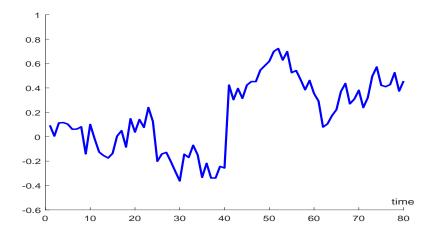
ArCo: An Artificial Counterfactual Approach for High-Dimensional Data

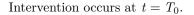
Carlos V. de Carvalho Marcelo C. Medeiros BCB and PUC-Rio PUC-Rio

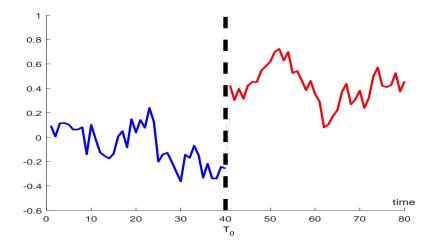
Ricardo Masini

BIG DATA, MACHINE LEARNING AND THE MACROECONOMY Norges Bank, Oslo, 2-3 October 2017

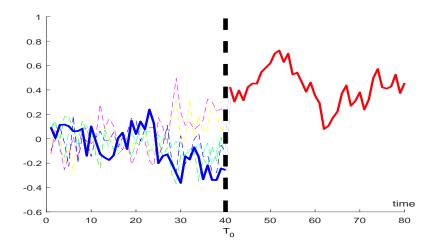
Observe aggregated time series data from t = 1 to T.



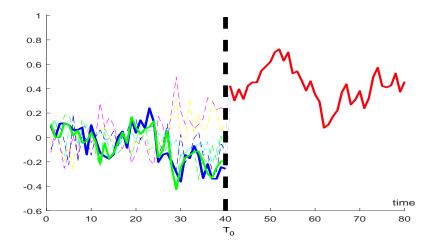




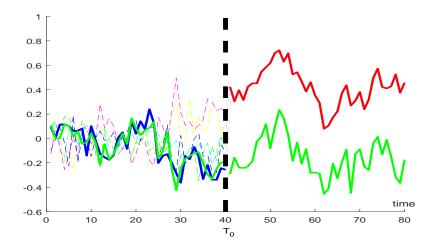
No clear controls. Observed variables from untreated "peers".



Counterfactual estimation "in-sample" (before intervention).



Counterfactual extrapolation (after the intervention).



► Artificial Counterfactual (ArCo): alternative framework to measure the impact of an intervention in aggregate data when a control group is not readily available.

- ► Artificial Counterfactual (ArCo): alternative framework to measure the impact of an intervention in aggregate data when a control group is not readily available.
 - Generalization of the Synthetic Control (SC) method of Abadie and Gardeazabal (2003, AER) and the panel approach of Hsiao, Ching and Wan (2012, JAE).

- ► Artificial Counterfactual (ArCo): alternative framework to measure the impact of an intervention in aggregate data when a control group is not readily available.
 - Generalization of the Synthetic Control (SC) method of Abadie and Gardeazabal (2003, AER) and the panel approach of Hsiao, Ching and Wan (2012, JAE).
- Our contribution: estimator with ① asymptotic theory,
 ② rigorous inference, ③ high-dimensionality, and ④ new tests such as detection of the time of the intervention, contamination effects and effects on multiple moments.

- ► Artificial Counterfactual (ArCo): alternative framework to measure the impact of an intervention in aggregate data when a control group is not readily available.
 - Generalization of the Synthetic Control (SC) method of Abadie and Gardeazabal (2003, AER) and the panel approach of Hsiao, Ching and Wan (2012, JAE).
- Our contribution: estimator with ① asymptotic theory,
 ② rigorous inference, ③ high-dimensionality, and ④ new tests such as detection of the time of the intervention, contamination effects and effects on multiple moments.
- Key hypothesis: ① Interventions takes place in variables that can be modelled as trend-stationary processes. ②
 The intervention affects only the unit of interest

- ► Artificial Counterfactual (ArCo): alternative framework to measure the impact of an intervention in aggregate data when a control group is not readily available.
 - Generalization of the Synthetic Control (SC) method of Abadie and Gardeazabal (2003, AER) and the panel approach of Hsiao, Ching and Wan (2012, JAE).
- Our contribution: estimator with ① asymptotic theory,
 ② rigorous inference, ③ high-dimensionality, and ④ new tests such as detection of the time of the intervention, contamination effects and effects on multiple moments.
- Key hypothesis: ① Interventions takes place in variables that can be modelled as trend-stationary processes. ②
 The intervention affects only the unit of interest

The road map

- 1. The setup
- 2. The counterfactual estimation
- 3. Estimator properties
- 4. Inference
- 5. Extensions
- 6. Simulations
- 7. Empirical example: Nota Fiscal Paulista
- 8. Research agenda
- 9. Concluding remarks

► Observe $q_i > 0$ variables for i = 1, ..., n units for t = 1, ..., T periods (Panel structure): $\boldsymbol{z}_{it} = (z_{it}^1, ..., z_{it}^{q_i})'$.

- Observe $q_i > 0$ variables for i = 1, ..., n units for t = 1, ..., T periods (Panel structure): $\boldsymbol{z}_{it} = (z_{it}^1, ..., z_{it}^{q_i})'$.
- Unit 1 is exposed to the intervention at known T_0 .

- ► Observe $q_i > 0$ variables for i = 1, ..., n units for t = 1, ..., T periods (Panel structure): $\boldsymbol{z}_{it} = (z_{it}^1, ..., z_{it}^{q_i})'$.
- Unit 1 is exposed to the intervention at known T_0 .
- ► The remaining n-1 units $\mathbf{z}'_{0t} \equiv (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ are an untreated potential control group (donor pool).

- ► Observe $q_i > 0$ variables for i = 1, ..., n units for t = 1, ..., T periods (Panel structure): $\boldsymbol{z}_{it} = (z_{it}^1, ..., z_{it}^{q_i})'$.
- Unit 1 is exposed to the intervention at known T_0 .
- ► The remaining n-1 units $\mathbf{z}'_{0t} \equiv (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ are an untreated potential control group (donor pool).
- ► Potential Outcome notation:

$$\begin{aligned} \boldsymbol{z}_{1t} &= d_t \boldsymbol{z}_{1t}^{(1)} + (1 - d_t) \boldsymbol{z}_{1t}^{(0)}; \qquad d_t = \begin{cases} 1 & \text{if } t \ge T_0 \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{z}_{0t} &= \boldsymbol{z}_{0t}^{(0)} \end{aligned}$$

where $\boldsymbol{z}_{it}^{(1)}$ is potential outcome under the intervention and $\boldsymbol{z}_{it}^{(0)}$ the potential outcome with no intervention.

