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Abstract

In this paper we take three well known Sigma Point Filters, namely the Unscented Kalman
Filter, the Divided Difference Filter, and the Cubature Kalman Filter, and extend them to
allow for a very general class of dynamic nonlinear regime switching models. Using both
a Monte Carlo study and real data, we investigate the properties of our proposed filters
by using a regime switching DSGE model solved using nonlinear methods. We find that
the proposed filters perform well. They are both fast and reasonably accurate, and as
a result they will provide practitioners with a convenient alternative to Sequential Monte
Carlo methods. We also investigate the concept of observability and its implications in the
context of the nonlinear filters developed and propose some heuristics. Finally, we provide
in the RISE toolbox, the codes implementing these three novel filters.

Keywords: Regime Switching, Higher-order Perturbation, Sigma Point Filters, Nonlinear
DSGE estimation, Observability

1. Introduction

Many important problems in modern macroeconomics require the estimation of parame-
ters and unobserved variables in dynamic nonlinear (DSGE) models with switching regimes.
Examples include Aruoba & Schorfheide (2013) and Bi & Traum (2014). Unfortunately the
existing procedures for the filtering of such models are cumbersome, compelling researchers
to take shortcuts such as linearization, constant parameters and Kalman Filtering for exam-
ple. In this paper we propose alternative filtering procedures that are fast and reasonably
accurate. In particular we take three well known Sigma Point Filters, namely the Unscented
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Kalman Filter (UKF) by Julier & Uhlmann (1997), the Divided Difference Filter (DDF) by
Norgaard et al. (2000), and the Cubature Kalman Filter (CKF) by Arasaratnam & Haykin
(2009), and extend them to allow for dynamic nonlinear regime switching models. As a sec-
ond contribution we investigate observability, the ability to recover the unobserved variables
given a finite sequence of observations, in nonlinear state space models. Dissatisfied with
existing methods of investigating observability, we develop our own heuristics.

Our decision to revive and extend Sigma Point Filters to dynamic nonlinear regime
switching models has been motivated by three key observations. First, it is common practice
to build nonlinear models and linearize them even when the underlying problem is inherently
nonlinear. This strategy has benefitted from the array of fast and efficient tools available
for solving, estimating, decomposing and interpreting these models and their results (see
Dave & DelJong, 2010, for a good overview). Although convenient, there are many critical
questions linear specifications cannot handle. Our economic theories and many problems
posed by policy makers and practitioners are fundamentally nonlinear. Linearized models
are unable to capture occasionally binding constraints such as the collateral constraints
considered in Benigno et al. (2013) and asymmetries such as downwardly nominal wage
rigidities as modelled by Kim & Ruge-Murcia (2011). Their certainty equivalence renders
them useless for problems that require some consideration of risk, such as the evaluation
of optimal policy in distorted economies (Schmitt-Grohe & Uribe, 2004), or the calculation
of bond term premia in consumption-based asset pricing models of production economies
(Rudebusch & Swanson, 2012).

Second, constant parameter models are often used to describe data that exhibit structural
breaks and other properties that are inconsistent with a single data generating distribution,
or they are used in combination with shortened samples to avoid issues associated with
time varying parameters. The assumption of constant parameters sets policy behavior once
and for all, and interprets the data as a sequence of drawings from the same distribution.
However the political and economic history of nations is characterized by change. Political
cycles induced by changes in government and central bank governance lead to changes in
fiscal, monetary and macro-prudential policy, and the instruments used to conduct these
policies. These changes are reflected in the data and have implications for the properties of
business cycles and the underlying data generating process. Lucas (1976) emphasizes the
need to take changes in deep policy parameters into account when modelling expectations,
using models to analyze history and produce forecasts. The modelling of regime switches
provides us with tools for incorporating the type of policy changes observed over history into
structural models. This in turn allows more data to be used, data that may otherwise have
been discarded due to structural breaks at odds with a constant parameter interpretation
of history. Ultimately more data leads to sharper estimates of the parameters that do not
switch and a longer continuous interpretation of history. Other features of the data like
nonlinearities and asymmetries in the business cycle (Kim & Nelson, 2001), crises (Foerster,
2011), occasionally binding constraints (Aruoba & Schorfheide, 2013), heteroscedasticity
(Liu & Mumtaz, 2011), changes in behavioral parameters (Melino & Yang, 2003), and the
possibility of recurrent regimes (Sims & Zha, 2006) can all be recast and interpreted in



terms of a regime switching framework. Recent advances in perturbation solution methods
by Foerster et al. (2014) and Maih (2015) provide tools for finding nonlinear solutions to
nonlinear regime switching models with rational expectations.

Third, the majority of estimation studies in economics using nonlinear state space mod-
els, especially nonlinear DSGE models, have been conducted using Sequential Monte Carlo
(SMC) methods despite the fact that alternative filters exist that are not only reasonably
accurate but are also computationally cheaper. Examples of econometric studies conducted
using SMC methods include Fernandez-Villaverde & Rubio-Ramirez (2007), Amisano & Tris-
tani (2010), Flury & Shephard (2011), Fernandez-Villaverde et al. (2015) and Doh (2011).
SMC methods also known as Particle Filters are non-parametric and use stochastic simula-
tion to track the entire distribution implied by the state space. As a result they are costly,
requiring many particles to get good estimates, and they suffer from sample degeneracy and
impoverishment. SMC filters are asymptotically exact which motivates an exact treatment
of regime switching in this framework, and would require tracking all paths and nodes for
the histories of the regimes. Such a treatment would prove infeasible, the number of paths
and nodes that need to be tracked would explode with time which would be compounded by
the need to use a large number of particles for the simulation of each path.

Sigma Point Filters, although largely dismissed by Ferndndez-Villaverde & Rubio-Ramirez
(2007) in the early nonlinear DSGE estimation literature, have proven to be a competitive
alternative to SMC methods in terms of accuracy. Andreasen (2013) shows with a simple
DSGE model solved using both a second and third order perturbation method that the Di-
vided Difference Filter provides more accurate results than the Particle Filter using 500,000
particles. Kollmann (2015) is also able to beat a Particle Filter that uses 500,000 parti-
cles with a deterministic Kalman Filter adapted for second order approximations in pruned
state space (the KalmanQ Filter).? In contrast to SMC methods, Sigma Point Filters are
parametric, deterministic and approximate filters, and they assume that the states are rea-
sonably well approximated by a Gaussian distribution. These assumptions make the filters
computationally cheaper and much faster when compared with SMC methods because the
nonlinear functions only need to be evaluated at a small number of well chosen points which
are used to track the mean and the covariance of the states.

