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We show that shale oil producers respond positively to favourable oil price signals,

and that this response is mainly associated with the timing of production decisions

through well completion and refracturing, consistent with the Hotelling theory of

optimal extraction. This finding is established using a novel proprietary data

set consisting of more than 200,000 shale wells across ten U.S. states spanning

almost two decades. We document large heterogeneity in the estimated responses

across the various shale wells, suggesting that aggregation bias is an important

issue for this kind of analysis. Our empirical results call for new models that can

account for a growing share of shale oil in the U.S., the inherent flexibility of

shale extraction technology in production and the role of shale oil in transmitting

oil price shocks to the global economy.
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1 Introduction

In an influential study, Anderson, Kellogg, and Salant (2018) show that conventional oil

production from existing wells in Texas does not respond to oil prices, while drilling activ-

ity responds strongly. Based on this, they refute Hotelling’s classic model of exhaustible

resource extraction, and reformulate it instead as a drilling problem: firms choose when

to drill, but production from existing wells is constrained by reservoir pressure. The idea

is that the pressure in the underground oil reservoir is high and production will therefore

initially be rapid. Over time, however, extraction depletes reserves and the well’s flow

decays toward zero. Hence, the only way for oil extractors to rebuild their production

capacity is by drilling new wells. These results are consistent with previous empirical

studies of conventional oil production, see for instance Pesaran (1990), Dahl and Yucel

(1991), Ramcharran (2002) and Smith (2009) for studies across many U.S. states.

Over the last decade, however, the oil market has undergone a significant transforma-

tion caused by an unexpectedly sharp increase in U.S. crude oil and natural gas produc-

tion from unconventional (shale) wells. This massive production surge of shale oil and

gas is made possible by the development of hydraulic fracturing (so-called “fracking”)

and horizontal drilling technologies, making the U.S. the world’s largest oil and natural

gas producer.1 A key feature of fracking is that it allows for a more flexible production

process compared to conventional oil production, as wells can be refractured over time.

This implies that oil companies can be forward looking, reducing the extraction rate when

market conditions are poor, or resuming extraction when conditions improve, see Born-

stein, Krusell, and Rebelo (2021) for a structural model of the global oil market that

incorporates fracking.

While empirical studies of conventional oil production are ample, there is a scarcity

of empirical studies analyzing production from shale wells, mostly due to lack of high-

frequency data at the well level. In this paper, we aim to fill this gap by studying

the price responsiveness of U.S. oil producers across ten states using a novel monthly

proprietary dataset compiled by Rystad Energy. Doing so, we document large differences

in the responses between shale and conventional oil producers. In fact, we find that

shale oil producers are very price elastic, especially reacting to expectations about future

oil prices. We further show that aggregation bias is an important issue for this kind of

analysis. In fact, exploring the micro data is key for our findings, as estimating the price

responsiveness on aggregated shale oil production data would misleadingly infer that shale

producers have no response on impact to oil price signals.

1Shale oil production involves pumping a mixture of liquids and sand at high pressure into shale rock

formations with low permeability to release oil and gas trapped in small pockets. This is combined with

the ability to drill horizontally through shale layers over long distances.
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The data set provided by Rystad Energy contains monthly information on crude oil

production and other characteristics for more than 200,000 unique horizontally drilled

shale wells, and covers production from all reported shale oil wells in the 10 largest U.S.

oil producing states for the period 2005:M01–2017:M12. In addition to information about

the number of barrels of crude oil produced in a given month, we observe several well-

specific time-invariant characteristics for each well. This includes, but is not limited to,

well location, well operator and well drilling direction. We also have access to data on

more than 150,000 conventionally drilled wells in Texas for the same time period. To

our knowledge, this makes our study the most detailed and comprehensive study on the

behaviour of U.S. shale oil producers to date.

