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Introduction

Introduction - two ingredients

Two main ingredients are key for the specification of a good Vector Autoregressive
model (VAR) for forecasting and structural analysis of macroeconomic data:

A large cross section. Banbura, Giannone, and Reichlin (2010), Carriero, Clark,
and Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop (2013)

Time variation in the volatilities. Clark (2011), Clark and Ravazzolo (2015),
Cogley and Sargent (2005), D’Agostino, Gambetti and Giannone (2013), and
Primiceri (2005)

There are no papers which jointly allow for both time variation and large datasets
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Introduction

Introduction - heteroskedasticity

The reason lies in the structure of the likelihood function

Homoskedastic VARs are SUR models with the same set of regressors in each
equation −→ Kronecker structure in the likelihood−→ OLS equation by equation

Equation-specific stochastic volatility breaks this symmetry because each equation
is driven by a different volatility

The system would need to be vectorised, and the conditional posterior involves

manipulation of a matrix of dimension pN2 (N=number of variables, p=number of
lags)

The computational complexity is therefore N2
3
= N6
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Introduction

Introduction - asymmetric priors

In a Bayesian framework, simmetry is not only needed in the likelihood, but also in

the prior

Kronecker structure in the likelihood+Kronecker structure in the prior= Kronecker

structure in the posterior

For example, the VAR estimated by Banbura, Giannone, and Reichlin (2010) is a
VAR with 130 variables, but in order to make this estimation possible one needs to

assume:

(i) Homoskedasticity of the disturbances

(ii) A specific structure for the prior

Without either (i) or (ii) the system would need to be vectorised prior to estimation
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Introduction

The problem

Consider the VAR of a N-dimensional vector yt :

yt = Π(L)yt−1 + vt ; vt ∼ iid N(0,Σt ) (1)

Define Xt = [1, y ′t−1, ..., y
′
t−p ]

′ and Π = [Π0 |Π1 |...|Πp ]

In general we have the posterior vec(Π)|Σ, y ∼ N(vec(µ̄Π),ΩΠ) with posterior
precision:

Ω̄−1Π = Ω−1Π
Prior

+
T

∑
t=1

(Σ−1t ⊗ XtX ′t )
Likelihood

(2)

The precision matrix Ω̄−1Π is of size N(Np + 1). Its manipulation requires
(pN2)3 = O(N6) elementary operations

For N very large modern computers (laptops/desktops) can’t even store such a
matrix in RAM (e.g. N = 125 needs 330 GB of RAM).
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Introduction

The usual solution

In general we have the posterior vec(Π)|Σ, y ∼ N(vec(µ̄Π),ΩΠ) with

Ω̄−1Π = Ω−1Π
Prior

+
T

∑
t=1

(Σ−1t ⊗ XtX ′t )
Likelihood

(2)

Now assume that

(i) Σt = Σ (homoskedasticity)

(ii) ΩΠ = Σ⊗Ω0 (conjugate prior)

Ω̄−1Π = Ω−1Π︸︷︷︸
Σ−1⊗Ω−10

+
T

∑
t=1
(Σ−1t︸︷︷︸

Σ−1

⊗ XtX ′t ) = Σ−1 ⊗
(

Ω−10 +
T

∑
t=1

XtX ′t

)
, (3)

and the two terms can be manipulated separately, reducing complexity by O(N3)

Classical homoskedastic VARs can be estimated equation by equation.
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Introduction

Problems with the the usual solution

The Natural-conjugate homoskedastic approach allows to use large datasets, but it has
important limitations:

It imposes homoskedasticity, against the overwhelming evidence in macroeconomic
and financial data

The prior structure Σ⊗Ω0 is restrictive (Rothemberg (1963), Sims and Zha

(1998))

It prevents any asymmetry in the prior across equations, because the

coeffi cients of each equation feature the same prior variance Ω0 (up to a scale

factor given by the elements of Σ).
It has the unappealing consequence that prior beliefs must be correlated across

equations, with a correlation structure proportional to that of the shocks (as

described by Σ).
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Introduction

A new algorithm

In this paper we propose a new algorithm that makes possible to use:

A heteroskedastic model

The more general and less restrictive independent Normal - Inverse Wishart

(and Normal-diffuse) prior

Our procedure is based on a simple factorization of the likelihood, which allows to
draw the VAR coeffi cients equation by equation

This reduces the computational complexity from N6 to N4.

Our new algorithm is very simple and can be easily inserted in any pre-existing
algorithm for estimation of BVAR models.
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Introduction

The Model

Consider the following VAR model for a N-dimensional yt with stochastic volatility:

yt = Π0 +Π(L)yt−1 + vt ; (1)

vt = A−1Λ0.5t εt , εt ∼ iid N(0, IN ) (2)

where Λt is a diagonal matrix with generic j-th element hj ,t and A−1 is a lower
triangular matrix with ones on its main diagonal.