We depart from the constant parameter Sigma Point Filtering literature by extending
Sigma Point Filters to include nonlinear regime switching state space models. Keeping with
the approximate and deterministic nature of these filters, it seems appropriate to approximate
the regime switching state space using the collapsing approach popularized by Kim & Nelson
(1999). The addition of regime switching should improve the ability of Sigma Points Filters to
approximate the distribution of the unobserved states. The Sigma Point Filtering assumption
that state variables are well approximated by a Gaussian distribution is likely to be violated
in some cases. However, we know that any distribution can be well approximated by a

2While the KalmanQ Filter proposed by Kollmann (2015) is not a Sigma Point Filter, the results from the
Monte Carlo experiment do cast doubt on the convergence and accuracy of the Particle Filter even when
using small models.



Gaussian mixture distribution. Approximating the regime dependent distribution of the
states by a Gaussian distribution in the regime switching Sigma Points Filter means the
expected distribution of the states will follow a Gaussian mixture distribution, and should
in theory be capable of approximating any distribution.

To test the accuracy and understand the properties of these filters we perform a Monte
Carlo study using the Fernandez-Villaverde et al. (2015) DSGE model adapted to include
regime switching and solved using a nonlinear solution method. This laboratory exercise
is necessary to determine the accuracy and behavior of the filters. We also test the filters
by applying them to real data. Because we use the same data and model as Fernandez-
Villaverde et al. (2015) we are able to compare our results with their results which gives
us further confirmation and confidence that our procedures are reasonable. Our proposed
filters should provide a convenient alternative to SMC methods.

Relatedly, reliable and accurate filters may not be enough to guarantee good observability
of the unobserved state variables. Weak and/or ambiguous relationships between observed
and unobserved variables in a nonlinear state space model may not lead to the unique
or accurate recovery of the unobserved variables even in the presence of an exact filter.
Observability, originally due to Kalman (1960) in the linear-Gaussian case, has received
some coverage in the linearized DSGE literature where it is a requirement for parameter
identification (see Komunjer & Ng, 2011; Fukac, 2010). It has not, however, received any
coverage in the nonlinear DSGE literature. Observability has important implications for
choosing the set of observed variables, determining which unobserved variables are estimable,
and is also a key component in parameter identification.

Measuring observability is relatively trivial with linear state space models, but is more
complicated with nonlinear state space models. Kalman (1960) proposed a simple rank test
for linear state space models which determined whether the unobserved initial conditions
could be recovered given a sequence of observations in a finite period of time. This simple
test also illustrates the global nature of observability in linear state space models. These
rank tests have been extended to nonlinear models by calculating the Jacobian of the initial
unobserved states with respect to the sequence of observed variables (see Muske & Edgar,
1997, for example). Such an approach shows that in the nonlinear case observability is a local
phenomenon. Thinking of observability in terms of a rank condition treats it as a binary
concept; there either is observability or there is not.

We interpret observability as a nuanced concept with varying degrees and strengths of
observability for different variables at different points in the state space. We investigate
observability within our proposed filtering framework because ultimately we would like to
know the practical implications of our filtering and modelling choices. This may however lead
to some degradation of the observability present in the original state space model because our
filters are approximations, but determining the observability of the state space independently
of the filter is somewhat academic. The relative speed of our Sigma Point Filters allows us
to develop simulation based heuristics for observability.

As a further contribution, we develop codes for implementing the filters. These codes are
available in the RISE toolbox.



The paper proceeds as follows: in Section 2 we discuss Bayesian Filters for dynamic
nonlinear regime switching models and set up our Sigma Points Filter. In Section 3 we
introduced observability and discuss its implications for nonlinear state space models. We
validate the filters using Monte Carlo experiments and with actual data in Section 4 before
examining the observability properties of our test model. We conclude in Section 5.

2. Bayesian Filtering for Dynamic Nonlinear Regime Switching Models

In this section we develop Sigma Point Filters to estimate the unobserved states for a
general class of dynamic nonlinear regime switching models. We begin by setting up the state
space for a dynamic nonlinear regime switching model. This is followed by an overview of
the Bayesian Filtering problem and a discussion of the relative merits of Sigma Point Filters.
Then we introduce the details of our proposed Sigma Point Filters for dynamic nonlinear
regime switching models. Finally we discuss some of the key ingredients for successful Sigma
Point Filtering.

2.1. The State Space Representation of Dynamic Nonlinear Regime Switching Models

We consider a very general class of nonlinear state space models with regime switching.
Such a setup is broad enough to capture linear, constant parameter, rational expectations
and backward-looking models as special cases.

We characterize history as made up of possibly different regimes, each with its distinctive
properties:

h
Ey Z Pririq (It> frt (xt—&-l (Tt—i-l) ) Lt <Tt> y Lt—1, ‘97%7 97‘t+17nt) =0 (1>

rer1=1

where E; is the expectations operator, f,, is a known and possibly nonlinear function, r;
represents the switching process with h different regimes, 0,, is the parameters in regime r,
0,,,, is the parameters next period, py, ., (Z;) is the transition probability for going from
regime r; to regime ry,1, which depends on Z;, the information at time ¢, ; are the date ¢
endogenous variables and 7; are exogenous disturbances.

Equation (1) is flexible enough to describe a range of models. The functional form of
fr, determines whether the model is linear or nonlinear, if the ¢ + 1 expected variables are
absent then the model is backward-looking, and if the number of regimes h is equal to 1,
then the model has constant parameters.

We require the solution of the model in equation (1) to exhibit the Markov property
in order to write it in the form of a state space model. That is, we need to be able to
write today’s state variables as a function of only yesterday’s state variables and the shocks.
If equation (1) is a rational expectations model we need to solve it using a method that
preserves the Markov property. If the model is backward looking with multiple lags we can
use the companion form to preserve the Markov property. To complete the transition block
of the regime switching state space model, we need to define the transition matrix for the



discrete states. This gives us the following transition equations:

Ty = TTz (xt—lv nt) ) e~ N (07 I) (2)
Priprip = Q"’tﬂ't+1 (It> ) re=12,...,h (3>

where T}, is a potentially nonlinear but known function and the shocks are assumed to be
i.i.d. Normally distributed with mean zero and covariance equal to the identity matrix. We
let Qr, .\, (Zt) denote the h x h transition matrix. Equations (2) and (3) characterize the
transition equations. Equation (2) is similar to the autoregressive transition equations we
are familiar with in constant parameter state space models. Equation (3) is added to the
transition block because we are in a regime switching world and we need to describe how
the transition probabilities are generated. The nonlinear regime switching state space model
also consists of a measurement equation:

Yr = Lyt + €, e, ~ N (0,H,,) (4)

where y; is the vector of date t observed variables, Z; is the identity matrix with rows
potentially missing and &; is a vector of measurement errors with covariance H,,. Note
that we assume a linear measurement block for simplicity. It should always be possible to
write any nonlinear model in this form by adding any nonlinear observation equations to
the transition block. Given the measurement and transition equations we can compute the
conditional probabilities: p(z:|zi_1), p(ys|z:), and p(y|z,—1). The conditional probability
p(x¢|xi—1) can be determined directly from the transition block of the state space model,
while p(y¢|z:), and p(y¢|x;—1) must be estimated using the state space model. This can be
done using Bayesian Filtering methods which we discuss in the next section.

