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Abstract

We present a new method for imposing parameter restrictions in Markov-Switching Vector
Autoregression (MS-VAR) models. Our method is more flexible than competing method-
ologies and easily handles a range of parameter restrictions over different equations, regimes
and parameter types. We also expand the range of priors used in the MS-VAR literature.
We demonstrate the versatility of our approach using three appropriate examples.

Keywords: Parameter Restrictions, MS-VAR estimation, Block Exogeneity, Zero
Restrictions, Bayesian estimation

1. Introduction

Econometricians often possess prior knowledge or beliefs about model parameters be-
fore they have confronted the data. These assumptions or beliefs can come from theory,
experience or instinct. Imposing these beliefs will often improve the estimation results, help
parameter identification and allow the econometrician to disentangle the different channels
operating in an economy. Sometimes these beliefs can be incorporated into the prior parame-
ter distributions, other times practitioners must formulate these beliefs in terms of parameter
restrictions and impose them directly on the model parameters. The primary contribution of
this paper is to develop flexible methods for incorporating a range of parameter restrictions
in Markov-Switching Vector Autogression (MS-VAR) and Bayesian Vector Autoregression
(BVAR) models. Its secondary contribution is the development of more flexible and intu-
itive methods for estimating MS-VAR models. We demonstrate these methods using three
relevant examples.

IThis Working Paper should not be reported as representing the views of Norges Bank. The views expressed
are those of the authors and do not necessarily reflect those of Norges Bank.

Email addresses: andrew.binning@norges-bank.no (Andrew Binning), junior.maih@norges-bank.no
(Junior Maih)



Many types of parameter restrictions have been applied to MS-VAR and BVAR models,
but the most common is likely to be the zero restriction. Block exogeneity restrictions are
a particularly popular application of zero restrictions typically imposed when estimating
small open economy VAR models. Several approaches have been suggested to impose this
assumption, namely: the block recursive Gibbs sampling procedure of Zha (1999), applying
linear restrictions directly (see Waggoner & Zha, 2003 and Sims et al., 2008), and imposing
the Independent Normal-Wishart prior (see Robinson, 2013, for example).1 The restricted
least squares method of de Wind & Gambetti (2014) could also be applied to this type
of problem. While these methods are effective for the specific problems they have been
developed for, they are unable to handle more general restrictions such as cross-parameter,
cross-equation, cross-regime and transition probability restrictions that the practitioner may
wish to include in addition to the block exogeneity restrictions.

The estimation of MS-VAR models adds additional complexity by expanding the size of
the parameter space and the type of parameters in the model. Imposing parameter restric-
tions can ease the burden of estimation, and improve the results and their interpretation
in constant parameter models. This holds even more true in the case of MS-VAR models.
In particular efforts have focused on applying zero restrictions to the impact matrix, and
constraining the parameters in the transition matrix. Sims et al. (2008) (hereinafter SWZ)
propose separate algorithms for each problem. They give examples of some common and not
so common restrictions to impose on transition matrices, and provide a reasonably general
procedure for applying them. SWZ modify the algorithms of Waggoner & Zha (2003) to
apply zero restrictions in MS-VAR models. Their approach is however somewhat limited. In
particular they focus their attention on zero restrictions applied to the regression coefficients,
within the same equation and the same regime, and they require a separate algorithm to
impose restrictions on the transition matrix, which eliminates the possibility of restrictions
across the regression and transition probability parameters.

We propose a new method of imposing parameter restrictions, that is flexible enough to
handle linear equality constraints (zero and non-zero) over many different parameter types,
regimes, equations and transition matrices. Notably our procedure is independent of the
type of posterior sampler used and can easily accommodate a range of prior parameter
distributions. We also provide a method of estimating MS-VAR models that is more flexible
in the prior parameter distributions and more intuitive in its interpretation. We demonstrate
our methodology using three relevant examples. The codes are made available in Matlab as
part of the RISE toolbox.

This paper is structured as follows: in Section 2 we present our MS-VAR estimation
procedure, and compare it with the methodology developed by SWZ. We note that constant
parameter models are just a special case of the MS-VAR model. In addition we propose
a very flexible procedure for imposing a range of restrictions on MS-VAR parameters. We
compare our approach to parameter restrictions with those outlined in SWZ. In Section 3

1Frequentist constant parameter models have been estimated using Maximum Likelihood (see Cushman &
Zha, 1997) and SUR (see Buckle et al., 2002).
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we demonstrate the versatility of our estimation and parameter restriction methodologies by
applying them to three diverse examples. Section 4 concludes.