The bottleneck is drawing vec(Π)|A,ΛT , yT ∼ N(vec(µ̄Π),ΩΠ); To obtain a draw

one needs to i) invert

Ω̄−1Π = Ω−1Π
Prior

+
T

∑
t=1

(Σ−1t ⊗ XtX ′t )
Likelihood

(3)

ii) compute its Cholesky factor and iii) multiply the Cholesky factor by a random

vector

Each of the above operations is of complexity N6
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Introduction

An algorithm for large VARs

Consider again the decomposition vt = A−1Λ0.5t εt :
v1,t
v2,t
...
vN ,t

 =


1 0 ... 0
a∗2,1 1 ...
... 1 0
a∗N ,1 ... a∗N ,N−1 1



h0.51,t 0 ... 0
0 h0.52,t ...
... ... 0
0 ... 0 h0.5N ,t




ε1,t
ε2,t
...

εN ,t

 ,
where a∗j ,i denotes the generic element of the matrix A

−1 which is available under
knowledge of A.
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Introduction

An algorithm for large VARs

The VAR can be written as:

y1,t = π
(0)
1 +

N

∑
i=1

p

∑
l=1

π
(i )
1,l yi ,t−l + h

0.5
1,t ε1,t

y2,t = π
(0)
2 +

N

∑
i=1

p

∑
l=1

π
(i )
2,l yi ,t−l + a

∗
2,1h

0.5
1,t ε1,t + h

0.5
2,t ε2,t

...

yN ,t = π
(0)
N +

N

∑
i=1

p

∑
l=1

π
(i )
N ,l yi ,t−l + a

∗
N ,1h

0.5
1,t ε1,t + · · ·+ a∗N ,N−1h0.5N−1,t εN−1,t + h0.5N ,t εN ,t ,

with the generic equation for variable j :

yj ,t − (a∗j ,1h0.51,t ε1,t + ...+ a
∗
j ,,j−1h

0.5
j−1,t εj−1,t )︸ ︷︷ ︸

y ∗j ,t

= π
(0)
j +

N

∑
i=1

p

∑
l=1

π
(i )
j ,l yi ,t−l + hj ,t εj ,t . (4)

When drawing the coeffi cients of equation j the term y ∗j ,t is known, since it is given by
the difference between the dependent variable of that equation and the realized residuals
of all the previous j − 1 equations. Hence (4) is a standard generalized linear regression
model with i.i.d. Gaussian disturbances.
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Introduction

An algorithm for large VARs

The full conditional posterior distribution of the conditional mean coeffi cients can be
factorized as:

p(Π|A,ΛT , y ) = p(π(N )|π(N−1),π(N−2), . . . ,π(1),A,ΛT , y )

×p(π(N−1)|π(N−2), . . . ,π(1),A,ΛT , y )
...

×p(π(1)|A,ΛT , y ),
and one can draw the coeffi cients in Π in separate blocks:

Π{j}|Π{1:j−1},A,ΛT , y ∼ N(µ̄Π{j |1:j−1} ,ΩΠ{j |1:j−1} )

with

µ̄Π{j |1:j−1} = ΩΠ{j |1:j−1}

{
T

∑
t=1

Xj ,th
−1
j ,t y

∗′
j ,t +Ω−1

Π{j |1:j−1}µΠ{j |1:j−1}

}

Ω−1Π{j |1:j−1} = Ω−1
Π{j |1:j−1} +

T

∑
t=1

Xj ,th
−1
j ,t X

′
j ,t ,

where µ
Π{j |1:j−1} and ΩΠ{j |1:j−1} are moments of Π{j}|Π{1:j−1} ∼ N(µ

Π{j |1:j−1} ,ΩΠ{j |1:j−1} )
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Introduction

An algorithm for large VARs

The conditional posterior of Π obtained is the same as the one from the
system-wide algorithm

The algorithm will produce draws numerically identical to those of the
system-wide sampler

This is true regardelss of the ordering, which is irrelevant to the conditional
posterior of Π

The total computational complexity of this estimation algorithm is O(N4), with a

gain of N2.

Uses equations with at most Np + 1 regressors, and the correlation across

equations typical of SUR models is implicitly accounted for by the factorization

The dimension of the posterior variance matrix Ω−1Π{j} is (Np + 1), which

means that its manipulation only involves operations of order O(N3).
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A numerical comparison of the estimation methods

Computational complexity and speed of simulation

time for producing 10 draws as a function of N
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A numerical comparison of the estimation methods

Computational complexity and speed of simulation

time for producing 10 draws as a function of N - log scale
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A numerical comparison of the estimation methods

Convergence and mixing

Regardless of the power of the computers used to perform the simulation the
triangular algorithm will always produce many more draws than the traditional

system-wide algorithm in a given unit of time.

