher’ than those of the mixture of standard models.

@ The combination of models and strategies are useful, but the choice of underlying
models should also be taken into account.
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Mixture of two flexible models and a mixture of investment strategies

Two flexible models:

o VAR-SV.

o DFM-SV with 1-4 factors and 1-2 AR lags.
Two investment strategies: M.M. and R.M.

o5y v
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Mixture of very flexible parametric model and investment strategies

o Flexible model: FAVAR-SV with 1-4 factors, 1-2 lags in the factor equation.
o Two investment strategies: M.M. and R.M..

Model Strategy Mean Vol. S.R. L.L.

Mixture of models and two strategies
FAVAR-SV(1:4, 1:2) M.M. & R.M.

S
OV
o

0.18 0.039 348
(0.14,0.22) (4. (0.031, 0.048)  (-35.0, -34.6)

Mixture of strategies per model

FAVAR-SV(1, 1) M.M. & R.M. 0.11 45 0.024 -33.8
(0.02,0.19)  (4.4,4.6) (0.004, 0.042) (-34.0, -33.1)
FAVAR-SV(1, 2) M.M. & R.M. 0.11 45 0.023 -34.2
(0.02,0.19) (4.4, 4.6) (0.004, 0.042)  (-34.4, -33.6)
FAVAR-SV(2, 1) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05,0.22) (5.0,52) (0.010, 0.043) (-37.2, -36.9)

FAVAR-SV(2, 2) M.M. & R.M. 0.14 5.1 0.027 -37.1
(0.05,0.22) (5.0,52) (0.010, 0.044) (-37.2, -36.8)
FAVAR-SV(3, 1) M.M. & R.M. 0.15 4.7 0.033 -34.1
(0.07,0.25) (45, 4.9) (0.014, 0.054)  (-34.3, -34)
FAVAR-SV(3, 2) M.M. & R.M. 0.14 4.7 0.031 -34.4
(0.05,0.25) (4.6, 49) (0.011, 0.052) (-34.5, -34.2)
FAVAR-SV(4, 1) M.M. & R.M. 0.11 5.1 0.022 313
(0.02,0.20) (5.0,5.2) (0.004, 0.040) (-31.8, -31.1)

FAVAR-SV(4, 2) M.M. & R.M. 51 -31.5

0.12 0.023
(0.03,0.21) (5.0,5.2) (0.005, 0.040)  (-32.4, -31.3)
Standard momentum: mean 0.09, volatility 5.7, Sharpe ratio 0.02 and largest loss -26.2.
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Mixture of very flexible parametric model and investment strategies

o Flexible model: FAVAR-SV with 1-4 factors, 1-2 lags in the factor equation.
@ Two investment strategies: M.M. and R.M.

" ‘ I | “ ‘ ‘ “ | ‘ |Il | rh ‘ ‘ rh “
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General empirical conclusions

o Flexible model mixtures lead to higher means and Sharpe ratios than mixtures of
basic model structures where one component fits very poorly.
Thus, choice of the model set in the sense of choosing the number of components
in a mixture model is important for effective momentum strategies.

o A mixture of our two strategies leads, in particular, to better risk features. Here
the information of complete densities plays an important role.

@ There is no clear optimal result in terms of return and risk features.
Alternative mixtures of models and strategies in different time periods may be
effective in improving returns and risk.

@ The time-varying nature of the results remains robust over many different
alternatives.
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MitISEM Filter (M-Filter)

@ The flexible model and strategy combination (density combinations) is estimated
using a non-linear and non-Gaussian state space model.

@ Such a flexible combination brings robustness and computing time challenges.

Contribution: M-filter A novel non-linear non-Gaussian filter which uses
mixtures of student-t distributions. It is more efficient than Particle
Filters that make use of resampling and it is more flexible and robust
than Efficient Importance Sampling which uses exponential densities for
smoothing.

Main properties:

@ A filter where the proposal density for the non-linear non-Gaussian state variable is
based on a Mixture of Student-t densities (MitISEM) with an unknown number of
components.

@ The proposal for the state variable is constructed at every filtering step and for each
time period.

Two advantages:

@ Possibility to handle complex posterior distributions using flexible student-t mixtures.

o Updated proposal densities at every time period t avoids particle depletion. The
computer time-consuming step of resampling in the particle filter is not required.
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MitISEM Filter (M-Filter)

A generic state space model and particle filter (PF) recursions:

ye = me(ou, &),

ar = ht(at—ly ’rlt),
where y; are the observations, a: are the state variables and €; and 7, are mutually
independent errors.

o State variables ot = {au1, ..., ¢} are typically unobserved.
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M-filter steps

At each time t we construct the importance density gt(&(;i)|a(t"21) around the target density
plyca)p(a o).
)]

1) Initialization. Draw &Y ~ p(ag) for j=1,..., M.

2) Recursion. For t =1,..., T construct gt(aif)\a(g}l) using the MitISEM procedure:
()

a.) Initialization: Simulate draws &t‘ from a ‘naive’ proposal distribution with density
gn(+) (e.g. a Student-t with v degrees of freedom). Using the target density:

plyela?)p(a?1a? ),

update the the mode and scale of the proposal density using the IS weighted EM
algorithm.
b.) Adaptation: Update parameters of the proposal density using the MitISEM procedure.

