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Introduction

Introduction - two ingredients

@ Two main ingredients are key for the specification of a good Vector Autoregressive
model (VAR) for forecasting and structural analysis of macroeconomic data:

@ A large cross section. Banbura, Giannone, and Reichlin (2010), Carriero, Clark,
and Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013)

@ Time variation in the volatilities. Clark (2011), Clark and Ravazzolo (2015),
Cogley and Sargent (2005), D'Agostino, Gambetti and Giannone (2013), and
Primiceri (2005)

@ There are no papers which jointly allow for both time variation and large datasets
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Introduction

Introduction - heteroskedasticity

@ The reason lies in the structure of the likelihood function

@ Homoskedastic VARs are SUR models with the same set of regressors in each

equation — Kronecker structure in the likelihood— OLS equation by equation

@ Equation-specific stochastic volatility breaks this symmetry because each equation

is driven by a different volatility

@ The system would need to be vectorised, and the conditional posterior involves

manipulation of a matrix of dimension pN? (N=number of variables, p=number of
lags)

@ The computational complexity is therefore N2 = N6
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Introduction

Introduction - asymmetric priors

@ In a Bayesian framework, simmetry is not only needed in the likelihood, but also in
the prior
@ Kronecker structure in the likelihood+Kronecker structure in the prior= Kronecker

structure in the posterior

@ For example, the VAR estimated by Banbura, Giannone, and Reichlin (2010) is a
VAR with 130 variables, but in order to make this estimation possible one needs to

assume:

(i) Homoskedasticity of the disturbances
(ii) A specific structure for the prior

@ Without either (i) or (ii) the system would need to be vectorised prior to estimation
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Introduction

The problem

Consider the VAR of a N-dimensional vector y;:
ye = I(L)yr—1 + va; ve ~ iid N(0,%;) (1)

@ Define X; = [1,y/_1, ...,y{_p]’ and IT = [ITp|II;|...|ITp)

In general we have the posterior vec(I1)|Z, y ~ N(vec(jiy), Q1) with posterior

precision:

T
ot = Z (X7 @ Xe X)) (2)
Prlor t=1 leellhood

The precision matrix Qﬁl is of size N(Np+ 1). Its manipulation requires
(pN?)3 = O(N®) elementary operations

@ For N very large modern computers (laptops/desktops) can't even store such a
matrix in RAM (e.g. N = 125 needs 330 GB of RAM).
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Introduction

The usual solution

@ In general we have the posterior vec(I1)|Z, y ~ N(vec(jir), Q) with

T
(@) Z (7 @ XeX{) (2)
Prnor t=1 leellhood

@ Now assume that

(i) £t =X (homoskedasticity)
(i) O =2 ® Qg (conjugate prior)

T T
of'= of + (= loxx))=27'® (Qo—l +Y XtX,_{> )
~~ t:l t=1
T-lo0;! !

and the two terms can be manipulated separately, reducing complexity by O(N3)

@ Classical homoskedastic VARs can be estimated equation by equation.
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Introduction

Problems with the the usual solution

The Natural-conjugate homoskedastic approach allows to use large datasets, but it has
important limitations:
@ It imposes homoskedasticity, against the overwhelming evidence in macroeconomic
and financial data
@ The prior structure £ ® Q)q is restrictive (Rothemberg (1963), Sims and Zha
(1998))
o It prevents any asymmetry in the prior across equations, because the
coefficients of each equation feature the same prior variance () (up to a scale
factor given by the elements of X).
e It has the unappealing consequence that prior beliefs must be correlated across
equations, with a correlation structure proportional to that of the shocks (as
described by X).
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Introduction

A new algorithm

In this paper we propose a new algorithm that makes possible to use:

o A heteroskedastic model
e The more general and less restrictive independent Normal - Inverse Wishart
(and Normal-diffuse) prior

Our procedure is based on a simple factorization of the likelihood, which allows to
draw the VAR coefficients equation by equation

This reduces the computational complexity from N° to N*.

@ Our new algorithm is very simple and can be easily inserted in any pre-existing

algorithm for estimation of BVAR models.
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Introduction

The Model

@ Consider the following VAR model for a N-dimensional y; with stochastic volatility:

ye = To+TI(L)yr—1 + ve; (1)
vi = A'A%%e; e ~iid N(O, Iy) (2)
where A; is a diagonal matrix with generic j-th element h; ; and AL is a lower

triangular matrix with ones on its main diagonal.