• Effects on functions of \boldsymbol{z}_{1t} : $\boldsymbol{h}(\boldsymbol{z}_{1t}) : \mathbb{R}^{q_1} \longrightarrow \mathbb{R}^q$

$$\begin{aligned} \boldsymbol{y}_t &= \boldsymbol{h} \left(\boldsymbol{z}_{1t} \right) \quad \text{e.g. } h(v_t) = \begin{cases} v_t^p \\ |v_t| \end{cases} \\ \boldsymbol{y}_t &= d_t \boldsymbol{y}_t^{(1)} + (1 - d_t) \boldsymbol{y}_t^{(0)} \end{aligned}$$

• Effects on functions of \boldsymbol{z}_{1t} : $\boldsymbol{h}(\boldsymbol{z}_{1t}) : \mathbb{R}^{q_1} \longrightarrow \mathbb{R}^q$

$$\begin{aligned} \boldsymbol{y}_t &= \boldsymbol{h} \left(\boldsymbol{z}_{1t} \right) \quad \text{e.g. } h(v_t) = \begin{cases} v_t^p \\ |v_t| \end{cases} \\ \boldsymbol{y}_t &= d_t \boldsymbol{y}_t^{(1)} + (1 - d_t) \boldsymbol{y}_t^{(0)} \end{aligned}$$

• Hypothesis of interest: $\boldsymbol{y}_t^{(1)} = \boldsymbol{\delta}_t + \boldsymbol{y}_t^{(0)}, \quad t = T_0 \dots, T,$

$$\mathcal{H}_0: \mathbf{\Delta}_T = rac{1}{T - T_0 + 1} \sum_{t=T_0}^T \underbrace{\left[\mathbf{y}_t^{(1)} - \mathbf{y}_t^{(0)}
ight]}_{\equiv \mathbf{\delta}_t} = \mathbf{0}.$$

• Effects on functions of \boldsymbol{z}_{1t} : $\boldsymbol{h}(\boldsymbol{z}_{1t}) : \mathbb{R}^{q_1} \longrightarrow \mathbb{R}^q$

$$\begin{aligned} \boldsymbol{y}_t &= \boldsymbol{h} \left(\boldsymbol{z}_{1t} \right) \quad \text{e.g. } h(v_t) = \begin{cases} v_t^p \\ |v_t| \end{cases} \\ \boldsymbol{y}_t &= d_t \boldsymbol{y}_t^{(1)} + (1 - d_t) \boldsymbol{y}_t^{(0)} \end{aligned}$$

• Hypothesis of interest: $\boldsymbol{y}_t^{(1)} = \boldsymbol{\delta}_t + \boldsymbol{y}_t^{(0)}, \quad t = T_0 \dots, T,$

$$\mathcal{H}_0: \boldsymbol{\Delta}_T = \frac{1}{T - T_0 + 1} \sum_{t=T_0}^T \underbrace{\left[\boldsymbol{y}_t^{(1)} - \boldsymbol{y}_t^{(0)} \right]}_{\equiv \boldsymbol{\delta}_t} = \boldsymbol{0}.$$

► We **do not** observe the **counterfactual** $\boldsymbol{y}_{t}^{(0)}$. Therefore, we construct an estimate $\hat{\boldsymbol{y}}_{t}^{(0)}$ such that:

$$\widehat{\boldsymbol{\delta}}_t \equiv \boldsymbol{y}_t^{(1)} - \widehat{\boldsymbol{y}}_t^{(0)} \quad \text{for } t = T_0, \dots, T$$

Counterfactual Estimation

▶ How should we construct $\widehat{\boldsymbol{y}}_t^{(0)}$?

Counterfactual Estimation

- How should we construct $\widehat{\boldsymbol{y}}_t^{(0)}$?
- ▶ Ideally (in the MSE sense) we would set

$$\widehat{oldsymbol{y}}_t^{(0)} = \mathbb{E}(oldsymbol{y}_t^{(0)} | oldsymbol{z}_{0t}, oldsymbol{z}_{0t-1}, \dots, oldsymbol{z}_{0t-p})$$

Counterfactual Estimation

- How should we construct $\widehat{\boldsymbol{y}}_t^{(0)}$?
- ▶ Ideally (in the MSE sense) we would set

$$\widehat{\boldsymbol{y}}_t^{(0)} = \mathbb{E}(\boldsymbol{y}_t^{(0)} | \boldsymbol{z}_{0t}, \boldsymbol{z}_{0t-1}, \dots, \boldsymbol{z}_{0t-p})$$

▶ In practice, we choose a (parametric) specification (could be linear or not). Let $\boldsymbol{x}_t = (\boldsymbol{z}'_{0t}, \boldsymbol{z}'_{0t-1}, \dots, \boldsymbol{z}'_{0t-p})'$ and

$$\boldsymbol{y}_t^{(0)} = \mathcal{M}(\boldsymbol{x}_t) + \boldsymbol{\nu}_t,$$

such that $\mathbb{E}(\boldsymbol{\nu}_t) = \mathbf{0}$ and

$$\widehat{\boldsymbol{y}}_t^{(0)} = \widehat{\mathcal{M}}(\boldsymbol{x}_t).$$

► The Artificial Counterfactual (ArCo) estimator is then simply given by

$$\widehat{\boldsymbol{\Delta}}_{T} = \frac{1}{T - T_0 + 1} \sum_{t=T_0}^{T} \widehat{\boldsymbol{\delta}}_{t},$$

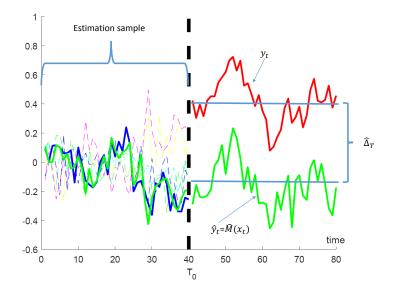
where
$$\widehat{\boldsymbol{\delta}}_t \equiv \boldsymbol{y}_t - \widehat{\boldsymbol{y}}_t^{(0)}$$
, for $t = T_0, \dots, T$.