We start by analyzing production at the well level, using the detailed cross-section

of our micro data. Our baseline model exploits the panel dimension by pooling all the

information in the cross-section and considers a large set of variables that influence the

production decision. To measure price responsiveness of oil producers, we focus on both

the response to spot prices and the spot-futures spread. The latter is included to capture

information about producers’ price expectations. Doing so, we document large differen-

tials in price responsiveness between shale wells and conventional wells. Consistent with

earlier findings, such as Anderson, Kellogg, and Salant (2018), we find no response of con-

ventional wells in Texas. In contrast, we find that shale oil producers respond significantly

to price signals, consistent with the Hotelling theory of optimal extraction. While the re-

sponse to the current spot price is small, shale producers respond strongly to movements

in the spot-futures spread, by increasing their production on impact when the spot-futures

spread increases. Furthermore, we show that for the most part, there is a large positive

and statistically significant response irrespective of state. The exceptions are California,

New Mexico and Wyoming. The lack of response from these can be understood through

geographical isolation or lack of sufficient pipeline infrastructure.

The use of micro data is key to obtaining reliable estimates of the aggregate price

response of oil producers. In a recent study, Levin, Lewis, and Wolak (2017) showed that

temporal and spatial aggregation over gasoline purchases implied lower gasoline price

elasticities than those implied by a high-frequency panel of 243 US cities. They showed

that the differences in results are due to various sources of aggregation bias. Our setting

is similar in spirit to theirs. In particular, by constructing a panel dataset based on

rich well level information, we can eliminate any potential aggregation bias over well

production rates when estimating our empirical model. Aggregating over all individual

wells across the U.S. is equivalent to imposing identical parameter values for all producing

wells regardless of well or firm characteristics. In fact, when we aggregate production

across individual wells in our panel and estimate price responses, we find that aggregate
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output is price-inelastic for both shale and conventional oil. Hence, doing so we would

misleadingly infer that shale producers have no response on impact to oil price signals.

Furthermore, the use of panel data enables us to explore the cross-sectional variation in,

for instance, well type, well operator, location, or other characteristics of interest, and we

can investigate the potential heterogeneity in producer behavior. Lastly, having a large

cross-section in a panel is beneficial for statistical inference when analyzing a relatively

short time period as we do here.

Having established that shale oil producers respond significantly to future price signals,

we next explore the mechanism behind the response among shale producers. In particular

since shale oil extraction technology introduces new decision margins with well completion

and refracturing of existing wells, we examine if the price responsiveness depend on the

production level. Since shale wells are characterized by front-loaded production profiles,

the level of production is very high in months immediately following the initiation of

production or the months following a refracturing event. As it turns out, for every month,

about 0.5 - 1% of all wells in our data set are being refractured, while almost 25% of

wells have at least once been refractured. Using quantile regressions, we find supporting

evidence that it is when well output is in the upper right tail of the distribution that they

are the most price responsive. This corresponds to completion and refracturing events.

We then turn to examine potential heterogeneities along a number of dimensions.

First, we examine if the responses depend on well ownership. Identifying well operators

in our dataset, we find that well price responsiveness also tends to be stronger if the

well is owned and operated by one of the large, and most likely most professional, firms.

Second, we examine if publicly traded firms, which to a larger extent have to consider

how their decisions are viewed by investors, are less price-elastic as they have to be more

cautious so as to ensure a positive net cash flow and shareholder return. As the results

suggest, the responsiveness seems to be weaker for wells operated by publicly traded

firms, but in our sample this effect is not large. Third, we recognize that the relevant

decision-maker is the individual firm. We therefore study whether firms expand their

production volumes when prices are expected to increase. We find the same positive and

statistically significant response to oil prices at the firm level as we found for individual

wells. We interpret this as evidence that individual shale well operating producers on

average increase their aggregate production across the states in our sample when they

receive signals of increasing prices. As an extension, we also examine if wells that are

spaced closely together and may therefore interfere with each other because they tap into

the same reservoir, exhibit a smaller price response compared to those that are spaced

further apart. Indeed, we find that wells spaced farther apart exhibit a large price response

compared to those that are spaced less than 600 feet (approx. 183 metres) apart.
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Notably, our results relate to empirical micro studies that analyse oil producers price

responses referred to above. However, all of these are for conventional oil. To our knowl-

edge, there are only two studies that have analyzed the price responsiveness of U.S. shale

oil producers using high-frequency data at the well level, and they reach different con-

clusions: Bjørnland, Nordvik, and Rohrer (2021) examine oil producers in North Dakota

and finds a positive price response for well-completion and production from existing shale

wells, while Newell and Prest (2019) analyse five major oil producing states including