2.2. Bayesian Filtering

The filtering problem is one of computing the conditional densities p(z:|y1.,—1) and
p(z¢|y14) given a prior distribution p(xg) on xy, a state space model and a sequence of
measurements y;.;. These densities can be computed efficiently using recursive Bayesian es-
timation which makes use of the Chapman-Kolmogorov equation for prediction and Bayes
Rule for updating. We present a very generalized Bayesian Filtering algorithm based on
Theorem 4.1 from Sérkka (2013) in Algorithm 1 below.

The proofs for this algorithm are presented in Sérkkéd (2013). Although elegant in its
simplicity, the generic Bayesian Filtering algorithm can be difficult to implement in practice.
It involves the computation of high dimensional integrals that are intractable in most cases.
The exception being linear-Gaussian models with a single regime, in which case analytical
forms do exist allowing us to derive the celebrated Kalman Filter.

If the problem demands a nonlinear non-Gaussian model we can no longer use the Kalman
Filter. As a consequence we have to employ other strategies for approximating and evaluating
these integrals. The literature has dealt with this problem in three ways:

e Linearization of the state space model (the Extended Kalman Filter)



Algorithm 1 A Generic Bayesian Filtering Algorithm

Initialization
Set the prior distribution of the initial state zo to p(zo).
for t =1ton do

State Prediction

The predictive distribution of the state x; at time ¢ can be calculated using
the Chapman-Kolmogorov equation as follows:

P($t|y1:t—1) :/ p($t|$t—1)p($t—1|y1;t—1) dx;_q

—0o0

State Update

Given the observation of gy, at time t the posterior of the state x; can be
calculated using Bayes Rule as follows:

p Te)plT g
p(@ilyre) = (yelz)p(ey1:-1)
p(yt‘ylst—l)

where

p(yt‘ylzt—l) :/ p(yt|$t)p($t|y1;t—1) dz,

o0

end for

e Making parametric assumptions about the distributions of the state variables (Sigma
Point Filters), and

e Evaluating the integrals through simulation (Sequential Monte Carlo methods).

We adopt the Sigma Point Filtering approach in this paper and use the rest of this section
to motivate our choice.

The Extended Kalman Filter (EKF) deals with the problem of intractable integrals by
linearizing the state space model. This returns us to the familiar linear-Gaussian world,
however the approximation is only valid in a local neighborhood of the point that it was
approximated around. Comparisons of the EKF with Sigma Point Filters indicate that the
EKF generally does quite poorly, and for this reason we will not discuss the EKF further
(see Andreasen, 2013).



Sigma Point Filters are approximate filters. The unknown distribution of the unobserved
state variables is approximated by a parametric distribution, usually a Gaussian distribution,
as a consequence we only need to track the first two moments of the states. The result is
a deterministic filter that only requires the nonlinear function to be evaluated at a small
number of well chosen points, known as Sigma Points. By comparison Sequential Monte
Carlo methods are non-parametric and require the stochastic simulation of many points
to approximate the entire distribution of the unobserved state variables. They are also
asymptotically exact filters, as the number of particles increases so does their accuracy. This
makes Sigma Point Filters computationally cheaper than Sequential Monte Carlo methods.

The approximate and deterministic nature of Sigma Point Filters makes them compatible
with an approximate representation of the regime switching state space. The “collapsing”
trick popularised by Kim & Nelson (1999) in linear state space models to keep the number
of nodes manageable can easily be applied and extended to Sigma Point Filters. The asymp-
totically exact nature of the particle filter is more consistent with an exact treatment of the
regime switching state space. This would require modelling all possible paths and histories
of the regimes, a task which is infeasible. In a regime switching state space model with A
regimes we would need to evaluate functions at h**! nodes for each point in time. Parti-
cle filters usually require N (large) particles to get a good approximation, an exact regime
switching state space would require N particles for each node because the unobserved state
variables should be drawn conditional on each node, so the total number of function evalua-
tions at each point in time would be N.h**!. Aruoba & Schorfheide (2013) propose a Particle
Filter for nonlinear regime switching models that gets around this problem by drawing state
variables independently of the regimes. As a consequence their algorithm randomly visits
a small subset of the nodes implied by the exact regime switching state space. It is un-
clear how well their algorithm performs because they draw the unobserved state variables
independently of the regimes, which may result in a large number of state variable/regime
combinations that have low probability and hence low weights.

Furthermore, Particle Filters have been plagued by issues of sample degeneracy, sam-
ple impoverishment and convergence. Sample degeneracy occurs when the Particle Filter
collapses and only a few particles are given a significant weight, with the rest given negligi-
ble weights. Resampling has been introduced to avoid degeneracy, but may lead to sample
impoverishment where only a few points are resampled because the rest have very low weight.

It is also unclear how many particles are required to achieve convergence. Andreasen
(2013) tests the DDF (a Sigma Point Filter) against the Particle Filter with 500,000 particles
in a Monte Carlo study using a simple DSGE model solved using nonlinear methods (second
and third order perturbations). He finds in many of his experiments that the DDF is able
to beat the Particle Filter and cites this as evidence that the Particle Filter has yet to
converge with 500,000 particles. In a similar Monte Carlo experiment Kollmann (2015) tests
the KalmanQ Filter, a Kalman Filter for pruned second order approximations of DSGE
models, against a Particle Filter with 500,000 particles also using a simple DSGE model.
He finds the Kalman(Q Filter is able to beat the Particle Filter. The problem is likely to
be more acute in more complicated models as higher dimensional state spaces likely require



more particles than lower dimensional state spaces, which adds to the heavier computational
burden of solving and simulating larger models. This begs the question: how many particles
are required to achieve convergence? The answer may be literally millions of particles.
Despite these striking results, those that have used Particle Filters in the literature have
used far fewer particles, in some cases with models that are much more complicated than
those used in the tests previously mentioned, for example Flury & Shephard (2011) use
60,000 particles, Fernandez-Villaverde & Rubio-Ramirez (2007) use 80,000 particles, and
Fernandez-Villaverde et al. (2015) use only 10,000 particles.