► The Artificial Counterfactual (ArCo) estimator is then simply given by

$$\widehat{\boldsymbol{\Delta}}_T = rac{1}{T - T_0 + 1} \sum_{t=T_0}^T \widehat{\boldsymbol{\delta}}_t,$$

where
$$\widehat{\boldsymbol{\delta}}_t \equiv \boldsymbol{y}_t - \widehat{\boldsymbol{y}}_t^{(0)}$$
, for $t = T_0, \dots, T$.

- ► ArCo estimator is a two-step estimator:
 - 1. First step: estimation of \mathcal{M} with the pre-intervention sample;
 - 2. Second step: extrapolate \mathcal{M} with actual data for x_t and compute $\widehat{\Delta}_T$.



- ▶ Hsiao, Ching and Wan (2012, JAE)
 - Two-step method where $\mathcal{M}(\boldsymbol{x}_t)$ is a linear and scalar function of a small set of variables from the peers.
 - Correct specification (\mathcal{M} is the conditional expectation).
 - Selection of peers by information criteria.
 - Date of the intervention known.

- ▶ Hsiao, Ching and Wan (2012, JAE)
 - Two-step method where $\mathcal{M}(\boldsymbol{x}_t)$ is a linear and scalar function of a small set of variables from the peers.
 - Correct specification (\mathcal{M} is the conditional expectation).
 - Selection of peers by information criteria.
 - Date of the intervention known.
- ► Differences-in-Differences (DiD)
 - Number of treated units must grow.
 - Parallel trends hypothesis.
 - Similar control group.

- ▶ Hsiao, Ching and Wan (2012, JAE)
 - Two-step method where $\mathcal{M}(\boldsymbol{x}_t)$ is a linear and scalar function of a small set of variables from the peers.
 - Correct specification (\mathcal{M} is the conditional expectation).
 - Selection of peers by information criteria.
 - Date of the intervention known.
- ► Differences-in-Differences (DiD)
 - Number of treated units must grow.
 - Parallel trends hypothesis.
 - Similar control group.
- ▶ Gobillon and Magnac (2016, REStat)
 - Generalize the above authors by explicitly considering a factor model.
 - interactive fixed effects with strictly exogenous regressors.
 - Asymptotics both on the cross-section and time dimensions.

- ► Abadie and Gardeazabal (2003, AER)
 - Convex combination of peers.
 - The weights are estimated using time averages of the observed variables. No time-series dynamics.

- ▶ Abadie and Gardeazabal (2003, AER)
 - Convex combination of peers.
 - The weights are estimated using time averages of the observed variables. No time-series dynamics.
- ▶ Pesaran et al. (2004, JBES); Dees et al. (2007, JAE)
 - Counterfactual based on variables that belong to the treated unit. No donor pool.
 - Their key assumption is that a subset of variables of the treated unit is invariant to the intervention.

- ▶ Abadie and Gardeazabal (2003, AER)
 - Convex combination of peers.
 - The weights are estimated using time averages of the observed variables. No time-series dynamics.
- ▶ Pesaran et al. (2004, JBES); Dees et al. (2007, JAE)
 - Counterfactual based on variables that belong to the treated unit. No donor pool.
 - Their key assumption is that a subset of variables of the treated unit is invariant to the intervention.
- ▶ Angrist, Jordà and Kuersteiner (2016, JBES)
 - Information only on the treated unit and no donor pool is available.

Key Assumption

Independence

Key Assumption

Independence

Let $\mathbf{z}_{0t} = (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ denotes the vector of all the observable variables for the **untreated units**. Then, $\mathbf{z}_{0t} \perp \mathbf{l}_s$, for all t, s.

• The independence condition \Rightarrow donors are untreated.

Key Assumption

Independence

- ▶ The independence condition \Rightarrow donors are untreated.
- Examples of interventions (treatments):
 - Natural disasters: Belasen and Polachek (2008, AER P&P), Cavallo, Galiani, Noy, and Pantano (2013, ReStat), Fujiki and Hsiao (2015, JoE), ...

Key Assumption

Independence

- The independence condition \Rightarrow donors are untreated.
- Examples of interventions (treatments):
 - Natural disasters: Belasen and Polachek (2008, AER P&P), Cavallo, Galiani, Noy, and Pantano (2013, ReStat), Fujiki and Hsiao (2015, JoE), ...
 - Region specific policies (laws): Hsiao, Ching, and Wan (2012, JAE), Abadie, Diamond, and Hainmueller (AJPS, 2015), Gobillon and Magnac (ReStat, 2016), ...

Key Assumption

Independence

- The independence condition \Rightarrow donors are untreated.
- Examples of interventions (treatments):
 - Natural disasters: Belasen and Polachek (2008, AER P&P), Cavallo, Galiani, Noy, and Pantano (2013, ReStat), Fujiki and Hsiao (2015, JoE), ...
 - Region specific policies (laws): Hsiao, Ching, and Wan (2012, JAE), Abadie, Diamond, and Hainmueller (AJPS, 2015), Gobillon and Magnac (ReStat, 2016), ...
 - New government or political regime: Grier and Maynard (2013, JEBO)

ArCo estimator

Key Assumption

Independence

Let $\mathbf{z}_{0t} = (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ denotes the vector of all the observable variables for the **untreated units**. Then, $\mathbf{z}_{0t} \perp \!\!\!\perp d_s$, for all t, s.

• The independence condition \Rightarrow donors are untreated.

ArCo estimator

Key Assumption

Independence

Let $\mathbf{z}_{0t} = (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ denotes the vector of all the observable variables for the **untreated units**. Then, $\mathbf{z}_{0t} \perp \!\!\!\perp d_s$, for all t, s.

- ▶ The independence condition \Rightarrow donors are untreated.
- Examples of interventions (treatments):
 - Abadie and Diamond (2004, AER) and Abadie, Diamond, and Hainmueller (2010, JASA) have, respectively, 1712 and 1280 Google cites as measured on August 2, 2017.

ArCo estimator

Key Assumption

Independence

Let $\mathbf{z}_{0t} = (\mathbf{z}'_{2t}, \dots, \mathbf{z}'_{nt})'$ denotes the vector of all the observable variables for the **untreated units**. Then, $\mathbf{z}_{0t} \perp \!\!\!\perp d_s$, for all t, s.

- The independence condition \Rightarrow donors are untreated.
- Examples of interventions (treatments):
 - Abadie and Diamond (2004, AER) and Abadie, Diamond, and Hainmueller (2010, JASA) have, respectively, 1712 and 1280 Google cites as measured on August 2, 2017.
 - "Arguably the most important innovation in the evaluation literature in the last fifteen years is the synthetic control method."