North Dakota, but finds no response for shale production to price signals, only drilling re-

sponds positively. Apart from the differences in datasets, the two studies employ notably

different modelling frameworks. Our baseline model is specified so as to capture features

of both modelling frameworks. We contribute to these studies by showing that the key

difference that accounts for the opposite findings is the inclusion of the spot-futures spread

to capture expectations about future prices. Furthermore, while the two other studies use

data for either one or a few states, our data covers production from all reported shale

oil wells in the 10 largest U.S. oil producing states for the period 2005:M01–2017:M12.

Finally, we explore potential heterogeneities along a number of dimensions and document

that micro data is key to obtaining reliable estimates of the aggregate price response of

oil producers.2

Our findings have implications for a number of other fundamental questions. Impor-

tantly, we speak directly to the growing literature looking on the nexus between the oil

market and the macroeconomy (see e.g., Kilian (2009), Kilian and Murphy (2012, 2014),

Stock and Watson (2012), Baumeister and Peersman (2013a,b), Aastveit, Bjørnland,

and Thorsrud (2015), Anzuini, Pagano, and Pisani (2015), Juvenal and Petrella (2015),

Baumeister and Hamilton (2015, 2019), Baumeister and Kilian (2016a,b), Caldara, Cav-

allo, and Iacoviello (2019) and Känzig (2021)). These papers are, however, confined to

studying the determinants of oil price fluctuations at the aggregate level or the effects of

different types of oil price shocks on macroeconomic and financial variables. Our paper

instead uses detailed high-frequency micro data to emphasize how different oil producers

react differently to price signals. In so doing, our results can serve to reconcile some of

the opposing conclusions in the literature when it comes to how one should analyse the

role of oil in the macroeconomy. In particular, oil price-macro models have often assumed

aggregate oil production to be price inelastic in the short run when identifying oil market

shocks, see for instance Kilian (2009) and Kilian and Murphy (2012). However, as pro-

duction from drilled shale wells will be responsive to shocks to the oil price also in the

2A related literature examines to what extent the propagation of oil shocks depends on financial factors

such as the level of indebtedness, see for instance Seleznev and Selezneva (2022) and Gilje, Ready,

Roussanov, and Taillard (2021), which investigate oil production during the COVID-19 pandemic.
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short term, this assumption may no longer hold. Instead, our results support exploring

alternative identification strategies for oil market macro models that relax the assumption

of a zero short-run oil supply elasticity, see for instance Baumeister and Hamilton (2019)

and Caldara, Cavallo, and Iacoviello (2019).

Second, as shale producers are forward looking, we may expect to see a stabilizing

effect on oil prices as shale producers grow in size and importance, see Bornstein, Krusell,

and Rebelo (2021). For instance, a persistent increase in the oil price (due to say increased

global demand) will now make it profitable to expand shale production and take advantage

of the high oil prices, thereby bringing the oil price effectively down again. Hence, our

results suggest the shale oil boom might be beneficial to net oil importers by supporting

non-OPEC supply growth and thus, mitigating oil price volatility.