2.3. Sigma Point Filters

We develop three Sigma Points Filtering algorithms for nonlinear regime switching mod-
els: the Switching Unscented Kalman Filter (SUKF), the Switching Divided Difference Filter
(SDDF) and the Switching Cubature Kalman Filter (SCKF). The main difference between
these filters is the method of choosing the Sigma Points. For this reason we describe the
filtering problem for nonlinear regime switching models in terms of a single generic regime
switching Sigma Points Filtering algorithm. The Sigma Point rules used in each filter are
explained in detail in the next section.

The first step of Bayesian Filtering requires the specification of some initial conditions.

Ty0 ~ D (fbpl) ;

P1jo (51) where s1 =1,2,...,h

where x|9 is the forecast of the state variables for period 1 conditional on period 0 informa-
tion, D is a distribution with mean Z; and covariance P, and P1jo (s1) is the forecast of the
initial probability of being in regime s; at period 1 based on period 0 information.

The steps in the generic regime switching Sigma Points Filter are similar to those of
the generic Bayesian Filtering algorithm (see Algorithm 1) and are outlined in Algorithm 2.
Table 1 provides a brief description of the variables in the Sigma Points algorithm.

The filter recursions start with forecasts of the observed variables, calculating the forecast
errors and the measurement prediction covariance. The marginal likelihoods for each regime
are calculated because they are required for updating the probability of being in each regime
at each point in time. The states are then updated using the standard Kalman Filter
recursions. The next step is to produce forecasts of the states, which comprises producing
forecasts for the transition probabilities, collapsing the states and then generating Sigma
Points to calculate forecasts of the unobserved state variables. We repeat these steps until
we reach the end of history.



Table 1: Sigma Point Filter Variables

’ Variable \ Description

Tyea (re) Date t forecast of unobserved variables conditional on regime r; and

=111 Qate ¢ — 1 information

Date t forecast of observed variables conditional on regime r; and
yip-1(71) date ¢t — 1 information
Yt Observed data

vy(74) Date t forecast error for observed variables

Fi(ry) Date t covariance for observed variables conditional on regime r;
P Date t forecast of the covariance matrix conditional on regime r on

te-1(re) date t — 1 information

fre) Marginal likelihood for regime 7,

Date t forecast of probability of being in regime r; given date ¢t — 1

Prie-1(r) information

lik(t) Likelihood

pye(re) | Probability of being in regime r;

(@.9) Covariance between observed and unobserved variables conditional
P () on regime r;

Ky(r Kalman gain

zy¢(r;) | Updated value for the unobserved variables

Py(r;) | Updated covariance for the unobserved variables

Qt141 Transition matrix
p(re,7e01) | Probability for going from regime r; to 711
2y (re41) | Expected value of ), conditional on 7,4
pt|t(7"t+1) Expected value of P, conditional on r;
7, (rer1) | Collection of Sigma Points for @y (re41)

w; Sigma Point weights
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Algorithm 2 Generic Regime Switching Sigma Point Filter

fort=1tondo
lik(t) =0

for r, =1 to h do

Forecasting of Observables:

Yelt—1 (1¢) = ZiTyjt—1 (1¢)
v (1) = Y — Yejt—1 (1¢)
F (ry) = Zi Py (re) Z; + Hy (1)

Likelihood Computation:

f(r) = 20) "% |F (r) 72 exp (—3ve (r) [Fy (re)] ™ vy (1)
lik (t) = ik (t) —+ pt|t_1(7't)f (?"t)
Updating of States:

. pt‘tfl(rt)f(rt)
pt|t<rt) = ijt:lpm_l(n)f(rt)

PEY (1) = Py (1) Z,

Forecasting of States:

Qtr41 = qfunc (xt|t (Ft)) , where 7, is any state
Pty = Qfg,tﬂpt\t
for r,,y =1to h do

for r, =1 to h do

Qt,t4+1(T¢,me+1)Py e (1)
Te, T =
p( ts t+1) Pet1)e(Te4+1)

end for
Collapsing:

ft|t (Tt+1) = Z:}t:l p (Tt7 7’t+1) Ty (7”1;)
2 h
Pt|t (Tt+1) = Zrt:l p (Tta 7°t+1) Pt|t (Tt)

Sigma Points Generation:

i:;t (rip1) = sigmaPoints (:%ﬂt (Te41) 7ﬁ)t|t (rtﬂ))
L1t (Tt+1) = Z::l wiTT’t+1 <igﬁ (Tt+1) ,0>

Py (Te41) = Z?ﬁl Wi [iﬂt (Te41) — L1t (ﬁﬂ)] [iﬂ’t (Te11) — Te1)t (T¢41)
11

/

end for

end for




2.3.1. Key Ingredients

There are three features of these filters and their practical implementation that deserve
further discussion: approximating the regime switching state space, choosing the Sigma
Points, and ensuring positive definiteness of the covariance matrix for the state variables.
We discuss each of these issues in turn.

Approximating the Regime Switching State Space: As we have discussed, mod-
eling the exact regime switching state space is infeasible due to the rapid growth in the
number of nodes at which the filter needs to be evaluated. We get around this problem by
employing a suitable approximation. Kim & Nelson (1999) approximate the linear regime
switching state space by “collapsing” the number of regimes at each iteration of the filter. In
particular, they track state variables for h regimes and produce forecasts and updates for the
h? nodes that result from all possible transition paths. These are then collapsed into h nodes
through a weighted averaging step after the updating step has been completed. We employ
a similar strategy and use “collapsing” to manage the number of nodes we track. However
we collapse the number of nodes before the updating step so that we only need to produce h
forecasts and updates and the number of nodes h remains the same at all stages during the
filter. We could have followed Kim & Nelson (1999) and collapsed the number of nodes after
the updating step, but collapsing before the updating step results in fewer function evalu-
ations without loss of accuracy. The collapsing approximation violates Jensen’s inequality,
but it is necessary to ensure that the filter is manageable, and our testing demonstrates that
it is a reasonable approximation and the performance of the filters is not compromised.

Moment Integration Rules: Choosing the Sigma Points: Sigma Point approxima-
tions embody the idea that: “it us easier to approximate a probability distribution than it is
to approximate an arbitrary nonlinear function or transformation” Julier & Uhlmann (1997).
By passing a small number of well chosen Sigma Points, determined by the columns of the
covariance of the state variables relative to their mean, through a nonlinear transformation
and calculating their weighted sum, we are able to get quite accurate estimates of the fore-
casted mean and covariance of the state variables. We consider three approaches to choosing
the Sigma Points in our regime switching filter. These include the Unscented Transform
used in the Unscented Kalman Filter (see Julier & Uhlmann, 1997), Stirling’s Interpolation
used in the Divided Difference Filter (see Ngrgaard et al., 2000), and the Spherical-Radial
Cubature rule used in the Cubature Kalman Filter (see Arasaratnam & Haykin, 2009).

