News Topics and Economic Fluctuations

Vegard Høghaug Larsen and Leif Anders Thorsrud Norges Bank Conference on Big Data, Machine learning and the Macroeconomy October 2–3, 2017

Introduction

Using text as data:

A number is a fact, but the media in which it is presented/discussed/opinionated adds to the information

Rational (in)attention theory:

• Media an important channel for information diffusion

The fact and the media are both part of the (agent's) information set when forming expectations \Rightarrow outcomes

But, putting text into models is somewhat new (to economists) - until recently...

Projects:

- 1. News as a driver of the business cycle:
 - The Value of News for Economic Developments, Larsen and Thorsrud (2015)
- 2. A daily news based business cycle indicator:
 - A newsy coincident index of business cycles, Thorsrud (2016a, 2016b)
- 3. Uncertainty and the economy:
 - Components of Uncertainty, Larsen (2017)
- 4. Predicting daily stock market fluctuations using news:
 - Asset returns, news topics, and media effects, Larsen and Thorsrud (2017)

Estimating news topics

Data: Newspaper articles

Data: Printed articles in Dagens Næringsliv, Norways biggest business newspaper and the forth largest irrespective of theme.

- Source: Retriever's "Atekst" database
- The data spans 1988-2017
- Close to 500 000 articles
- pprox 2 GB of raw text

Data cleaning and preprocessing:

- Stopword removal (and, but, where)
- Stemming (production \rightarrow produc)
- Term freq. inverse document freq.

Machine Learning: Latent Dirichlet Allocation

- The newspaper is decomposed according to the topics it writes about using a topic model called Latent Dirichlet Allocation (LDA) introduced by Blei, Jordan, and Ng (JMLR, 2003).
- LDA as a generative model, where one article is created as follows:
 - 1. Pick the overall theme of an article by randomly giving it a distribution over topics
 - 2. For each word in the article
 - i) From the topic distribution chosen in 1., randomly pick one topic
 - ii) Given that topic, randomly choose a word from this topic
- Statistical techniques can be used to invert this process, inferring the set of topics that were responsible for generating a collection of articles, see e.g. Griffiths and Steyvers (PNAS, 2004)
- Application by economists: Hansen, McMahon and Prat (2014)

More on LDA

- The LDA takes a set of articles as input and return two sets of distributions:
 - One set of distributions over words, one distribution for each topic j, given by φ_j
 - One set of distributions over topics, one distribution for each article *i*, given by θ_i
- The researcher must select the number of topics prior to estimation: We use 80 topics
- There is a trade off between interpretable topics and how well the topics are at explaining the whole newspaper, see Chang et al. (NIPS, 2009).
- Estimation is done using MCMC

Examples of the word distributions: φ_i

Newspaper topics as a topic net

Examples of the topic distributions: θ_i

News as a driver of the business cycle

The more a newspaper writes about a topic the more likely it is that this topic reflects something of importance for the economys current and future needs and developments.

Topic frequencies for Monetary policy and Fear news

Topics adding marginal predictive power

Posterior odds ratios:

 $PO_{jt} = \frac{p(y|M_i)}{p(y|M_j)}$

Plot report topics where:

 $2 \ln PO_{jt} > 2$

Employment benefits					
Art		Health care			
Sweden		Offshore			
Conflict		Taxation			
Brokerage firms		Housing			
Family		Norwarian politics			
- Manufacturing		Norwegian pointes			
Rig		Savings bank			
IT/Technology		Năture			
East Asia		Fishing			
Automobiles		Financial supervision			
Anglo-Saxon		Publishing			
Sport		Labor unions			
Reasoning		Unknown2			
Shipping	Y	Public debate			
Chipping		Results			
Support		Government regulations			
Communication		Retail			
Leadership		Oil production			
Public safety		Comproduction			
Olympics		Entenainment			
Industry		EU			
UK/US presidents		Denmark			
	/	Calender			
Unknown0	C	Projects			
Funding		Energy			
Success		Justice			
Criticism		Aker			
Knowledge	TFP	Oil price			
Life	OSERY				
Stock market	USEDA	Macroeconomics			
Context	1	Literature			
- Government policy	\gg	Expertise			
EUC	BCI	Quarterly results			
- Newspapers		Fear			
- Aviation IT/Startup		Private banking			
Negotiations		Russia -			
Monetary policy		Shareholders			
 Cooperation 		Norwegian counties			

11

The News Index:

$$ni_t = \sum_{i=1}^T \omega_i b_{i,t} n_{i,t-1}$$
, where $\omega_t = \frac{p(y|M_i)}{\sum_j p(y|M_j)}$

Latent Threshold Model

IRFs for news shocks

What constitutes a news shock?