Third, our findings suggest policymakers should take into account that shale and

conventional producers adjust differently to price-sensitive news and policies. In partic-

ular, the increased flexibility among shale producers could have implications for whether

supply-side policies are effective. For instance, it has been argued that cuts in oil produc-

tion can have positive climate effects (i.e., reducing CO2 emissions) if it is not replaced by

increased oil production elsewhere, see Fæhn, Hagem, Lindholt, Mæland, and Rosendahl

(2017). However, as shale firms are forward looking and can respond quickly, a cut in oil

production in one location (which will shift the supply curve leftwards and increase oil

prices immediately, all else equal) can be replaced by shale oil production elsewhere, at

least in the short term. Hence, if supply side policies shall be effective, they need to be

accompanied by some form of commitment/agreement among both the shale and conven-

tional producers, see Asheim, Fæhn, Nyborg, Greaker, Hagem, Harstad, Hoel, Lund, and

Rosendahl (2019).

Finally, the growing share of shale oil in the U.S. could have implications for how

investment, wages, employment and other macroeconomic variables may respond to oil

price changes, see for instance Allcott and Keniston (2017), Feyrer, Mansur, and Sacer-

dote (2017) and Bjørnland and Zhulanova (2018) for some studies documenting increased

spillovers from oil and gas production during the shale oil boom to employment and wages

in non-oil industries in the U.S.

To conclude, our empirical results call for new models that can account for a growing

share of shale oil in the U.S., the inherent flexibility of shale extraction technology in

production, the role of shale oil in transmitting oil price shocks to the global economy

and subsequent policy implications.

The rest of the paper is organized as follows. Section 2 provides background and

characteristics of shale oil production and details about the micro data. In Section 3

we present the model and the empirical results. Specifically, Subsection 3.2 presents our
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baseline results for shale and conventional wells. In Subsection 3.3, we present our quantile

regression results and discussion of completion and refracturing events. Subsection 3.4

explores different dimensions in the cross-section of our data, including well ownership

and size of firm. The final Subsection 3.5 contains our results for the different states. We

do two extensions to the baseline model in Section 4, before concluding in Section 5.

2 Background and data

2.1 Background

The renewed interest in oil supply responsiveness comes in part from the emergence of

horizontally drilled shale wells in the U.S.. Contrary to conventionally drilled vertical

wells, shale wells can economically tap into vast shale rock formations that are well known.

These formations are of such low permeability that the hydrocarbons are trapped within

tiny pockets from which they cannot escape without external stimulation. Conventional

wells on the other hand, have a high degree of permeability, meaning that a well will

naturally begin to flow if the pressure differential is made sufficient. The emergence of

hydraulic fracturing (fracking) technology has made it possible to increase permeability

of shale rocks. After a shale well is drilled, the owner contracts with a fracking crew

who pumps the well full of water, chemicals and proppants at high pressures to create or

expand rock fissures so that liquids (or natural gas) can flow. The role of proppants is to

make sure that the created fissures stay open after the fracking is completed. This process

is sometimes referred to as well completion because it completes the development phase

of a well. Importantly, owners of shale wells have the option to postpone completion of a

well allowing them to better time the decision to produce given overall market conditions.

This option is lucrative because the average shale well outputs hundreds percent more

crude oil during the first production months compared to conventional oil wells giving

operators major incentives to optimize the timing of well completion. This increase in

productivity compared to conventional wells is achieved by combining hydraulic fracturing

with horizontal drilling technology. By turning the drill bit horizontally at the desired

well depth, optimally in the shale rock layer, the well can tap into a larger surface area

and thus increase yield. Furthermore, as the flow rate of a producing well diminishes, the

producers have the option to restimulate a well to increase the expected ultimate recovery.

This difference in production technologies leaves shale well operators much closer to the

original Hotelling model behaviour with well completion being the decision variable. One

should therefore expect shale well operators to be more sensitive to oil price changes than

what is the case for conventional wells.
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Figure 1. Plot of horizontally drilled wells contained in the data set. Blue dots mark the locations of

horizontally drilled wells. Grey patches correspond to shale formations and black solid lines are crude oil

pipelines. Shape files for shale formations and pipeline infrastructure are provided by the U.S. Energy

Information Administration. Map is constructed using OpenStreetMap.