@ The bottleneck is drawing vec(IT)|A, A1,y ~ N(vec(jiyy), Qr); To obtain a draw
one needs to i) invert

T
O =05 + 1 (5} @ Xex) (3)
Pnor t=1 leellhood

ii) compute its Cholesky factor and iii) multiply the Cholesky factor by a random
vector

@ Each of the above operations is of complexity N®
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Introduction

An algorithm for large VARs

Consider again the decomposition v; = A*1A?'5et:

Vit 1 0 0 h-2 0 0 €1
vor | _ | @1 1 0 hY3 €
. 1 0 .0 I
Vit ayi o ayn1 L 0 w0 AR EN,t

where a7; denotes the generic element of the matrix A1 which is available under
knowledge of A.
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Introduction

An algorithm for large VARs

The VAR can be written as:

© v (0) 05
yie = T +EZ7T1'/Yi,t—l+h1,'t€1,t
i=1i=1
N p .
0
Yot = ﬂé)‘F ﬂélj}/i,tf/+3§,1h(1);?€1,t+h(2);?€2,t
i=1/=1
(0) N & (i) 0.5 0.5 0.5
YN = Ty +E277[\/'/}’[,1‘7/+a7\1,1h1;t61,t+"'+37\/,N—1hN‘—1,t€N71,t+hl\i,t€N,f'

1

—
Il

1

with the generic equation for variable j:

ZT[,[)ylt 1+ hjt€ie. (4)
1/=1

™M=

vjt — (af 1’71t'51tJr -+ a th?'—Sl,tejfl,t):” +

i
*

Yit
When drawing the coefficients of equation j the term y* "+ is known, since it is given by
the difference between the dependent variable of that equat|on and the realized residuals
of all the previous j — 1 equations. Hence (4) is a standard generalized linear regression
model with i.i.d. Gaussian disturbances.
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Introduction

An algorithm for large VARs

The full conditional posterior distribution of the conditional mean coefficients can be
factorized as:

p(IA A7, y) = p(aM|aV=1, 7N=2) 7 A AT, y)
xp(aN=D|xN=2) 7N A A7, y)

xp(rV|A AT, y),

and one can draw the coefficients in IT in separate blocks:

H{J}|H{1:j71}y A AT,y ~ N(ﬁn{f‘lif’l}’6]_[{1‘131’1})

with
— —1 %/
Hothi-1y = TIl-1} {Z it yj*f + QHMI/ 1)”1‘[{1\1/ 1}}
AL - —1y/
Opimiy = Qi + Z Xiehy : Xje:

where Frping-1 and Qpqgju-1) are moments of H{j}|H{1:j_1} ~ N(En{ju:jq}in{jh:j—l})
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Introduction

An algorithm for large VARs

@ The conditional posterior of IT obtained is the same as the one from the
system-wide algorithm

e The algorithm will produce draws numerically identical to those of the
system-wide sampler

e This is true regardelss of the ordering, which is irrelevant to the conditional
posterior of I1

@ The total computational complexity of this estimation algorithm is O(N*), with a
gain of N2,

o Uses equations with at most Np + 1 regressors, and the correlation across
equations typical of SUR models is implicitly accounted for by the factorization

e The dimension of the posterior variance matrix ﬁﬁ}j; is (Np 4+ 1), which
means that its manipulation only involves operations of order O(N3).
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rison of the estimation methos

Computational complexity and speed of simulation

time for producing 10 draws as a function of N

time for producing 10 draws as function of N
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A numerical comparison of the estimation methods

Computational complexity and speed of simulation

time for producing 10 draws as a function of N - log scale

time for producing 10 draws as function of N
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A numerical comparison of the estimation methods

Convergence and mixing

@ Regardless of the power of the computers used to perform the simulation the
triangular algorithm will always produce many more draws than the traditional
system-wide algorithm in a given unit of time.

@ This has important consequences in terms of producing draws with good mixing
and convergence properties.

@ The triangular algorithm can produce draws many times closer to i.i.d. sampling
in the same amount of time.