This has important consequences in terms of producing draws with good mixing
and convergence properties.

The triangular algorithm can produce draws many times closer to i.i.d. sampling
in the same amount of time.

These computational and storage gains increase quadratically with the system size
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A numerical comparison of the estimation methods

Convergence and mixing

Ineffi ciency factors= distance from i.i.d sampling: ideally should be around 1.
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A large structural VAR with drifting volatilities

Empirical applications

As an illustration we estimate a VAR with stochastic volatilities, using 13 lags and a

cross-section of 125 variables from FRED-MD

For a model of this size the system-wide algorithm would have a covariance matrix

of the coeffi cients of dimension 203250, which would require about 330 GB of RAM
(2032502 × 8/109).

Our estimation algorithm can produce 5000 draws in just above 7 hours on a 3.5

GHz Intel Core i7.

We find that:

The variance of the shocks was clearly unstable over time

There is a factor structure in the volatilities

The combined use of both time variation in volatilities and a large data-set

improves point and density forecasts, more that what these two ingredients do

if used separately.
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Figure 11: Principal components loadings of the variance-covariance of the volatilities (matrix ).

PCA of the variance matrix of the shocks to volatilities
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Figure 16: Comparison of point forecast accuracy. Each panel describes a different variable. The x

axis reports the RMSFE obtained using the BVAR with stochastic volatility (heteroschedastic), the

y axis reports the RMSFE obtained using the homoschedastic BVAR. Each point corresponds to a

different forecast horizon from 1 to 12 step-ahead (in most cases, a higher RMSFE corresponds to a

longer forecast horizon).

RMSFE comparison: homoskedastic model (y axis) vs 
heteroskedastic model (x axis) 



Conclusions

Conclusions

The assumptions of conjugacy and homoskedasticity in a VARs are hardly

defendable, but a more general specification is only manageable with a small
cross-section.

We have proposed a new estimation method VARs with non-conjugate priors and
drifting volatilities which can be applied with large models

The method is based on a straightforward triangularization of the system, and it is

very simple to implement.

Indeed, if a researcher already has algorithms to produce draws from a VAR with an
independent N-IW prior and stochastic volatility, only a single needs to be slightly
modified with a few lines of code.

Given its simplicity and the advantages in terms of speed, mixing, and convergence,
we argue that the proposed algorithm should be preferred in empirical applications,
especially those involving large datasets.
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Conclusions

Prior dependence

We assumed that the prior variance was diagonal. This can be relaxed.

With a prior dependent across equations, the general form of the posterior can be

obtained using the triangularization also on the joint prior distribution, and is:

Π{j}|Π{1:j−1},A,ΛT , y ∼ N(µ̄Π{j |1:j−1} ,ΩΠ{j |1:j−1} )

with

µ̄Π{j |1:j−1} = ΩΠ{j |1:j−1}

{
T

∑
t=1

Xj ,th
−1
j ,t y

∗′
j ,t +Ω−1

Π{j |1:j−1}µΠ{j |1:j−1}

}

Ω−1Π{j |1:j−1} = Ω−1
Π{j |1:j−1} +

T

∑
t=1

Xj ,th
−1
j ,t X

′
j ,t ,

where µ
Π{j |1:j−1} and ΩΠ{j |1:j−1} are moments of

Π{j}|Π{1:j−1} ∼ N(µ
Π{j |1:j−1} ,ΩΠ{j |1:j−1} ), i.e. the conditional priors implied by the

joint prior specification.

The moments of Π{j}|Π{1:j−1} can be found recursively from the joint prior
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Forecasting

Model size, stochastic volatility, and forecasting

Pseudo out of sample exercise performed recursively, starting with the estimation
sample 1960:3 to 1970:2 and ending with 1960:3 to 2014:5.

We consider four models.

1 A small homoskedastic VAR including the growth rate of industrial production

(∆ ln IP), the inflation rate based on consumption expenditures (∆ lnPECEPI )
and the effective Federal Funds Rate (FFR).

2 A large (20 variables) homoskedastic VAR along the lines of Carriero, Clark,

and Marcellino (2015), Giannone, Lenza, and Primiceri (2015), and Koop

(2013).
3 A small VAR with time variation in volatilities along the lines of Clark (2011),

Cogley and Sargent (2005) and Primiceri (2005).
4 The fourth model includes both time variation in the volatilities and a large

(20 variables) information set.
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Forecasting

Forecasting

Direct effects:

The use of a larger dataset improves point forecasts via a better specification

of the conditional means.

The inclusion of time variation in volatilities improves density forecasts via a

better modelling of error variances,

Interactions:

A better point forecast improves the density forecast as well, by centering the

predictive density around a more reliable mean

Time varying volatilities improve the point forecasts at longer horizons -

because the heteroskedastic model will provide more effi cient estimates

(through a GLS argument) and a therefore a better characterization of the

predictive densities
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