2.2 Data

The dataset that makes up the foundation of our analysis is a well-level panel at the

monthly frequency covering all reported onshore oil wells producing in the ten major oil-

producing contiguous U.S. states. These states are California, Colorado, Kansas, New

Mexico, North Dakota, Montana, Oklahoma, Texas, Utah and Wyoming. The data is

provided by Rystad Energy and cover more than 200,000 unique horizontally drilled wells.3

Figure 1 provides a plot of the geographical distribution of the wells in our dataset. We

also have access to data on more than 150,000 conventionally drilled wells in Texas during

the same time period. Our sample period runs from 2005M01–2017M12.

In addition to information about the number of barrels of crude oil produced in a

given month, we observe several well-specific time-invariant characteristics for each well.

This includes, but is not limited to, well location, well operator and well drilling direction.

Regulatory reporting standards distinguish between vertical, directional and horizontal

drilling directions. For our analysis, we identify unconventional wells that require hy-

draulic fracturing to be those that are horizontally drilled.

Figure 2 shows examples of typical oil well production profiles. Panels A and B are

examples of two shale wells. Panels C and D show conventional wells. All four wells are

3Rystad Energy is an independent energy market intelligence firm headquartered in Oslo, Norway.
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Panel A: Horizontal well, De Witt county, Texas
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Panel B: Horizontal well, Karnes county, Texas
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Panel C: Vertical well, Wharton county, Texas
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Panel D: Vertical well, Wharton county, Texas

Figure 2. Examples of well production profiles for different production technologies. Horizontal refers

to shale wells and vertical to conventional wells.

located in Texas. The four panels indicate several differences between horizontally and

vertically drilled wells. First, the initial production month does not correspond to peak

output. During this period, the operator performs a test-run which does not necessarily

reflect the productivity potential of a given well. We should therefore exclude the first

production month from our well-level analysis. Second, shale wells are typically more

productive than their conventional counterparts with considerably larger peak outputs.

Combined with rapid decline rates, this means that unconventional wells have more front-

loaded production profiles. Panels A and B also show examples of the aforementioned

shale well-specific restimulation behaviour. When output becomes relatively low, the

operator exercises her option to refracture the well to increase well productivity. The

need for hydraulic fracturing in the completion stage, front-loaded production profiles

and the option to restimulate wells are all specific traits to unconventional wells that

suggest producers can move output inter-temporally to optimize expected profit.

To see how these traits generalize in the cross-section, Figure 3 shows the mean output

across conventional and unconventional wells for the same production month in a well life

cycle. As is evident, the central tendency is that shale wells are more productive by

several orders of magnitude and thus can yield significant revenue immediately following

well completion. We also note that there does not seem to be any indication that there

is a relationship between well age and the decision to restimulate wells in the cross-

section. If that was the case, we should have seen that the average well output increased

systematically with well age. If anything, there is a small hump between months 80
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Figure 3. Mean production profiles of conventional and shale wells located in Texas. Each data point

is computed by taking the mean output across all wells at the same point in their respective life cycles.

Only wells that began production between 2005:M01 and 2017:M12 are included in the computations.

and 160, but we deem it to be most likely a by-product of the sample size shrinking as

well age increases. This suggests that well age in itself is not sufficient to explain why

refracturing events take place. To investigate further, we report the full distributions

of log well output at four different points in the well life cycle, the 1st, 40th, 80th and

120th production months in Figure 4. While the figure show considerable heterogeneity

in the production level of wells at various horizons, there is a pronounced shift to the

left in the distribution at the 40th production month compared to the distribution at

the 1st production month. In fact, only the very lower right tail of the 40th production

month covers the median production level at the 1st production month, indicating that

refracturing events are most likely to occur during the first three years a well is active.

We also note that the production distributions continue to shift to the left as the horizon

increases, but the shifts are less pronounced for the longer horizons. Finally, we observe

that the data indicate a skewed left tail distribution for all horizons. Especially for the

80th and 120th production months, we observe a long left tail that is almost without mass

past 3, indicating some outlier observations.