Switching Unscented Kalman Filter: The Unscented Transform

We define some notation before describing the Unscented Transform used in the UKF. Sigma
Points algorithms are applied to both the unobserved state variables and the shocks, so we
combine both sets of variables into a single vector that we label X as follows:

X = ['x;—la 772},

where ny is the number of unobserved states and shocks and X ~ D(p,,, ., ). The Unscented

12



Transform approximates the mean and the covariance using 2ny + 1 Sigma Points, these
points are chosen as follows:

X0 =y

szmy+< MX+M20A for i=1,... ny

Xl =y, — < (nx+)\)2m>, for i=nx+1,...,2nx
i—ny

where ny + A = 3, and the subscripts for the brackets indicate that we take the i¢th or the
(1 — n)th column of the square root of the scale matrix. The weights for the Sigma Points
are chosen such that

A , 1
wl = 2 wl = —— for i=1,...,2nx

n;(—I—)\’ 2(7’ng+)\)

We are able to calculate the expected or forecasted mean and covariance by passing the
Sigma Points through the nonlinear function and weighting them accordingly

2nyx
i, = 3w, (X1)
1=0

2nyx

Zwm XM /Ln) (Tn (XW) _ ﬂ”)’

Switching Divided Difference Filter: Stirling’s Interpolation

The Divided Difference Filter uses Stirling’s Interpolation to choose the Sigma Points. Stir-
ling’s interpolation is a formula for polynomial approximation over an interval, its derivation
is very similar to a standard Taylor series approximation where the derivatives are replaced
by the central divided differences. The 2ny + 1 Sigma Points chosen according to Stirlings’s
Interpolation:

xlo — L,

Xl =y, + 0S; for 1=1,...,ny

Xl =y, — 0Si—ny for i=nxy+1,...,2ny

where § = v/3 for a Gaussian distribution and s; is the ith column of the square root of the
covariance of the unobserved state variables. The associated weights are set as follows

5% — na L1 o1 1VeT o1 ,
w[o}: (T)7 wq[n]:2_527 wg&:%’ wc],}2:2—52 fOI“ ]:17...,n

where the Stirling interpolation has both first and second order terms. The expected values
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or forecasts are calculated as follows

2TLX

Zw X[Z]

Sj(l) —w£”1 [Trt(X[j]) _ Trt(X[nx-i-j])] for 7=1,...,ny
S =wl [T, (X9) + T, (X0 ) — 2, (410

S, =2 ([, 5%])

where ®(-) is a matrix triangularization, like the Householder transformation.

Switching Cubature Kalman Filter: Spherical Radial Cubature Rule

The Cubature Kalman Filter (CKF) uses the Spherical Radial Cubature Rule to choose
the Sigma Points. As Arasaratnam & Haykin (2009) note, the key approximation taken
to develop the CKF is that the predictive density and the filter likelihood density are both
Gaussian which leads to a Gaussian posterior density. The 2ny Sigma Points are determined

according to

X[Z] :/“’LTt —Iv— (‘/n){z’/‘t>. fOr Z = ]_, e 777/)(
‘Xh]zﬂm (” nXZn). for i::nX_+1’“'72nX

i—ny

with the weights for the Sigma Points given by

The expected or forecasted unobserved variables are calculated according to the following

numerical integrations
2nx
[y, = Z wT,, (2
i=1

2nx

Zw[zl (X — i) (T, (2 = 4y,

Correcting State Covariance Matrices: The approximate nature of the filters means
that the estimated covariances for the unobserved variables are not always well behaved. If
the covariance matrices are not positive definite then the accuracy of the filter may deterio-
rate. To circumvent this problem we check each covariance matrix for positive definiteness,
if the covariance matrix is not positive definite we replace it with the nearest matrix that is
positive definite. We find this greatly improves the accuracy of our Sigma Point Filters.
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3. Observability

Obtaining accurate estimates of the unobserved state variables in a nonlinear state space
model will not always be possible, even in the presence of an exact nonlinear filter. This is
because there may be multiple combinations of the unobserved variables that are compatible
with the same realization of the observed variables. The ability to recover the unobserved
states given the observed variables in a finite period of time is known as observability. Poor
observability is due to weak and/or ambiguous relationships between the observed and unob-
served variables. Assessing a state space model’s observability has important implications for
the estimability of unobserved variables, the choice of observed variables, and for parameter
identification in the case of parameter estimation.

Rank tests have been proposed for measuring observability in linear state space models
(see Kalman, 1960). These tests assess the ability to recover the initial conditions of the
unobserved variables after observing a sequence of measurements. They illustrate that ob-
servability is a global property of linear state space models with one regime. Similar tests
have been proposed for nonlinear models based on the Jacobian of the observed variables
with respect to the initial conditions of the unobserved variables. However, such tests are
only local and treat observability as a binary concept. Observability Gramian matrices have
also been proposed as a means for evaluating observability (see Kailath, 1980).

Unsatisfied with existing metrics for observability in nonlinear state space models, we
have developed our own heuristics for this purpose. More specifically we conduct a Monte
Carlo exercise, constructing artificial data from many different shock draws and estimating
the corresponding recovered series for the unobserved variables using one of our Sigma Point
Filters. We then subtract the actual data from the estimates of the unobserved recovered
data and divide the result by the standard deviation of the simulated data. We plot the 50th
and 95th percentiles of the normalized data. We interpret narrow and symmetrically centered
95th percentiles as an indication of good or high observability. Conversely we interpret wide
and/or severely asymmetric 95th percentiles as an indication of poor observability.

Much of the literature has focused on observability in nonlinear models purely in terms
of the general nonlinear state space, independent of any specific filter. We have framed
the observability problem in terms of the filters developed in this paper. Adopting such
an approach could, however, lead to a reduction in the observability of the model due to
the approximations made in the filter. But it will help us understand how the model/filter
combination performs, and since we have no other methods for filtering nonlinear regime
switching models, a test that is independent of the filtering procedure would be of little
practical significance.

4. Validating the Filters

We test the accuracy of the filters and examine their properties through a Monte Carlo
study, and by using actual data in a model calibration exercise. While the setup is general
enough to encompass a range of dynamic nonlinear regime switching models, we conduct
our experiments using a nonlinear regime switching DSGE model solved using higher order
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perturbation methods. Our model choice is motivated by the linearized constant parameter
DSGE model’s emergence as the dominant paradigm in structural macroeconometrics and
macroeconomic policy modeling. By demonstrating these filters using a regime switching
DSGE model solved using nonlinear methods, we are able to illustrate the versatility of
these filters to a large and growing audience already familiar with linearized DSGE models.
We also hope these results will be of interest to practitioners who use other types of nonlinear
models. In this section we begin by giving a brief description of the model and its calibration
before detailing the Monte Carlo experiments we perform and outlining the steps taken when
filtering using actual data.