Athey and Imbens (2016)

▶ Why do we expect the method to work?

- ▶ Why do we expect the method to work?
- ▶ Possible data generating mechanism (in reduced form):

$$egin{aligned} egin{aligned} egi$$

where $\boldsymbol{f}_t(f \times 1) \sim (\boldsymbol{0}, \boldsymbol{Q})$ is a vector of common unobserved factors . $\boldsymbol{\Lambda}_i(q_i \times f)$ are matrices of factor loadings; $\boldsymbol{\eta}_{it}(q_i \times 1) \sim (\boldsymbol{0}, \boldsymbol{R}_i)$ is idiosyncratic error term.

- ▶ Why do we expect the method to work?
- ▶ Possible data generating mechanism (in reduced form):

$$egin{aligned} egin{aligned} egi$$

where $\boldsymbol{f}_t(f \times 1) \sim (\boldsymbol{0}, \boldsymbol{Q})$ is a vector of common unobserved factors . $\boldsymbol{\Lambda}_i(q_i \times f)$ are matrices of factor loadings; $\boldsymbol{\eta}_{it}(q_i \times 1) \sim (\boldsymbol{0}, \boldsymbol{R}_i)$ is idiosyncratic error term.

► Quality of the pool of donors comes from the factor structure.

Least Absolute Shrinkage and Selection Operator (LASSO)

• Set $\boldsymbol{X}_t = (1, \boldsymbol{x}_t)' \in \mathbb{R}^d$ and consider $\mathcal{M}(\boldsymbol{x}_t)$ linear:

$$egin{aligned} oldsymbol{y}_t^{(0)} &= oldsymbol{lpha} + oldsymbol{eta}'oldsymbol{x}_t + oldsymbol{
u}_t \ &= oldsymbol{ heta}'oldsymbol{X}_t + oldsymbol{
u}_t. \end{aligned}$$

Least Absolute Shrinkage and Selection Operator (LASSO)

• Set
$$\boldsymbol{X}_t = (1, \boldsymbol{x}_t)' \in \mathbb{R}^d$$
 and consider $\mathcal{M}(\boldsymbol{x}_t)$ linear:

$$egin{aligned} oldsymbol{y}_t^{(0)} &= oldsymbol{lpha} + oldsymbol{eta}'oldsymbol{x}_t + oldsymbol{
u}_t \ &= oldsymbol{ heta}'oldsymbol{X}_t + oldsymbol{
u}_t. \end{aligned}$$

► Estimation:

$$\widehat{\boldsymbol{\theta}} = \arg\min\left[\sum_{t=1}^{T_0-1} \left(\boldsymbol{y}_t^{(0)} - \boldsymbol{\theta}' \boldsymbol{X}_t\right)^2 + \frac{\varsigma}{\sum_{j=1}^d |\beta_j|}\right].$$

Least Absolute Shrinkage and Selection Operator (LASSO)

• Set
$$\boldsymbol{X}_t = (1, \boldsymbol{x}_t)' \in \mathbb{R}^d$$
 and consider $\mathcal{M}(\boldsymbol{x}_t)$ linear:

$$egin{aligned} oldsymbol{y}_t^{(0)} &= oldsymbol{lpha} + oldsymbol{eta}'oldsymbol{x}_t + oldsymbol{
u}_t \ &= oldsymbol{ heta}'oldsymbol{X}_t + oldsymbol{
u}_t. \end{aligned}$$

► Estimation:

$$\widehat{\boldsymbol{\theta}} = \arg\min\left[\sum_{t=1}^{T_0-1} \left(\boldsymbol{y}_t^{(0)} - \boldsymbol{\theta}' \boldsymbol{X}_t\right)^2 + \frac{\varsigma}{\sum_{j=1}^d |\beta_j|}\right].$$

- ► Why LASSO?
 - Avoid overfitting.
 - Large dataset compared to the sample size.
 - "Automatic" model selection.

LASSO – Catalog of hypotheses

Design

Let $\Sigma \equiv \frac{1}{T_1} \sum_{t=1}^{T_1} \mathbb{E}(\boldsymbol{x}_t \boldsymbol{x}'_t)$ and $S_0 = \{i : \theta_{0,1} \neq 0\}$ (set of non-zero parameters). There exists a constant $\psi_0 > 0$ such that

$$\|\boldsymbol{\theta}[S_0]\|_1^2 \leq rac{\boldsymbol{\theta}\boldsymbol{\Sigma}\boldsymbol{\theta}s_0}{\psi_0^2},$$

for all $\|\boldsymbol{\theta}[S_0^c]\|_1 \leq 3\|\boldsymbol{\theta}[S_0]\|_1$.

LASSO – Catalog of hypotheses

Design

Let $\Sigma \equiv \frac{1}{T_1} \sum_{t=1}^{T_1} \mathbb{E}(\boldsymbol{x}_t \boldsymbol{x}'_t)$ and $S_0 = \{i : \theta_{0,1} \neq 0\}$ (set of non-zero parameters). There exists a constant $\psi_0 > 0$ such that

$$\|\boldsymbol{\theta}[S_0]\|_1^2 \leq \frac{\boldsymbol{\theta}\boldsymbol{\Sigma}\boldsymbol{\theta}s_0}{\psi_0^2},$$

for all $\|\boldsymbol{\theta}[S_0^c]\|_1 \leq 3\|\boldsymbol{\theta}[S_0]\|_1$.

 Compatibility condition of Bülhmann and van der Geer (2011).

LASSO – Catalog of hypotheses

Design

Let $\Sigma \equiv \frac{1}{T_1} \sum_{t=1}^{T_1} \mathbb{E}(\boldsymbol{x}_t \boldsymbol{x}'_t)$ and $S_0 = \{i : \theta_{0,1} \neq 0\}$ (set of non-zero parameters). There exists a constant $\psi_0 > 0$ such that $\theta \Sigma \theta_{S_0}$

$$\|\boldsymbol{\theta}[S_0]\|_1^2 \leq \frac{\boldsymbol{\theta}\boldsymbol{\Sigma}\boldsymbol{\theta}s_0}{\psi_0^2},$$

for all $\|\boldsymbol{\theta}[S_0^c]\|_1 \leq 3\|\boldsymbol{\theta}[S_0]\|_1$.

- ► Compatibility condition of Bülhmann and van der Geer (2011).
- Similar to the restriction of the smallest eigenvalue of Σ .