2. Methodology: Markov Switching VAR Models and Parameter Restrictions

We are concerned with estimating Structural Markov Switching VAR models of the form:

A0,stYt = CstDt + A1,stYt−1 + · · ·+ Ap,stYt−p + Σstεt, (1)

Q =
{
Qst,st+1

}
, (2)

where:

• p is lag length;

• Yt is a k × 1 vector of date t endogenous variables;

• Dt is an m× 1 vector of date t exogenous variables;

• εt is a k × 1 vector of date t disturbances;

• st = 1, 2, . . . , h;

• st+1 = 1, 2, . . . , h;

• A0,st is an invertible k × k coefficient matrix and Ai,st is a k × k coefficient matrix for
st = 1, 2, . . . , h and i = 1, 2, . . . , p;

• Cst is a k ×m coefficient matrix for st = 1, 2, . . . , h;

• Σst is a k × k matrix;

• Qst,st+1 = (qi,j)(i,j)∈h×h is an h× h transition matrix where the elements satisfy:

• qi,j ≥ 0 and
∑

j∈h qi,j = 1, so that the rows sum to one.

Reduced form and constant parameter models are just special cases of the Structural Markov
Switching VAR model.

2.1. Our Approach to MS-VAR Models

The MS-VAR estimation methodology developed in this paper improves on the method-
ology used by SWZ in two key areas. First, we assume that A0,st has ones on its diagonal:

diag (A0,st) =
[

1, 1, · · · , 1
]
.

This assumption allows the diagonal elements of Σst to be interpreted as the standard de-
viations of the shocks. As a consequence each shock standard deviation is represented by a
single parameter and a single Markov chain when the shock standard deviations are allowed
to switch.2

2The SWZ specification could result in the shock standard deviations being determined by two Markov
chains, if they are allowed to switch.
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The second difference lies in the types of priors permitted and how they are specified.
Our procedure allows for Minnesota, Jeffrey’s, Normal-Wishart and Independent Normal-
Wishart priors, which are applied directly to the coefficient matrices; A0,st , . . . , Ap,st , in
equation (1).3 The main advantage of specifying the priors in this way is that the Likelihood
function does not need to be modified. In contrast SWZ only permit the Sims-Zha prior
(Sims & Zha, 1998), and their specification necessitates the Likelihood function be rewritten
in terms of auxiliary parameters.

The Structural MS-VAR model can be estimated using the Metropolis-Hastings algo-
rithm, or in the case of this paper, the Dynamic Striated Metropolis Hastings Algorithm
(DSMH) (see Waggoner et al., 2014, for a similar algorithm).

The MS-VAR methodology outlined in this paper has sufficient flexibility to estimate
structural and reduced form Markov switching and constant parameter models. In the case of
a structural model with Markov Switching, A0,st and Σst have k(k−1) and k free parameters
to be estimated in each regime. In the reduced form model, A0,st = I

k×k
across regimes, and

Σst has k(k − 1)/2 free parameters to be estimated in each regime. If a structural MS-VAR
is estimated with all parameters allowed to switch on a single chain with h states, then there
are h.k(d + k(p + 1)) + h2 parameters to estimate. If a reduced form MS-VAR model is
estimated where again all parameters are allowed to switch on a single chain with h states,
then there are h.k(d+k.p+(k−1)/2)+h2 parameters to estimate. The individual coefficient
matrix contributions for both scenarios mentioned can be found in Table 1. below.

Table 1: Number of Estimated Parameters

Coefficient Matrices Structural MS-VAR Reduced Form MS-VAR
A0,st h.k(k − 1) 0
Cst h.k.d h.k.d

A1,st , . . . , Ap,st h.k2.p h.k2.p
Σst h.k h.k(k − 1)/2
Qst,st+1 h2 h2

2.2. A Comparison with SWZ

SWZ make more restrictive assumptions when specifying and estimating Markov-Switching
VAR models. As discussed earlier, their setup differs from our approach in two key areas.
First they assume all parameters in A0,st can be freely estimated and hence allowed to switch.
Combining this with the assumption that Σst is diagonal means the shock standard devi-
ations are determined by A−10,stΣst . This notation is more cumbersome, because the shock
standard deviations are functions of parameters in both A0,st and Σst , as opposed to being to
being determined by a single parameter. It also means the shock standard deviations could
be determined by two Markov chains, depending on the model’s setup.