4.1. Model and Calibration

We perform our experiments using the model from Fernandez-Villaverde et al. (2015).
We have chosen this model because it is a medium-sized DSGE model, it is relatively stan-
dard, and includes time-varying parameters through parameter drift and stochastic volatility.
Furthermore, Fernandez-Villaverde et al. (2015) solve this model using nonlinear methods
and estimate it using a nonlinear filter, demonstrating that this model is realistic or flexible
enough to be taken to the data. For the purposes of this paper, we modify the model re-
placing the parameter drift with regime switching parameters and turning off the stochastic
volatility in the shock processes.

The model consists of a household sector, firms and a monetary authority. Households
derive utility from consumption relative to the habit stock and leisure. They supply differ-
entiated labor to a monopolistically competitive union and choose wages subject to a Calvo
wage setting friction. Firms produce differentiated output using capital, labor and a neutral
technology process, and set prices subject to a Calvo pricing friction. The capital stock
evolves in the usual way except for the inclusion of embodied technology in new investment
goods. The model is closed by imposing a Taylor type rule on the monetary authority.

Fernandez-Villaverde et al. (2015) use this model to investigate the role of monetary
policy in the great moderation. This motivates them to add parameter drift to the inflation
response coefficient in the Taylor rule and stochastic volatility in the shock processes. This
in turn motivates the use of a nonlinear solution method and a nonlinear filtering procedure.
In particular they solve the model using a second order Taylor series approximation and
they estimate the model using a Particle Filter. We modify their model by replacing the
parameter drift in the inflation response in the Taylor rule, with regime switching parameters
in both the inflation and the output response as follows:

Tt ~ (re)\ 1R
R, R\ (/T \ ™) /gl 20\
U —t Y exp(2Z M
7 ( 7 ) T 7 exp(Z7) exp(one;”)

where R; is the gross nominal interest rate, II; is the gross inflation rate, ; is the detrended
level of output, ZZ is the stochastic growth rate and £ is the monetary policy shock. ~yr(r;)
and 7y (r;) are now regime dependent. The rest of the model equations are presented in Ap-
pendix A, while Fernandez-Villaverde et al. (2015) provide a full derivation of the benchmark
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version of their model at http://economics.sas.upenn.edu/~jesusfv/benchmark DSGE.
pdf.

We adopt the Fernandez-Villaverde et al. (2015) parameterization except where we turn
off the stochastic volatility processes and replace the parameter drift with switching in the
Taylor rule. We also set the standard deviation of all the structural shocks to 0.01. The
regime dependent parameters in the Taylor rule are chosen to allow for one monetary policy
regime with a strong response to inflation and a weak response to output and a second
regime with a weaker response to inflation and a stronger response to output. The Taylor
rule calibration can be found in table 2 below and table B.9 presents the calibration of the
other parameters and can be found in Appendix B.

Table 2: Regime Specific Parameters

Parameters | Regime 1 | Regime 2
Y 1.7 0.7
Yy 0.5 1.0

The transition probabilities are chosen to ensure that the monetary policy regimes are
reasonably persistent. They can be found in table 3 below.

Table 3: Transition Probabilities

Parameters | Value
D12 0.1
D21 0.1

We follow Fernandez-Villaverde et al. (2015) and solve the model using a second order
Taylor series approximation, however we use the procedures outlined in Maih (2015) which
allow for nonlinear regime switching rational expectations models. We do not prune the
solution.

We select the same observable variables that Fernandez-Villaverde et al. (2015) use,
namely per capita GDP growth, investment price inflation, nominal interest rates, consumer
price inflation and real wage growth. In the section using actual data, we construct these
series using the same recipe outlined in Fernandez-Villaverde et al. (2015) so that they match
their series as closely as possible.

4.2. A Monte Carlo Study

Our Monte Carlo experiments proceed as follows: we take 500 randomly drawn shock
sequences and simulate artificial data for 1000 periods using the model, we retain all the
simulated data for evaluation purposes. For each of the 500 sets of artificial data we take the
same observable variables used by Fernandez-Villaverde et al. (2015) and use our filters to
estimate the unobserved variables. We then compare the estimates of the recovered variables
with the actual (simulated) data. For each draw we calculate root mean squared errors both
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for the entire 1000 period sample and for just the second half of the sample. By calculating
the RMSEs on the second half of the sample we are able to investigate the properties of the
filters once they have converged. We also present some graphs of the recovered unobserved
variables from the filters against the actual data, to give the reader a feel for how the RMSEs
translate into particular estimates.

The expected recovered series are defined as follows: x;, = ZZ:1 p(rt)xt‘t(rt), where the
root mean squared errors are given by:

2, (B

N
The average RMSEs for all 500 draws in the Monte Carlo experiment are presented in
table 4 below. We also present the relative RMSEs in table 5. The relative RMSEs are
calculated by dividing the RMSEs for each variable through by the lowest RMSE for that
variable, so that the best performing filter gets a 1, and all other filters have a number larger
than 1. The final row labeled “average” refers to the average RMSE for all the variables
presented in the table and gives us an indication for the overall performance of the filters.

RMSE =

Table 4: RMSES

Variables 1:1000 501:1000
SDDF SUKF SCKF SDDF SUKF SCKF

Ct 0.007397 0.007872 0.007351 | 0.001292 0.001558 0.001427
k, 0.144305 0.127421 0.137709 | 0.052363 0.064932 0.057483
Tt 0.006540 0.005537 0.006295 | 0.002051 0.002694 0.002325
Yt 0.006884 0.006073 0.006883 | 0.001423 0.001893 0.001672
Wy 0.002434 0.002110 0.002915 | 0.001281 0.001318 0.001552
Ut 0.000913 0.000843 0.000902 | 0.000340 0.000339 0.000364
v’ 0.001108 0.001014 0.001038 | 0.000404 0.000396 0.000456
Q. 0.005630 0.004929 0.006918 | 0.001995 0.002279 0.002777
dy 0.006233  0.005450 0.006446 | 0.003373 0.003421 0.004941
Ot 0.041518 0.034820 0.041174 | 0.011251 0.014895 0.012997

Average | 0.022296 0.019607 0.021763 | 0.007577 0.009372 0.008599

Average RMSEs for 500 simulations using randomly chosen shocks for 1000 periods.