The ability of shale well operators to stimulate uncompleted wells or restimulate pro-

ducing wells in a timely manner hinges on fracking contractors and supplies being readily

available. There could be circumstances, e.g. when expected future market conditions

look favourable, when demand for input factors other than water like fracking crews,

equipment and supplies outstrip availability. One would then expect that areas where
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Figure 4. Distribution of the log of well output at the 1st, 40th, 80th and 120th production months

across all shale wells in the dataset.

one finds the highest geographical density of shale wells to have the least severe bottle-

necks and thus the largest responses to price swings. Examples of such areas are the

most developed shale plays in our sample such as the Eagle Ford and Permian plays in

Texas, the Bakken play in North Dakota, and the Mississippian and Anadarko plays in

Oklahoma. There is another consideration that oil producers have to make when deciding

to refracture a well. Because shale wells are drilled horizontally, they can inflict negative

externalities when in close proximity to each other. In particular, the fracking process can

create cracks unpredictably and if the well-spacing is small, the refracturing of one well

might interfere with the production potential of surrounding wells. We thus expect wells

that are located closely together, say less than 600 feet, to be less responsive to oil prices

on average. As more wells are developed in a given area, well-spacing tends to become

tighter over time.

We impose some minor sample selection designed to reduce errors in the computation

of price responsiveness of oil producers. First, there are wells that have one or more

episodes of producing zero barrels during a month either from being shut in, producing

only natural gas or through reporting errors.4 An operator can choose to shut down a

well in preparation for a natural disaster or when they deem production to be too costly

relative to the current market price. In our data, a well can have a reported output

of zero, but be producing natural gas in those periods. We exclude such wells from

4In at least some jurisdictions, contracted liquids gatherers and not the producers themselves are respon-

sible for reporting well production to the state regulatory agencies from which our data is based.
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our analysis because they create extreme outliers. Hence, we drop all wells that have

recorded zero barrels produced in at least one month from the sample.5 Second, the first

recorded production data point per well is unlikely to account for a full month and is

considered test production. Output in this phase does not necessarily reflect the ultimate

productivity of the well (as can be seen in Figure 2) and is therefore dropped. The resulting

unbalanced panel runs over the time period 2005:M01–2017:M12 and encompasses 83,244

shale wells. Of these, 50% are located in the state of Texas and 20% in North Dakota.

Texas dominates due to its size, geology and mature oil sector. North Dakota became a

major oil producer following the advent of hydraulic fracturing in the Bakken shale play.

Colorado, New Mexico and Oklahoma have about 8% each, while California, Kansas,

Montana, Utah and Wyoming share the rest. It is important to stress however, that

not every state is made alike. California for instance, is a minor producer of shale oil

separated topographically to the other states by the Rocky Mountains. Of the states in

our sample, North Dakota, Oklahoma and Texas are the ones understood to be major

shale oil producing states. In recent years, the Permian shale play located in New Mexico

has also been developed. After having applied the same data cleaning procedure describe

above, our sample of conventional wells in Texas consists of 87,963 wells.

3 Models and results

Our aim is to study the price responsiveness of U.S. shale oil producers. We start by

estimating the aggregate response of U.S. shale producers to oil prices using aggregate

data. We then show how the aggregate price responsiveness changes when using a micro

data panel at the well level. Finally we extend the analysis by exploring in the cross-

section, e.g. across states and with quantile regressions across the well output distribution.