LASSO – Catalog of hypotheses

Design

Let $\Sigma \equiv \frac{1}{T_1} \sum_{t=1}^{T_1} \mathbb{E}(\boldsymbol{x}_t \boldsymbol{x}'_t)$ and $S_0 = \{i : \theta_{0,1} \neq 0\}$ (set of non-zero parameters). There exists a constant $\psi_0 > 0$ such that $\theta \Sigma \theta_{S0}$

$$\|\boldsymbol{\theta}[S_0]\|_1^2 \leq \frac{\boldsymbol{\theta}\boldsymbol{\Sigma}\boldsymbol{\theta}s_0}{\psi_0^2},$$

for all $\|\boldsymbol{\theta}[S_0^c]\|_1 \leq 3\|\boldsymbol{\theta}[S_0]\|_1$.

- ► Compatibility condition of Bülhmann and van der Geer (2011).
- Similar to the restriction of the smallest eigenvalue of Σ .
- ▶ Important for prediction consistency and ℓ_1 -consistency of the LASSO.

LASSO – Catalog of hypotheses

Heterogeneity and dynamics

- (a) $\{\boldsymbol{w}_t\}$ is strong mixing with $\alpha(m) = \exp(-cm)$ for some $c \ge \underline{c} > 0$
- (b) $\mathbb{E}|w_{it}|^{2\gamma+\delta} \leq c_{\gamma}$ for some $\gamma > 2$ and $\delta > 0$ for all $1 \leq i \leq d, 1 \leq t \leq T$ and $T \geq 1$,
- (c) $\mathbb{E}(\nu_t^2) \ge \epsilon > 0$, for all $1 \le t \le T$ and $T \ge 1$.

LASSO – Catalog of hypotheses

Heterogeneity and dynamics

- (a) $\{\boldsymbol{w}_t\}$ is strong mixing with $\alpha(m) = \exp(-cm)$ for some $c \ge \underline{c} > 0$
- (b) $\mathbb{E}|w_{it}|^{2\gamma+\delta} \leq c_{\gamma}$ for some $\gamma > 2$ and $\delta > 0$ for all $1 \leq i \leq d, 1 \leq t \leq T$ and $T \geq 1$,
- (c) $\mathbb{E}(\nu_t^2) \ge \epsilon > 0$, for all $1 \le t \le T$ and $T \ge 1$.
- \boldsymbol{w}_t is an α -mixing process with exponential decay.

LASSO – Catalog of hypotheses

Heterogeneity and dynamics

- (a) $\{\boldsymbol{w}_t\}$ is strong mixing with $\alpha(m) = \exp(-cm)$ for some $c \ge \underline{c} > 0$
- (b) $\mathbb{E}|w_{it}|^{2\gamma+\delta} \leq c_{\gamma}$ for some $\gamma > 2$ and $\delta > 0$ for all $1 \leq i \leq d, 1 \leq t \leq T$ and $T \geq 1$,
- (c) $\mathbb{E}(\nu_t^2) \ge \epsilon > 0$, for all $1 \le t \le T$ and $T \ge 1$.
- \boldsymbol{w}_t is an α -mixing process with exponential decay.
- ▶ Part (b) bounds uniformly some higher moments ⇒ Law of Large Numbers.

LASSO – Catalog of hypotheses

Heterogeneity and dynamics

- (a) $\{\boldsymbol{w}_t\}$ is strong mixing with $\alpha(m) = \exp(-cm)$ for some $c \ge \underline{c} > 0$
- (b) $\mathbb{E}|w_{it}|^{2\gamma+\delta} \leq c_{\gamma}$ for some $\gamma > 2$ and $\delta > 0$ for all $1 \leq i \leq d, 1 \leq t \leq T$ and $T \geq 1$,
- (c) $\mathbb{E}(\nu_t^2) \ge \epsilon > 0$, for all $1 \le t \le T$ and $T \ge 1$.
- \boldsymbol{w}_t is an α -mixing process with exponential decay.
- ▶ Part (b) bounds uniformly some higher moments ⇒ Law of Large Numbers.
- ▶ Part (c) Sufficient condition for the Central Limit Theorem.

Regularity

(a)
$$\varsigma = O\left(\frac{d^{1/\gamma}}{\sqrt{T}}\right)$$

(b) $s_0 \frac{d^{2/\gamma}}{\sqrt{T}} = o(1)$

Regularity

(a)
$$\varsigma = O\left(\frac{d^{1/\gamma}}{\sqrt{T}}\right)$$

(b) $s_0 \frac{d^{2/\gamma}}{\sqrt{T}} = o(1)$

▶ Part (a) puts discipline on the growth rate of the regularization parameter.

Regularity

(a)
$$\varsigma = O\left(\frac{d^{1/\gamma}}{\sqrt{T}}\right)$$

(b) $s_0 \frac{d^{2/\gamma}}{\sqrt{T}} = o(1)$

- ▶ Part (a) puts discipline on the growth rate of the regularization parameter.
- ▶ Part (b) bounds the number of (total/relevant) parameters.

Regularity

(a)
$$\varsigma = O\left(\frac{d^{1/\gamma}}{\sqrt{T}}\right)$$

(b) $s_0 \frac{d^{2/\gamma}}{\sqrt{T}} = o(1)$

- ▶ Part (a) puts discipline on the growth rate of the regularization parameter.
- ▶ Part (b) bounds the number of (total/relevant) parameters.
- ▶ Both conditions can be relaxed if normality is assumed.

Counterfactual estimation LASSO – Results

Consistency and Asymptotic Normality

Let \mathcal{M} be the model defined as before, whose parameters are estimated by LASSO, then under previous assumptions and as $T \to \infty$:

$$\sup_{P \in \mathcal{P}} \sup_{\boldsymbol{a} \in \mathbb{R}^q} \left| \mathbb{P}_P\left[\sqrt{T} \boldsymbol{\Omega}_T^{-1/2} (\widehat{\boldsymbol{\Delta}}_T - \boldsymbol{\Delta}_T) \leq \boldsymbol{a} \right] - \Phi(\boldsymbol{a}) \right| \to 0,$$

where Ω_T is defined in the previous proposition and $\Phi(\cdot)$ is the cumulative distribution function of a zero-mean normal random vector with identity covariance matrix. The inequality is defined element-wise.