When we look at the RMSEs for the entire 1000 period sample, we see the SUKF dom-
inates with the lowest average RMSE and the lowest RMSEs for all the reported variables
except consumption. The SCKF has the second lowest average RMSE and for most variables
it has the second lowest RMSEs. The SDDF comes in third place for the average RMSE
and for most individual RMSEs as well. When we focus attention on the second half of the
sample (501:1000) we notice that the SDDF has the lowest average RMSE and it has the
lowest RMSEs for all variables excluding the price and wage dispersion terms. The SCKF
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Table 5: Relative RMSES

Variables 1:1000 501:1000
SDDF SUKF SCKF SDDF SUKF SCKF
Ct 1.006231 1.070867 1.000000 | 1.000000 1.205783 1.104303
l;:t 1.132505 1.000000 1.080741 | 1.000000 1.240036 1.097782
Ty 1.181185 1.000000 1.136984 | 1.000000 1.313421 1.133556
in 1.133471 1.000000 1.133222 | 1.000000 1.330830 1.175401
Wy 1.153684 1.000000 1.381660 | 1.000000 1.028467 1.210968
Vs 1.082905 1.000000 1.070343 | 1.005642 1.000000 1.076418
vy 1.092675 1.000000 1.023498 | 1.020134 1.000000 1.151244
Qt 1.142062 1.000000 1.403456 | 1.000000 1.142131 1.391700
d, 1.143689 1.000000 1.182752 | 1.000000 1.014220 1.464875
Oy 1.192362 1.000000 1.182502 | 1.000000 1.323908 1.155156
Average | 1.137156 1.000000 1.109974 | 1.000000 1.236900 1.134871
Average Relative RMSEs for 500 simulations using randomly chosen shocks for 1000
periods.

has the second lowest average RMSE and comes in second place for most of the individual
RMSEs. The SUKF comes in third place for the average RMSE and for a lot of the individ-
ual RMSEs. So the overall picture points to the SUKF converging the fastest, but once the
filters have converged the SDDF performs the best. However, it should be noted that the
relative differences between the filters are quite small and we would be hesitant to generalize
our results to all model types, let alone different parameterizations of our benchmark model.
The similarity of the results should not be a surprise given the Sigma Points for each filter
are chosen in a very similar fashion. From our Monte Carlo study we would conclude that
all our Sigma Point Filters seem to do a reasonably good job.

We present plots for the first 300 periods for a subset of the unobserved variables for
one of the 500 draws below. We do this to give the reader a visual although not necessarily
typical sense of how the filters perform and how the RMSEs translate into tracking results.

Figure 1 illustrates that it can take some time for the effects of the initial condition
to die out. These effects are especially noticeable for capital, because capital is extremely
persistent. If a mistake is made in the initial condition for capital, it can take a long time
for the filter to correct. Flury & Shephard (2011) make the same observation about capital
when using the Particle Filter. The slow convergence of the estimated capital stock is also
reflected in the RMSEs for capital.

In figure 2 we plot the probabilities for being in the high inflation response monetary
policy regime. In the case of the simulated data, we always know in which regime we are,
so that the probabilities are always zero or one. In the case of the recovered probabilities,
we do not know in which regime we are, so we must estimate the probability of being in a
given regime, and hence these results fall between zero or one.

Again it takes a little bit of time for the filters to converge, but once they have converged,
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Figure 1: Simulated & Estimated Data
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Figure 2: Monetary Policy Regimes
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they do a very good job at estimating the true probabilities. The results from the Monte
Carlo study give us confidence that our proposed filters are reasonably accurate and behaving
as we would expect them to.

4.3. Taking the Model to Real Data

The Monte Carlo experiments have demonstrated that our proposed Sigma Point Filters
perform well in the laboratory when the true data generating process is known. Yet economic
theories require field testing, models need to be taken to the data to estimate the unobserved
state variables and parameters, we need to assess their fit and ultimately to validate them.
We field test the Switching Unscented Kalman Filter by taking the Fernandez-Villaverde
et al. (2015) model with regime switching in the Taylor rule and the stochastic volatility
turned off, to the data. We use the SUKF because based on our testing it appears to
converge faster than our other Sigma Point Filters. However the overall results from our
tests indicate that any of the filters could have been used with little difference between
the results.> We retain the parameterization from Fernandez-Villaverde et al. (2015) but
calibrate the transition probabilities in the Markov chain and the switching parameters in
the Taylor rule, and include some measurement error on GDP growth and CPI inflation. For
the purposes of this paper, we want to test how well the filter and model fit the data with

3These results are available upon request.
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very little modification to the parameterization from Fernandez-Villaverde et al. (2015). We

leave estimation for future investigation. Our calibrated switching parameters are presented
in tables 6, 7 and 8 below.

Table 6: Regime Specific Parameters

Parameters | Regime 1 | Regime 2
Vo 1.9838 0.6642
Yy 0.3863 0.7392

Table 7: Transition Probabilities

Parameters | Value

Table 8: Measurement Errors

Parameters Description Value
uy’ Inflation measurement error | 0.075
ur %) | GDP growth measurement error | 0.075

We compare our results with Fernandez-Villaverde et al. (2015) who use drifting param-
eters to evaluate monetary policy changes over history in the context of trying to explain
the great moderation. Figure 3 below shows the parameter drift on the inflation coefficient
in the Taylor rule from the estimation results in Fernandez-Villaverde et al. (2015). Figure
4 shows the expected probability of being in the high inflation response monetary policy
regime. The profiles in both figures are very similar, both profiles show there is evidence
of a monetary policy regime with a stronger response to inflation in the late 1960s and the
early to mid 1980s. We take the similarity of these plots as evidence that SUKF is producing
sensible results in the field.
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Figure 3: Taylor Rule Drift from Fernandez-Villaverde et al. (2015)
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As a further test of the SUKF in the field, we plot the detrended consumption, detrended
output, detrended investment and the detrended capital stock series to make sure they look
“reasonable”.
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The detrended consumption, detrended output, detrended investment and the detrended
capital stock series all seem to be quite reasonable. None of them shows any signs of explosive
behavior or trending. We take this as further evidence that are our filters are behaving
sensibly.

4.4. Testing Observability

We use the same model from the Monte Carlo study and the SUKF to demonstrate our
observability heuristics. To better understand the results we add two test variables to the
state space; the first variable labeled JUNK1 follows a linear autoregressive process and the
second labeled JUNK2 follows a quadratic autoregressive process. Because both variables are
exogenous, unrelated to the core model and are unobserved, they should provide us with a
benchmark for how the heuristics appear when using unobserved variables with no relation to
the observed variables, or in other words no observability. We can then compare the heuristics
for our estimated unobserved model variables against our test variables to get an indication
of their observability. Generally speaking we interpret 95% bands for the unobserved model
variables that are narrower than the test variables as a sign of good observability. In fact, the
narrower the bands, the better the observability. Likewise, symmetry is also an indication
of good observability.