@ These computational and storage gains increase quadratically with the system size
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rison of the estimation method

Convergence and mixing

Inefficiency factors= distance from i.i.d sampling: ideally should be around 1.
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A large structural VAR with drifting volatilities

Empirical applications

@ As an illustration we estimate a VAR with stochastic volatilities, using 13 lags and a
cross-section of 125 variables from FRED-MD

@ For a model of this size the system-wide algorithm would have a covariance matrix
of the coefficients of dimension 203250, which would require about 330 GB of RAM
(203250% x 8/109).

@ Our estimation algorithm can produce 5000 draws in just above 7 hours on a 3.5
GHz Intel Core i7.

@ We find that:

e The variance of the shocks was clearly unstable over time

e There is a factor structure in the volatilities

e The combined use of both time variation in volatilities and a large data-set
improves point and density forecasts, more that what these two ingredients do
if used separately.
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Figure 9: Impulse responses to a monetary policy shock: slow variables.
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Figure 7: Posterior distribution of volatilities (diagonal elements of X; ), slow variables.
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PCA of the variance matrix of the shocks to volatilities

Realvariables Prices interestrates, exchange rates, and Monetary Surveys
financialindicators aggregates
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Score comparison: homoskedastic model (y axis) vs
heteroskedastic model (x axis)
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RMSFE comparison: homoskedastic model (y axis) vs
heteroskedastic model (x axis)
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Conclusions

Conclusions

The assumptions of conjugacy and homoskedasticity in a VARs are hardly
defendable, but a more general specification is only manageable with a small

cross-section.

@ We have proposed a new estimation method VARs with non-conjugate priors and
drifting volatilities which can be applied with large models

The method is based on a straightforward triangularization of the system, and it is
very simple to implement.

Indeed, if a researcher already has algorithms to produce draws from a VAR with an
independent N-IW prior and stochastic volatility, only a single needs to be slightly
modified with a few lines of code.

@ Given its simplicity and the advantages in terms of speed, mixing, and convergence,
we argue that the proposed algorithm should be preferred in empirical applications,

especially those involving large datasets.
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Conclusions

Prior dependence

@ We assumed that the prior variance was diagonal. This can be relaxed.

@ With a prior dependent across equations, the general form of the posterior can be
obtained using the triangularization also on the joint prior distribution, and is:

VT Y A A7,y ~ N(fpgg- . Qo)

with
Py = 1’1{/\1/ 1} {Z tyj t JFQH{,\“ B P ti- 1}}
a1 —1 —1yt
Qn{j\lzj—l} = Qnmlj 1} + Z hj,t Xj,tv

where p_ 0 1y and Qppgn-1y are moments of
U} {ti-1) ~ N pig-1y Qi ). i-e. the conditional priors implied by the
joint prior specification.

@ The moments of H{j}\H{lijfl} can be found recursively from the joint prior
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Model size, stochastic volatility, and forecasting

@ Pseudo out of sample exercise performed recursively, starting with the estimation
sample 1960:3 to 1970:2 and ending with 1960:3 to 2014:5.

@ We consider four models.

@ A small homoskedastic VAR including the growth rate of industrial production
(Aln IP), the inflation rate based on consumption expenditures (Aln PECEPI)
and the effective Federal Funds Rate (FFR).

@ A large (20 variables) homoskedastic VAR along the lines of Carriero, Clark,
and Marcellino (2015), Giannone, Lenza, and Primiceri (2015), and Koop
(2013).

@ A small VAR with time variation in volatilities along the lines of Clark (2011),
Cogley and Sargent (2005) and Primiceri (2005).

@ The fourth model includes both time variation in the volatilities and a large

(20 variables) information set.
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Forecasting

@ Direct effects:

e The use of a larger dataset improves point forecasts via a better specification
of the conditional means.
e The inclusion of time variation in volatilities improves density forecasts via a

better modelling of error variances,
@ Interactions:

o A better point forecast improves the density forecast as well, by centering the
predictive density around a more reliable mean

e Time varying volatilities improve the point forecasts at longer horizons -
because the heteroskedastic model will provide more efficient estimates
(through a GLS argument) and a therefore a better characterization of the

predictive densities
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