Counterfactual estimation LASSO – Results

Uniform Confidence Interval

• Let $\widehat{\mathbf{\Omega}}_T$ be a consistent estimator for $\mathbf{\Omega}_T$ uniformly in $P \in \mathcal{P}$. Under the same conditions as before:

$$\mathcal{I}_{\alpha} \equiv \left[\widehat{\Delta}_{j,T} \pm \frac{\widehat{\omega}_{j}}{\sqrt{T}} \Phi^{-1} (1 - \alpha/2)\right]$$

for each j = 1, ..., q, where $\widehat{\omega}_j = \sqrt{[\widehat{\Omega}]_{jj}}$ and $\Phi^{-1}(\cdot)$ is the quantile function of a standard normal distribution.

• \mathcal{I}_{α} is uniformly valid (honest) in the sense that for a given $\epsilon > 0$, there exists a T_{ϵ} such that for all $T > T_{\epsilon}$:

$$\sup_{P \in \mathcal{P}} |\mathbb{P}_P \left(\Delta_{j,T} \in \mathcal{I}_\alpha \right) - (1 - \alpha)| < \epsilon.$$

Counterfactual estimation LASSO – Results

Uniform Hypothesis Test

Let $\widehat{\Omega}_T$ be a consistent estimator for Ω_T uniformly in $P \in \mathcal{P}$. Under the same conditions as before, for a given $\epsilon > 0$, there exists a T_{ϵ} such that for all $T > T_{\epsilon}$:

$$\sup_{P \in \mathcal{P}} |\mathbb{P}_P(W_T \le c_\alpha) - (1 - \alpha)| < \epsilon,$$

where $W_T \equiv T \widehat{\Delta}'_T \widehat{\Omega}_T^{-1} \widehat{\Delta}_T$, $\mathbb{P}(\chi_q^2 \leq c_\alpha) = 1 - \alpha$ and χ_q^2 is a chi-square distributed random variable with q degrees of freedom.

- 1. Tests under **unknown** intervention date. Results are not altered when the intervention date is estimated.
 - $\hat{\lambda}$ is super-consistent.

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.
- 3. Test for the untreated peers and /or treated unit.

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.
- 3. Test for the untreated peers and /or treated unit.
- 4. The framework is extended to conduct joint test (e.g., affecting the mean and the variance simultaneously)

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.
- 3. Test for the untreated peers and /or treated unit.
- 4. The framework is extended to conduct joint test (e.g., affecting the mean and the variance simultaneously)
- 5. R package:

https://cran.r-project.org/web/packages/ArCo/index.html – Fonseca, Masini, Medeiros, and Vasconcelos (2017a)

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.
- 3. Test for the untreated peers and /or treated unit.
- 4. The framework is extended to conduct joint test (e.g., affecting the mean and the variance simultaneously)
- 5. R package:

https://cran.r-project.org/web/packages/ArCo/index.html – Fonseca, Masini, Medeiros, and Vasconcelos (2017a)

6. Carvalho, Masini and Medeiros (2017): Integrated data

- Tests under unknown intervention date. Results are not altered when the intervention date is estimated.
 λ is super-consistent.
- 2. Multiple interventions.
- 3. Test for the untreated peers and /or treated unit.
- 4. The framework is extended to conduct joint test (e.g., affecting the mean and the variance simultaneously)
- 5. R package:

https://cran.r-project.org/web/packages/ArCo/index.html – Fonseca, Masini, Medeiros, and Vasconcelos (2017a)

- 6. Carvalho, Masini and Medeiros (2017): Integrated data
- 7. Fonseca, Masini, Medeiros, and Vasconcelos (2017b): Random Forests and other machine learning techniques.

Data Generating Process (DGP)

Consider the following model for $i \in \{1, ..., n\}$ and $t \ge 1$:

$$oldsymbol{z}_{it}^{(0)} =
ho oldsymbol{A}_i oldsymbol{z}_{it-1}^{(0)} + oldsymbol{arepsilon}_{it},$$

where:

$$\blacktriangleright \ \boldsymbol{\varepsilon}_{it} = \boldsymbol{\Lambda}_i \boldsymbol{f}_t + \boldsymbol{\eta}_{it},$$

$$\blacktriangleright \ \boldsymbol{f}_t = [1, (t/T)^{\varphi}, v_t], \ \boldsymbol{z}_{it} \in \mathbb{R}^q, \ \rho \in [0, 1), \ \varphi > 0,$$

- $A_i(q \times q)$ is a diagonal matrix with diagonal elements strictly between -1 and 1,
- ► $v_t \stackrel{iid}{\sim} \mathsf{N}(0,1), \, \boldsymbol{\eta}_{it} \stackrel{iid}{\sim} \mathsf{N}(0, r_f^2 \boldsymbol{I}_{nq}), \, \text{and} \, \boldsymbol{\Lambda}_i \text{ is a } (q \times 3) \text{ matrix of factor loadings.}$

Rejection Rates under the Null (1/2)

	Bias	Var	\widehat{s}_0	lpha=0.1	0.05	0.01				
		Innovation Distribution								
		$T = 100, d = 100, s_0 = 5, \varphi = 0, \rho = 0$								
Normal	0.0006	1.1304	5.4076	0.1057	0.0555	0.0128				
$\chi^{2}(1)$	-0.0014	1.1004	5.9287	0.1227	0.0652	0.0154				
t-stud(3)	0.0035	1.1026	5.6437	0.1077	0.0543	0.0103				
Mixed-Normal	0.0069	1.1267	5.5457	0.1134	0.0607	0.0136				
		Sample Size								
		normal dist., $\overline{d = 100}$, $s_0 = 5$, $\varphi = 0$, $\rho = 0$								
T = 100	0.0006	1.1304	5.4076	0.1057	0.0555	0.0128				
75	-0.0030	1.1449	6.3992	0.1075	0.0546	0.0124				
50	0.0021	1.1747	6.1219	0.1092	0.0626	0.0155				
25	-0.0050	0.8324	3.2463	0.1330	0.0763	0.0226				
	Number of Total Covariates									
	normal dist., $T = 100$, $s_0 = 5$, $\varphi = 0$, $\rho = 0$									
d = 100	0.0006	1.1304	5.4076	0.1057	0.0555	0.0128				
200	-0.0016	1.1655	5.7314	0.1102	0.0565	0.0135				
500	-0.0043	1.2112	5.6625	0.1119	0.0556	0.0114				
1000	0.0012	1.2477	5.5275	0.1054	0.0566	0.0113				

Rejection Rates under the Null (2/2)