3For a detailed description of the details of these priors, see Koop & Korobilis (2010).
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Secondly, they only allow for the Sims-Zha prior in their treatment of MS-VAR mod-
els. Moreover their specification of the prior is cumbersome and requires the Likelihood be
rewritten in terms of auxiliary parameters. We illustrate this below. SWZ rewrite equation
(1) as

A0,stYt = FstXt + Σstεt, (3)

where

Xt =


Yt−1

...
Yt−p
Dt

 and Fst =
[
A1,st · · · Ap,st Cst

]
.

The parameters are redefined in terms of the auxiliary parameters Gst :

Fst
k×(p.k+m)

= Gst
k×(p.k+m)

+ A0,st
k×k

S̄
k×(p.k+m)

,

where
S̄ =

[
I

k×k
0

k×(p.(k−1)+m)

]
.

If the auxiliary parameters Gst are mean zero, this redefinition is consistent with the reduced
form random walk Minnesota prior. We circumvent the problem of modifying the Likelihood
by applying the priors directly to the A0,st , . . . , Ap,st matrices in equation (1).

2.3. Our Approach to Imposing Parameter Restrictions

We develop versatile tools for imposing both linear and non-linear parameter restrictions
in MS-VAR & constant parameter BVAR models. In particular parameter restrictions across
equations, regimes and parameter types are allowed.4 Competing methods by SWZ are
unable to handle all the scenarios covered by our methodology.

Our approach permits non-linear parameter restrictions involving inequalities. This is
achieved by evaluating the restrictions for each parameter draw, and in the event they are
violated, the draw is assigned a low Likelihood value.

The procedure also handles linear parameter restrictions of the form

Rθ = r,

where R is a q × z matrix with full row rank, θ is a z × 1 vector (the vectorised coefficient
matrix) and r is a q × 1 vector of restrictions, q being the number of linear constraints
imposed and z the number of coefficients in the model. Note that r can contain zero and
non-zero equality restrictions. z will vary with the type of model estimated, the number of
Markov chains and the number of coefficients that are regime dependent.

4For example, it is possible to impose parameter restrictions that involve combinations of regression coeffi-
cients, shock standard deviations and the transition probabilities.
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For example, in the case of a Markov switching SVAR model with a single Markov chain
where all coefficients switch,

Ast ≡ [A0,st , A1,st , . . . , Ap,st ,Σst ] ,

A ≡ [A1, A2, . . . , Ah] ,

α = vec (A) , q = vec (Q) , θ = [α′, q′]
′
,

z = h(k(k − 1) + k.d+ k2.p+ k) + h2,

and in the case of a reduced form Markov switching VAR model with a single Markov chain
where all coefficients switch,

Ast ≡ [A1,st , . . . , Ap,st ,Σst ] ,

A ≡ [A1, A2, . . . , Ah] ,

α = vec (A) , q = vec (Q) , θ = [α′, q′]
′
,

z = h(k.d+ k2.p+ k(k − 1)/2) + h2.

Typically R will not be invertible, but the columns of R can be permuted so that it can be
partitioned into a square matrix that is invertible, and a rectangular matrix that is singular.
This follows from R being a matrix of full row rank. The QR decomposition with column
permutation can be used to achieve such a partition

QR∗ = RP.

R∗ can be further partitioned as follows

QR∗ = Q
[
R1, R2

]
=
[
R̃1, R̃2

]
= RP,

where R1 is q × q and invertible and so is the orthogonal matrix Q, so that

R̃1 = QR1, R̃2 = QR2.

Using the change of parameters P θ̃ = θ, the constraint on the parameters becomes

RPθ̃ =
[
R̃1 R̃2

] [ θ̃1
θ̃2

]
= r,

R̃1θ̃1 + R̃2θ̃2 = r.

Making use of the fact that R̃1 is invertible allows θ̃1 to be written as a function of θ̃2

θ̃1 = −R̃−11 R̃2θ̃2 + R̃−11 r.

This allows the vector of all coefficients to be written as a function of the (z − q) subset of
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parameters θ̃2

θ̃ =

[
−R̃−11 R̃2

I
(z−q)

]
θ̃2 +

[
R̃−11 r

0
(z−q)×1

]
,

or in more compact notation

θ = P
(
c·θ̃2 + d

)
,

where

c =

[
−R̃−11 R̃2

I
(z−q)

]
, d =

[
R̃−11 r

0
(z−q)×1

]
.