We produce two sets of observability heuristics. In both cases we produce 500 model
simulations for 1000 periods, but, in the first set we only use the last 500 periods of simulated
data, and in the second set we use the first 100 periods. The first set of heuristics displayed
in figure 6 illustrates the asymptotic observability of the model and filter, while the second
set displayed in figure 7 illustrates observability in short samples.
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We begin by looking at the observability heuristics for the asymptotic case. The heuris-
tics for JUNK1 and JUNK2 give a reference point for the observability of the estimated
unobserved model variables. Both JUNK variables are reasonably symmetric and centered
on zero with the upper 95% band at approximately 2 and the lower 95% band at approxi-
mately -2. The normalized filter errors for the JUNK variables appear to follow a standard
normal distribution.

Moving on to the model variables we see that the 95% bands for all the unobserved vari-
ables are narrower than the 95% bands for the JUNK variables, which indicates that all the
model variables have better observability than the benchmark variables with no observability.
Labor preferences have the widest bands, indicating they have poorer observability relative
to the other unobservable variables.

We use the first 100 periods of the simulated data to evaluate the short sample observ-
ability of the model. Just as we did in the asymptotic case, we use the JUNK variables as a
reference point for the properties of a variable with no observability. The 95% bands for the
JUNK variables are at about 2 and -2. However, there might be a little more asymmetry
with the JUNK2 variable than we observed in the asymptotic case.

We also notice that all the variables begin with 95% bands that are wider than we ob-
served in our asymptotic heuristics and in many cases they are asymmetric. In some cases
the bands are wider than the 95% bands from our test variables indicating poorer observabil-
ity at the beginning of the filter. In all cases the bands narrow with time and become more
symmetric, indicating that observability is a time dependent concept and improves as the
sample size increases. Observability is poorer in general in the short sample case compared
with the asymptotic case, because the wrong initial conditions take some time for the filter
to correct. This is especially noticeable for persistent variables like the capital stock and
labor preferences which take longer to converge.
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Figure 6: Observability Heuristics: Asymptotic

JUNK1 JUNK2

4 4 _
| | | | | | | |
100 200 300 400 500 100 200 300 400 500
Consumption Capital
0 4 [ T T T T | O 4 [ T T T T ]
0.2 WW*WWM 0.2 - ‘ ' uudd. it
0 . e 0 - — -
—-0.2 —0.2 & ' \ |
—0.4 | | | | il 0.4 | | | | ]
100 200 300 400 500 100 200 300 400 500
Output Labor
0.2 0.4 F T T T T ]
0.1 - 0.2 ppNsalbo bbb
0 0 "
01 —012 gt
—0.2 0.4 | | | | i
100 200 300 400 500 100 200 300 400 500
Price Dispersion Wage Dispersion
0.2 T 0.2 T T | |
0.1 % ' — 0.1 ; “' ' | ' . I' ' ‘ ““ 1
0 prmns e s 0 ~
—0.1 —0.1
_02 | | | | _02 | | | |
100 200 300 400 500 100 200 300 400 500
Consumption Prefel"ences Labor Preferences

I 2 I I
Lower 95%

1 WMM e Median M

e Upper 95%
t

) m— -
1 e ey iy gty
| _9 | | | |
100 200 300 400 500 100 200 300 400 500

The percentiles are calculated using 500 random simulations for 1000 periods. The
asymptotic series are calculated from the last 500 periods.
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Figure 7: Observability Heuristics: Short Sample
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The percentiles are calculated using 500 random simulations for 1000 periods. The
short sample uses the first 100 periods.

27



5. Conclusion

This paper extends three well known Sigma Point Filters to allow for dynamic nonlinear
regime switching models. The filters are tested with a regime switching DSGE model solved
using a nonlinear solution method. In a Monte Carlo experiment, we find that all three
filters perform well both in in terms of accuracy and speed. The filters are also tested using
real data in a calibration exercise that gives similar results to what is found in the literature.
This is evidence that the procedures are reasonable.

In addition to developing filters, the paper investigates observability in the context of
nonlinear state space models. In that connection, some heuristics for testing observability
are proposed. These tests can be very useful to practitioners for better understanding their
models and any potential limitations.

The Sigma Point Filters developed are not just useful to researchers and modellers work-
ing with nonlinear regime switching DSGE models, they are also applicable to nonlinear state
space models in general. As such, these new filters, which are conveniently implemented in
the RISE toolbox, should provide serious competition for existing Particle Filtering proce-
dures.
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Appendix A. Fernandez Villaverde, Guerron Quintana and Rubio Ramirez (2015)
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Appendix B. Variables and Parameters

Symbol

Description

dy
Ct
2

At

Consumption Preferences
Detrended Consumption

Neutral Technology

Detrended Marginal Utility of Consumption
Nominal Gross Interest Rate
Gross Rate of Inflation

Detrended Rental Rate on Capital
Variable Capital Utilization
Detrended Tobin’s Q

Investment Specific Technology
Detrended Investment

Calvo Pricing Term

Detrended Real Wage of Wagesetters
Detrended Real Wage

Labor Demand

Labor Preferences

Wage Calvo Term 1

Detrended Output (Demand)
Real Marginal Cost

Relative Price of Pricesetters
Wage Calvo Term 2

Detrended Capital Stock

Price Dispersion

Wage Dispersion
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Table B.9: Parameter Values

Parameters | Description Value
15} Time Preference 0.99
h Habit Formation 0.9
) Disutilty of Labor Scaling 1.17
) Depreciation Rate 0.025
« Captial’s Share of Income 0.21
K Weight on Investment Adjustment Costs 9.5
€ Intermediates Elasticity of Substitution 10
n Labor’s Elasticity of Substitution 10
0o Weight on Adjustment Costs for Capital Utilization | 0.001
Vr Interest Rate Smoothing 0.7855

Xaw Wage Indexing 0.6340
X Wage Indexing 0.6186
O Share of Constrained Wage Setters 0.6869
0 Share of Constrained Price Setters 0.8139
Pd Persistence Consumption Preferences 0.1182
Py Persistence Labor Preferences 0.9331
Ao Growth Rate Neutral Technology 0.0028
Au Growth Rate Embodied Technology 0.0034
o, Standard Deviation Embodied Technology Shock 0.01
Oq Standard Deviation Neutral Technology Shock 0.01
04 Standard Deviation Consumption Preference Shock | 0.01
o Standard Deviation Labor Preference 0.01
Om Standard Deviation Monetary Policy Shock 0.01
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