	Bias	Var	\widehat{s}_0	lpha=0.1	0.05	0.01			
	Number of Relevant (non-zero) Covariates								
	normal dist., $T = 100, d = 100, \varphi = 0, \rho = 0$								
$s_0 = 0$	= 0 0.0038 1.0		0.6105	0.1059	0.0550	0.0136			
5	0.0006	1.1304	5.4076	0.1057	0.0555	0.0128			
10	0.0003	1.0373	9.5813	0.1103	0.0581	0.0120			
100	0.0003	-	20.1624	0.1114	0.0574	0.0145			
	Determinist Trend $(t/T)^{\varphi}$								
	normal dist., $T = 100, d = 100, s_0 = 5, \rho = 0$								
$\varphi = 0$	0.0006	1.1304	5.4076	0.1057	0.0555	0.0128			
0.5	0.0142	1.1245	5.6285	0.1101	0.0598	0.0199			
1	0.0183	1.1313	5.5030	0.1188	0.0613	0.0168			
2	0.0221	1.1398	5.4259	0.1273	0.0675	0.0261			
	Serial Correlation								
	normal dist., $T = 100, d = 100, s_0 = 5, \varphi = 0$								
$\rho = 0.2$	-0.0001	1.4109	5.5246	0.1160	0.0640	0.0158			
0.4	0.0002	1.6909	5.9276	0.1223	0.0678	0.0184			
0.6	0.0031	1.8895	6.9012	0.1440	0.0871	0.0283			
0.8	0.0033	1.9977	7.9464	0.1546	0.0927	0.0329			

Rejection rates under the alternative

	lpha=0.1	0.075	0.05	0.025	0.01			
		Step Intervention $\delta_t = c \sigma_1 1\{t \ge T_0\}$						
= 0.15	0.2045	0.1695	0.1287	0.0805	0.0436			
0.25	0.3783	0.3266	0.2686	0.1890	0.1108			
0.35	0.5769	0.5235	0.4545	0.3465	0.2414			
0.5	0.8314	0.7945	0.7440	0.6478	0.5227			
0.75	0.9876	0.9831	0.9741	0.9520	0.9094			
1	0.9998	0.9995	0.9992	0.9983	0.9943			
	Li	Linear Increasing $\delta_t = c \sigma_1 \frac{t - T_0 + 1}{T - T_0 + 1} 1 \{ t \ge T_0 \}$						
c = 1	0.8318	0.7938	0.7379	0.6397	0.5121			
1.25	0.9877	0.9813	0.9717	0.9459	0.8948			
1.5	0.9997	0.9997	0.9990	0.9969	0.9922			
	Liı	Linear Decreasing $\delta_t = c \sigma_1 \frac{T - t + 1}{T - T_0 + 1} 1 \{ t \ge T_0 \}$						
c = 1	0.8298	0.7956	0.7434	0.6492	0.5107			
1.25	0.9868	0.9818	0.9720	0.9490	0.8985			
1.5	0.9995	0.9994	0.9989	0.9968	0.993			

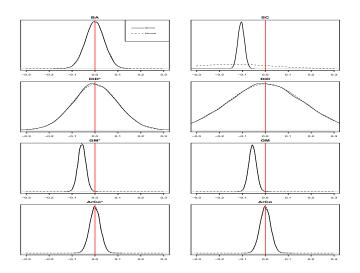
Monte Carlo results Horse race (1/2)

	BA	\mathbf{sc}	DiD*	DiD	GM^*	$\mathbf{G}\mathbf{M}$	ArCo*	ArCo	
	No Time Trend ($\varphi = 0$) and No Serial Correlation ($\rho = 0$)								
Bias	-0.001	-0.678	0.005	0.008	-0.280	-0.273	0.000	0.000	
Var	3.151	50.555	17.870	51.444	0.544	0.510	1.001	1.000	
MSE	3.152	86.075	17.871	51.449	6.601	6.255	1.001	1.000	
	No Time Trend $(\varphi = 0)$								
Bias	-0.003	-0.596	0.000	0.000	-0.353	-0.294	-0.002	-0.002	
Var	2.997	12.293	7.215	18.506	3.057	0.705	0.998	1.000	
MSE	2.996	27.634	7.214	18.502	8.438	4.427	0.998	1.000	
	Common Linear Time Trend $(\varphi = 1)$								
Bias	0.218	-0.579	0.034	0.033	-0.128	-0.195	0.028	0.029	
Var	2.900	19.590	6.741	17.720	0.522	0.499	1.007	1.000	
MSE	4.677	32.165	6.558	17.159	1.151	1.985	1.004	1.000	
	Idiosyncratic Linear Time Trend ($\varphi = 1$)								
Bias	0.744	1.391	0.597	0.577	0.766	0.766	0.161	0.158	
Var	0.288	0.564	0.392	1.720	1.499	1.113	0.996	1.000	
MSE	2.270	7.544	1.651	2.771	3.493	3.142	0.999	1.000	

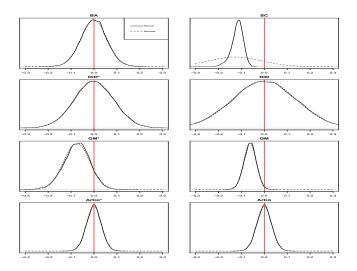
Monte Carlo results Horse race (2/2)

	BA	\mathbf{sc}	DiD^*	DiD	GM^*	$\mathbf{G}\mathbf{M}$	ArCo*	ArCo	
	Common Quadratic Time Trend ($\varphi = 2$)								
Bias	0.288	-0.562	0.051	0.053	-0.170	-0.170	0.049	0.048	
Var	2.809	18.486	6.571	17.199	0.512	0.488	1.007	1.000	
MSE	5.583	28.407	6.105	15.837	1.520	1.498	1.010	1.000	
			Idiosyncrat	ic Quadrat	ic Time Tr	end ($\varphi = 2$	2)		
Bias	0.994	-0.179	0.780	0.758	0.465	0.465	0.154	0.153	
Var	1.443	0.377	3.499	8.878	0.282	0.274	0.992	1.000	
MSE	14.786	0.701	10.868	14.002	3.216	3.210	0.998	1.000	