2.4. A Comparison with SWZ

SWZ also provide tools for imposing linear restrictions on the coefficient and transition
matrices of MS-VAR models. However their approach is generally more restrictive and less
flexible than the approach outlined here. In general they consider linear restrictions on the
coefficient matrices of the form

R`,st

[
a`,st f`,st

]′
= 0 (4)

where a`,st is the `th row of A0,st and likewise f`,st is the `th row in Fst for st ∈ 1, . . . , h,
where Fst is the same matrix in equation (3). R`,st is a (k+ k.p+m)× (k+ k.p+m) matrix
that specifies the relevant linear restrictions to be imposed. Several points are worth making
about equation (4). First, the restrictions only apply within a single equation.5 Second, the
restrictions only apply within a single regime. Third, the restrictions can only be applied to
the regression coefficients and not across coefficient types. And fourth, only zero restrictions
can be applied. The type of restrictions we consider in section 2.3 are more general and less
restrictive.

To impose restrictions on the transition probabilities, SWZ require a separate procedure,
we outline this below. Let qi be the ith row of Q where 1 ≤ i ≤ h and q be an h2×1 column
vector stacking q′is.

For 1 ≤ i ≤ v, wi is a di dimensional vector representing the number of coefficients in the
ith row of Q where v may be greater or less than h, wi ≥ 0 and

∑v
i=1wi = 1. w is a d × 1

column vector stacking wis where d =
∑v

i=1 di.

q = Mw,

5SWZ’s method could be extended to cover cross equation and cross regime restrictions, but they do not do
this.
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where M is an h2 × d matrix such that

M =

 M1,1 · · · M1,v
...

. . .
...

Mh,1 · · · Mh,v

 ,
and Mj,i is an h × di matrix. For each (j, i), all the elements of Mj,i are non-negative and
each row of M has at most one non-zero element.

As SWZ show, this methodology can handle many different types of restrictions on the
transition matrix. However it appears a little more cumbersome to implement than the
methodology we have outlined in this paper, and it cannot be used to impose restrictions
across transition and regression coefficients.

3. Applications

We use three examples to demonstrate our methodology. The first two examples illustrate
how parameter restrictions can be applied in the estimation of MS-VAR models. In particular
we use the methodology to estimate a small closed economy VAR model with many parameter
restrictions à la Rudebusch & Svensson (1999) where the monetary policy shock variance is
allowed to switch. We also apply the methodology to a large closed economy model where all
shock standard deviations can switch, similar to the models outlined in Sims & Zha (2006).
Our third example, inspired by Cushman & Zha (1997), illustrates the versatility of our
parameter restrictions tools by applying block exogeneity restrictions in the estimation of a
small open economy BVAR model with constant parameters.

3.1. A Small Closed Economy Model

We estimate a small closed economy model using the same variables and restrictions
applied in Rudebusch & Svensson (1999). We add an extra dimension to the problem
by allowing the standard deviation of the monetary policy shock to switch between a high
volatility regime and a low-volatility regime. The model is a three equation backward-looking
New Keynesian model consisting of a simple backward-looking Phillips curve relationship, a
backward-looking IS curve and a Taylor type rule. It explains the relationship between the
output gap (yt), inflation (πt) and the fed funds rate (it).

Backward-looking Phillips curve relationship:

πt = cπ + απ1πt−1 + απ2πt−2 + απ3πt−3 + απ4πt−4 + αyyt−1 + σπεt (5)

Backward-looking IS curve relationship:

yt = cy + βy1yt−1 + βy2yt−2 − βr (̄it−1 − π̄t−1) + σyηt (6)
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where

π̄t−1 =
4∑
j=1

πt−j, īt−1 =
4∑
j=1

it−j

Taylor type rule:
it = ci + hit−1 + gππ̄t−1 + gyyt−1 + σi,stut (7)

where σi,st is allowed to switch. This model can be written more compactly as a structural
VAR model of the form:

A0Yt = C + A+(L)Yt−1 + Σstεt

where Yt =
(
πt, yt, it

)′
and ε =

(
εt, ηt, ut

)′
, and the following coefficient restrictions

are applied:

A0 =

 1 0 0
0 1 0
0 0 1

 , C =

 cπ
cy
ci

 , A1 =

 απ1 αy 0
βr/4 βy1 −βr/4
gπ gy h

 , A2 =

 απ2 0 0
βr/4 βy2 −βr/4

0 0 0



A3 =

 απ3 0 0
βr/4 0 −βr/4

0 0 0

 , A4 =

 απ4 0 0
βr/4 0 −βr/4

0 0 0

 , Σst =

 σπ 0 0
0 σy 0
0 0 σi,st

 .
The model is estimated on quarterly US data from 1954:4-2015:2, the sources are listed
in Appendix A. It is estimated with four lags and a constant using Bayesian methods.
In particular we use a standard Minnesota prior, and the transition probabilities follow a
Dirichlet distribution. The posterior distribution is estimated using a version of the Dynamic
Striated Metropolis Hastings sampling algorithm. Figure 1. displays the median probability
of the high volatility monetary policy regime over history. Figure 2. presents the generalized
impulse response functions for a monetary policy shock using the model.
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Figure 1: Probability of High Volatility Monetary Policy Regime
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Figure 1. shows that the model is able to pick up the great moderation because more
time has been spent in the low volatility regime from the late 1980s through to the present.
However we do see that the recession in the early 2000s and the global financial crisis occurred
at the same time as a return to a more volatile regime.
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Figure 2: Monetary Policy Shock (GIRF)

10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Fed Funds Rate

10 20 30 40
−0.25

−0.2

−0.15

−0.1

−0.05

0
Inflation

10 20 30 40
−0.2

−0.15

−0.1

−0.05

0
Output Gap

Notes: The solid black line represents the median impulse and the dashed line repre-
sents the 16% and 84% posterior probability bands.

The generalized impulse responses for the monetary policy shock show the conventional
pattern of a decline in inflation and the output gap following the shock.

3.2. A Large Closed Economy Model

In this application we demonstrate how the methodology can be applied to a larger
MS-VAR model. We estimate a model similar to those in Sims & Zha (2006) which have
been used to investigate the sources of the great moderation. More specifically we use
monthly U.S. data from 1959:1-2015:5 to estimate an MS-VAR model with 13 lags and a
constant. We use a Minnesota prior, with a Dirichlet prior on the transition probabilities.
The posterior distribution is sampled using a version of the Dynamic Striated Metropolis
Hastings algorithm.

The model consists of six endogenous variables, namely: the change in log commodity
prices (∆ log (Pcomt)), the change in log of the M2 money supply (∆ log (M2t)), the federal
funds rate (Rt), the change in log interpolated monthly real GDP (∆ log (GDPt)), the change
in the log PCE price deflator (∆ log (Pt)) and the unemployment rate (Ut). The data sources
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are listed in Appendix A. The vector of date t endogenous variables is

Yt =
(

∆ log (Pcomt) , ∆ log (M2t) , Rt, ∆ log (GDPt) , ∆ log (Pt) , Ut
)′

Another key difference between our model and the models in estimated in Sims & Zha (2006)
is the endogenous variables with trends are differenced. Markov switching is introduced into
the model by allowing all the diagonal elements of Σst to switch on a two-state chain.
Following Sims & Zha (2006) this model should allow us to determine whether the volatility
of the shocks have declined in the great moderation period. To identify the shocks, we
use our method for applying linear restrictions to the model to impose the following zero
restrictions on A0:

A0 =

Inf Fed MD Prod Prod Prod


∆ log (Pcom) 1 0 0 0 0 0
∆ log (M2) × 1 × 0 0 0

R × × 1 0 0 0
∆ log (GDP ) × 0 × 1 × ×

∆ log (P ) × 0 × 0 1 ×
U × 0 0 0 0 1

These are the same restrictions used in Sims & Zha (2006) to identify the shocks. We present
the (median) historical probability of being in a high volatility regime in Figure 3. below.6

6The impulse responses are available from the authors upon request.
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Figure 3: High Volatility Regime
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We note that there are three short-lived periods of high volatility between 1959:1 and
1986:6, none between 1986:6 and 2007:12 and then one after 2007:12. This is consistent with
the hypothesis that volatility fell during the great moderation.