A daily news based business cycle indicator

In real-time, our best known measure of economic activity, GDP growth, is not observed:

- It is registered on a quarterly frequency
- It is published with a considerable lag

One solution:

- A news-based coincident index
- Mixed-frequency time-varying Dynamic Factor Model
- Uses daily newspaper topics and quarterly GDP
- Enforces dynamic sparsity using a latent threshold mechanism

Financial News Index (FNI) for Norway

Published monthly at www.retriever-info.com/fni/

Decomposing the FNI

Uncertainty and the economy

Uncertainty term counts in topic specific news:

- Uncertainty is quantified on the article level by counting uncertainty terms.
- The words that are counted: *uncertain* and *uncertainty* (and also variations of these words)
- Let's define

 $v_i \equiv$ number of uncertainty terms in article *i*

- $\omega_i \equiv$ number of total words in article *i*
- The category specific uncertainty measures are calculated for all topics *j*:

Topic *j* uncertainty on day
$$t = \frac{\sum_{i \in day t} v_i \theta_i(\text{topic } j)}{\sum_{i \in day t} \omega_i}$$

Category/topic specific uncertainty

Category/topic specific uncertainty

News and asset prices

Linking stocks to news topics:

News and returns

	c2o			c2c			
	I	II	III	I	II	III	$\operatorname{Std}(\mathbf{X})$
$Topic_t$	0.0107^{***} (0.0022)	0.0135^{***} (0.0031)	0.0090^{**} (0.0037)	0.0153^{***} (0.0031)	0.0272^{***} (0.0051)	0.0208^{***} (0.0062)	0.017
R_{t-1}^{mi}		0.3453^{***} (0.0177)	0.3410^{***} (0.0217)		0.2816^{***} (0.0285)	$\begin{array}{c} 0.2774^{***} \\ (0.0371) \end{array}$	0.013
R_{t-1}^{mh}		-0.0120 (0.0133)	-0.0180 (0.0158)		-0.0012 (0.0222)	-0.0023 (0.0275)	0.016
R_{t-1}^{oil}		0.0139^{**} (0.0067)	0.0067 (0.0091)		0.0231* (0.0120)	$\binom{0.0132}{(0.0169)}$	0.020
B/M_{t-1}		-0.0007^{***} (0.0001)	-0.0007^{***} (0.0001)		-0.0008*** (0.0002)	-0.0007*** (0.0002)	0.889
MV_{t-1}		0.0002^{*} (0.0001)	0.0002^{*} (0.0001)		-0.0003* (0.0001)	-0.0003* (0.0002)	1.802
$Turn_{t-1}$			$\begin{array}{c} 0.0115^{***} \\ (0.0021) \end{array}$			0.0076*** (0.0022)	0.047
R^2	0.0088	0.0298	0.0301	0.0054	0.0128	0.0128	
Obs.	540708	540708	391533	540708	540708	391533	
α_i	yes	yes	yes	yes	yes	yes	
δ_t	yes	no	no	yes	no	no	

Summing up

- Alternative data sources, e.g., newspaper data, provide valuable information
- We obtain coherent results across a variety of applications at both daily and quarterly frequency for both forecasting and structural analysis

More on LDA

Joint likelihood:

$$p(\varphi, \theta, \mathbf{z}, \mathbf{w}) = \left(\prod_{j}^{\mathsf{K}} \mathbf{p}(\varphi_{j}|\beta)\right) \left(\prod_{i}^{\mathsf{M}} \mathbf{p}(\theta_{i}|\alpha) \prod_{n=1}^{\mathsf{N}} (\mathbf{z}_{i,n}|\theta_{i}) \mathbf{p}(\mathbf{w}_{i,n}|\varphi_{1:\mathsf{K}}, \mathbf{z}_{i,n})\right)$$

Graphical model:

We estimate both the AR(p) or ARX(p) specification using a Latent Threshold Model (LTM).

The LTM was introduced by Nakajima and West (JEBS, 2013), and can be written as follows:

$$y_t = x'_{t-1}b_t + u_t \qquad \qquad u_t \sim \mathcal{N}(0, \sigma_u^2) \tag{1a}$$

$$b_t = \beta_t \varsigma_t$$
 $\varsigma_t = I(|\beta_t| \ge d)$ (1b)

$$\beta_t = \beta_{t-1} + e_t$$
 $e_t \sim N(0, \Sigma_e)$ (1c)

Back

IRFs from a News shock

We estimate an S-VAR as in Beaudry and Portier (AER, 2006):

Back

Decomposing the FNI into topic contributions (some examples)