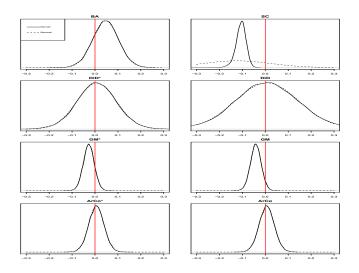
No trend and no serial correlation



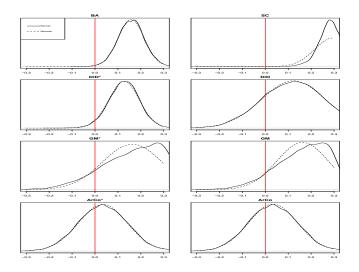
Monte Carlo results No trend



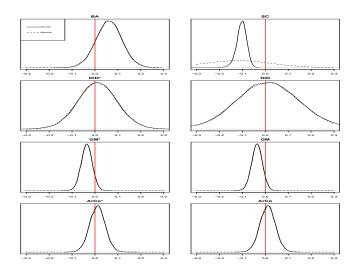
Common linear trend



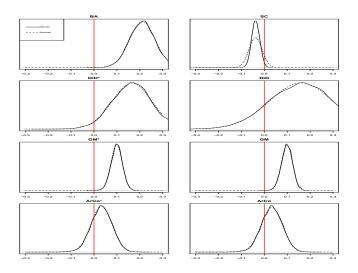
Heterogeneous linear trend



Common quadratic trend



Heterogeneous quadratic trend



► In October 2007, the state government of São Paulo in Brazil implemented a anti tax evasion scheme called *Nota Fiscal Paulista* (NFP).

- ► In October 2007, the state government of São Paulo in Brazil implemented a anti tax evasion scheme called *Nota Fiscal Paulista* (NFP).
- ► The NFP consists of a tax rebate from a state tax named ICMS (tax on circulation of products and services).

- ▶ In October 2007, the state government of São Paulo in Brazil implemented a anti tax evasion scheme called *Nota Fiscal Paulista* (NFP).
- ► The NFP consists of a tax rebate from a state tax named ICMS (tax on circulation of products and services).
- ▶ Incentive to the consumer to ask for sales receipts.

- ▶ In October 2007, the state government of São Paulo in Brazil implemented a anti tax evasion scheme called *Nota Fiscal Paulista* (NFP).
- ► The NFP consists of a tax rebate from a state tax named ICMS (tax on circulation of products and services).
- ▶ Incentive to the consumer to ask for sales receipts.
- ► Additionally, the registered sales receipts give the consumer the right to participate in monthly lotteries promoted by the government.

- Under the premisses that:
 - 1. a certain degree of tax evasion was occurring before the intervention,
 - 2. the sellers has some degree of market power and
 - 3. the penalty for tax-evasion is large enough to alter the seller behaviour,

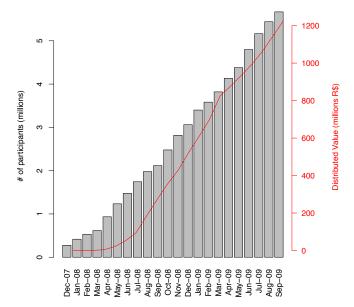
one is expected to see an upwards movements in prices due to an increase in marginal cost.

▶ Hence, we would like to investigate whether the NFP had an impact on consumer prices in São Paulo.

► The NFP was not implemented throughout the sectors in the economy at once.

- ► The NFP was not implemented throughout the sectors in the economy at once.
- ► The first sector were restaurants, followed by bakeries, bar and other food service retailers.

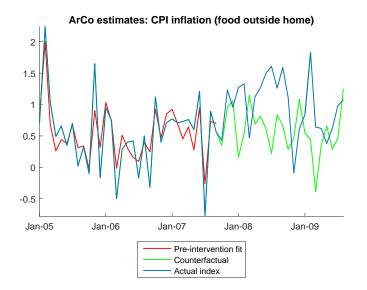
- ► The NFP was not implemented throughout the sectors in the economy at once.
- ► The first sector were restaurants, followed by bakeries, bar and other food service retailers.
- ► The sample then consists of monthly inflation (food outside home) index for 10 metropolitan areas including São Paulo from Jan-05 to Sep-09.

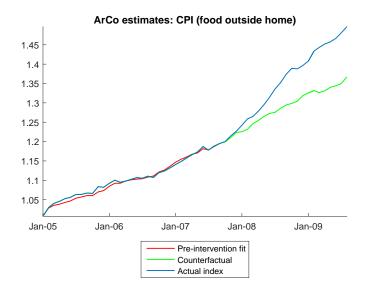


Panel (a): ArCo Estimates								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	0.2992 (0.1704)	$0.4438 \\ (0.1486)$	$\begin{array}{c} 0.4913 \\ (0.1432) \end{array}$	$0.5064 \\ (0.1480)$	$0.4763 \\ (0.2010)$	$\begin{array}{c} 0.4070 \\ (0.1600) \end{array}$	$0.4046 \\ (0.1539)$	
Inflation	Yes	No	No	No	Yes	Yes	Yes	
GDP	No	Yes	No	No	Yes	Yes	Yes	
Retail Sales	No	No	Yes	No	No	Yes	Yes	
Credit	No	No	No	Yes	No	No	Yes	
R-squared	0.6439	0.1213	0.3928	0.1026	0.7960	0.8568	0.8072	
d	9	8	9	9	17	26	35	
s_0	9	3	7	5	14	17	13	
T_1	33	33	33	33	33	33	33	
T_2	23	23	23	23	23	23	23	

Panel (b): Alternative Estimates

	(1)	(2)	(3)	(4)	(5)	(6)
DiD	$0.2524 \\ (0.1466)$	$\begin{array}{c} 0.2407 \\ (0.1456) \end{array}$	$0.2494 \\ (0.1467)$	$\begin{array}{c} 0.2412 \\ (0.1556) \end{array}$	$\begin{array}{c} 0.2387 \\ (0.1457) \end{array}$	$0.2520 \\ (0.1466)$
GM	$\begin{array}{c} 0.3694 \\ (0.1234) \end{array}$	$\begin{array}{c} 0.3788 \\ (0.1243) \end{array}$	$\begin{array}{c} 0.3595 \\ (0.1246) \end{array}$	$\begin{array}{c} 0.3775 \\ (0.1227) \end{array}$	$\begin{array}{c} 0.3660 \\ (0.1228) \end{array}$	_
GDP	Yes	No	No	Yes	Yes	No
Retail Sales	No	Yes	No	Yes	Yes	No
Credit	No	No	Yes	No	Yes	No





Concluding remarks

- ► Important to note that the ArCo is more than just another structural break estimator.
- ► By controlling for common shocks that might have occurred in all units after the intervention, it provides a effective methodology to isolate the effect of the intervention of interest.
- Providing compelling evidence for the causality of the structural break observed in the unit of interest
- ► It is almost a model-free methodology. It implies no structure in the stationary process (no # of lags to be determined nor # MA terms)