3.3. A Small Open Economy VAR Model

To illustrate how the linear restrictions can be used to impose block exogeneity restric-
tions, we estimate a small open economy BVAR model that is in many ways similar to the
model estimated in Cushman & Zha (1997). The model is estimated on quarterly data for
the US and Canada between 1972:2 and 2014:4. In the foreign block we include the US out-
put gap (Ŷ ∗t ), the change in log US CPI index (∆ log (P ∗t )), the federal funds rate (R∗t ) and
the change in a log commodity price index (∆ log (Pcomt)). In the domestic block we use

the Canadian output gap (Ŷt), the log change in Canadian CPI index (∆ log(Pt)), Canadian
interest rates (Rt), the log change in Canadian M1 money supply (∆ log(M1t)) and the log
change in the US/Canadian exchange rate (∆ log(Exct)). A full description of the data is
available in Appendix A. We impose the Minnesota prior and estimate the model with a
constant and 4 lags by maximizing the posterior. The shocks are identified by imposing the
usual lower triangular Cholesky type restrictions. We report the impulse responses at the
posterior mode for a Canadian monetary policy shock. The BVAR model takes the general
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form:
A (L)Yt + C = Σεt.

We impose block exogeneity on the model such that

Yt =

(
y1,t
y1,2

)
, A (L) =

(
A11 (L) A12 (L)

0 A22 (L)

)
, εt =

(
ε1,t
ε2,t

)
.

where

y1,t =
(

∆ log (Exct) , ∆ log (M1t) Rt, ∆ log (Pt) , Ŷt

)′
y2,t =

(
∆ log (Pcomt) , R∗t , ∆ log (P ∗t ) , Ŷ ∗t

)′
The impulse responses for a Canadian monetary policy shock in Figure 4. below.

Figure 4: A Canadian Monetary Policy Shock
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The increase in Canadian interest rates results in a decrease in the Canadian money
supply, output gap and inflation rates. The Canadian dollar initially appreciates against the
US dollar before depreciating. We do not present the response of the US variables because
the block exogeneity assumption means they do not respond to Canadian variables.
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4. Conclusion

We present a new, more flexible method of imposing parameter restrictions in MS-VAR
and BVAR models. In particular our method is capable of handling a range of linear equality
constraints across many different parameter types, equations and regimes. A key advantage
of our method is that it is independent of prior parameter distribution and the posterior
sampling algorithm. Our secondary contribution is the development of a more flexible and
intuitive approach to estimating MS-VAR models. More specifically our parameter decom-
positions allow for a more intuitive interpretation of the shock standard deviations and we
are able to handle a range of prior parameter distributions that are applied directly to the
model coefficients.

We demonstrate how to apply the parameter restrictions using three different examples.
The first example illustrates how many parameter restrictions inspired by economic theory
can be applied to a small MS-VAR model. The second demonstrates how parameter restric-
tions can be applied to a larger MS-VAR model. The third example shows how to impose
block exogeneity restrictions to a small open economy VAR model. We make the codes
available in Matlab as part of the RISE toolbox.

Appendix A. Data

Appendix A.1. A Small Closed Economy Model

All data is taken from the Federal Reserve Economic Database (FRED), where FRED
pneumonics appear in parentheses. Inflation is calculated as the percent change in the GDP
deflator (GDPDEF), the real GDP (GDPC1) gap is calculated using the Hodrick Prescott
filter with a λ of 1600 and the quarterly federal funds rate (FEDFUNDS) is calculated using
the average of the monthly rate.

Appendix A.2. A Large Closed Economy Model

We take the following variables from the FRED database: M2 money supply (M2SL),
the federal funds rate (FEDFUNDS), Prices (PCEPI), the unemployment rate (UNRATE)
and real GDP (GDPC1). Commodity prices (PSCCOM) are taken from the Commodity
Research Bureau.

Appendix A.3. A Small Open Economy VAR Model

We take the following variables from the FRED database: Canadian real GDP
(NAEXKP01CAQ661S), Canadian CPI (CANCPIALLMINMEI), Canadian 90 day interest
rates (IR3TIB01CAQ156N), Canadian M1 money supply (MANMM101CAQ189S), US Real
GDP (GDPC1), US CPI (CPIAUCSL), federal funds rate (FEDFUNDS) and the Canada/US
exchange rate (EXCAUS). Monthly commodity prices (PSCCOM) are taken from the Com-
modity Research Bureau, and are averaged to create the quarterly variable. The output
gaps for Canada and the US are constructed using the Hodrick Prescott filter with a λ of
1600 and the quarterly federal funds rate (FEDFUNDS) is calculated using the average of
the monthly rate.
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