)

3) Draws. Draws c"xt‘
Efht(a)lyr:7] by:

from the constructed density gt(&@\ag’ll) and approximate

1 v L
ar= o S h(ad).
4) Likelihood Approximation. The approximation of the log likelihood:
. 1 _(j
log p(y1.7) = 30,4 log (ﬁ S Wf”) .

U) are the weights at time t.

where W,
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Approximation and speed comparisons between M—Filter and other methods

We examine a DFM model with K = {2,4,6,10} factors, T =100 and N =20 in
| = 100 replications.

# Factors: 2 4 2 4
LB Bias Var LB Bias Var Time
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.011 0.012
PF -77.42 1.15 133 -14549 1.15 1.32 708.790 811.730
APF -39.98 1.03 1.05 -164.80 1.05 1.05 836.690 878.128
MF -23.23 1.01 1.02 -23.39 1.00 1.01 106.330 138.178
# Factors: 6 10 6 10
LB Bias Var LB Bias Var Time
KF 0.00 1.00 1.00 0.00 1.00 1.00 0.020 0.021
PF -193.74 1.16 131 -333.33 1.27 1.65 861.100 897.860
APF -309.26 1.07 1.12 -568.18 1.08 1.18 953.720 1011.210
MF -16.97 1.03 1.03 -112.68 1.02 1.03 213.200 402.820

@ Kalman Filter (KF), Bootstrap Particle Filter (PF), Auxiliary Particle Filter (APF) and M—Filter (MF)
results with 50000 particles.

For DFM, KF is the optimal filter, hence the natural benchmark for comparing the filters.
LB: Likelihood Bias relative the Kalman Filter.

Bias: Absolute errors in state estimates 1// S°1_ | &;; — au,; | relative to KF.

Var: Variability defined as 1/1 3°!_, (&:,i — ax,;)? relative to KF.

Time: Computational time in seconds.
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Approximation and speed comparisons between M-filter and other methods

We examine three cases of structural breaks in AR(1) models. Model set (for simulation
and DECO M-Filter) includes five models:

}71’1* =0.1 + 0.1}71’1371 + Et Et v N(O7 1) _)74,t =04 =+ 0.4&4’t71 =+ Et Er ~ N(O, 1)
_)72’13 =0.2 + 0.2}72’13_1 + €t Et ~v N(O, 1) _)75,t =05 =+ 0-5_)75,t—1 + &t Er ~ N(O, 1)
}7371: =0.3 + 0.3}7371:_1 + €t Et v N(O, 1)

Case 1: One model has weight 1 for all t:

Yt =110+t e ~ N(O7 0.05)
Case 2: One switch at t = 101 from j; to s

Y1100 = ¥1,1000 + ¢ e ~ N(0,0.05)
yiotr = ¥sa00e + ¢ 1 ~ N(0,0.05)

Case 3: Two switches at t = 101 (j1 — y5) and t = 151 (y5 — 3).

yi:100 = ¥1,1:00 + ¢ 1 ~ N(0,0.05)
yio1:150 = ys,101:150 + ¢ 1 ~ N(0, 0.05)
yiste = st + 0 1e ~ N(0,0.05)
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Approximation and speed comparisons between M-filter and other methods

Comparison of different filters for structural breaks in AR(1) models.

Case 1 (no break) Case 2 (one break) Case 3 (two breaks)
Model | Bias Variance Time | Bias Variance Time | Bias Variance Time
KF 1.000 1.000 0.007 [1.000 1.000 0.007 [1.000 1.000 0.007
PF 0.019 0.001 58.483|0.057 0.052 58.483|0.123 0.202 58.483
APF [0.008 0.001 68.015|0.061 0.081 68.015|0.091 0.077 68.015
M-Filter | 0.059 0.007 39.993 | 0.065 0.039 40.676|0.079 0.067 41.180

Bias and variability are reported relative to the KF. The results are obtained
from | = 100 iterations, with 50,000 particles for PF, APF, and M-Filter.

o Case 1: One model has weight 1 for all t: Gains from M-filter is minimal.

o Cases 2: Bias difference between PF, APF and M-Filter reduces, M-filter has the
smallest variance.

o Cases 3: M-filter performs best due to the higher number of breaks and the
adaptation of the density at each time period.

@ In all cases, M-filter is computationally more efficient compared to all methods but
the Kalman Filter.

@ We next compare the weights obtained by APF and M-Filter visually.
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Approximation and speed comparisons between M-filter and other methods

Model weights for Case 1: Model 1 has weight 1 for all ¢

APF weights M-filter weights
(posterior mean and 95% credible intervals)
Model 1 1 Model
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o M-Filter relatively slowly adjusts to model 1 weight of 1.
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Approximation and speed comparisons between M-filter and other methods

Model weights for Case 2: Switch between model 1 — model 5.

APF weights M-filter weights
(posterior mean and 95% credible intervals)
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@ M-Filter is faster in picking up the ‘break’ due to updated candidate at each time
period.
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Approximation and speed comparisons between M-filter and other methods

Model weights for Case 2: Switch between model 1 — model 5 — model 3.

APF weights M-filter weights
(posterior mean and 95% credible intervals)
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o M-Filter is faster in picking up the ‘breaks’ (particularly the second break).

@ This is due to updated candidate at each time period.
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