3.1 Responsiveness of aggregate shale producers

Our starting point is a standard oil supply equation.

ln qt = µ+ ηoil lnP
oil
t +Xt + εt (1)

where qt is aggregate oil production, P
oil
t is the WTI spot price, Xt is a vector of macro

controls and µ is a constant. The aggregate price responsiveness of U.S. oil producers, the

short-term supply elasticity, is measured by ηoil and can be estimated. However, there

are numerous concerns with estimating Equation (1) and thereby ηoil. First, it suffers

5During the oil price collapse following the COVID outburst in 2020, several oil producers decided to

completely shut in their wells, c.f. Gilje, Ready, Roussanov, and Taillard (2021) and Seleznev and

Selezneva (2022). This is not an issue in our sample, which ends before 2020.
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from a reverse causality problem, as aggregate U.S. oil production is likely to impact oil

prices, causing a simultaneity bias in the estimated ηoil. Therefore, a common assump-

tion in the literature when identifying for instance oil market structural VAR models is

that oil producers cannot adjust their production within a month in response to price

shocks (see e.g., Kilian (2009)).6 Such an assumption is supported by results on conven-

tional U.S. oil producers in earlier empirical studies, i.e., Pesaran (1990), Dahl and Yucel

(1991), Ramcharran (2002), Smith (2009), and Anderson, Kellogg, and Salant (2018). In

particular, Anderson, Kellogg, and Salant (2018) find no evidence of Texan conventional

oil wells adjusting production as the price of oil changes. Production from existing wells

is instead constrained by reservoir pressure, which decays slowly and steadily as oil is

extracted. Based on these results, a small supply elasticity is justified due to long lead-

times in well development. It is therefore common to include lagged oil prices instead of

contemporaneous oil prices as regressors. However, recently this assumption have been

called into question by Baumeister and Hamilton (2019), Caldara, Cavallo, and Iacoviello

(2019) and Bornstein, Krusell, and Rebelo (2021). Baumeister and Hamilton (2019) use

a flexible Bayesian identification approach to incorporate uncertainty regarding the value

of the supply elasticity and that allows for an simultaneous response between oil prices

and oil production. Caldara, Cavallo, and Iacoviello (2019) obtain estimates of oil supply

elasticities by combining a narrative analysis of episodes of large drops in oil produc-

tion with country-level instrumental variable regressions. Bornstein, Krusell, and Rebelo

(2021) argue that fracking allows for a more flexible production process than conventional

oil production, which enables shale well operators to potentially reduce extraction rates

when market conditions are poor, or resume extraction when conditions are improving.

A second challenge with estimating an aggregate oil production equation is that it

may suffer from aggregation bias. For instance, aggregating over all individual wells is

equivalent to imposing identical parameter values for all producing wells regardless of well,

geology, technology or firm characteristics. Such bias may be particularly large when the

there are heterogeneity in the cross-section. A more suitable approach is therefore to

study the price responsiveness of oil producers using micro data at the well level. For

instance, we know that there can be large differences in the initial production level across

wells, possibly reflecting unique geological factors.

3.2 Well panel analysis

We use a unique well-level panel data set at the monthly frequency covering all reported

onshore shale oil wells producing in the ten major oil-producing states. In addition, we

6Alternatively, the short-term supply elasticity is assumed to be bounded between zero and a very small

number, see Kilian and Murphy (2012, 2014).
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also have data for conventional wells in Texas. While our data set is more comprehensive

than earlier micro studies in the literature, we are not the first to analyze the price

responsiveness of U.S. oil producers using microdata. As discussed in the introduction,

there are two related studies, Bjørnland, Nordvik, and Rohrer (2021) and Newell and

Prest (2019). However, the two studies reach opposite conclusions. While Bjørnland,

Nordvik, and Rohrer (2021) find that shale wells respond positively to oil price increases,

Newell and Prest (2019) find no evidence that shale producers respond on impact to oil

price increases. The two studies, however, differ both in terms of their data sets as well

as their econometric model specification. There are five important differences between

the two models. First, Bjørnland, Nordvik, and Rohrer (2021) use data for shale wells in

North Dakota, while Newell and Prest (2019) use data from shale wells in five U.S. states

(including North Dakota). Second, Bjørnland, Nordvik, and Rohrer (2021) estimate the

model in first differences, while Newell and Prest (2019) estimate their model in log-

levels but includes a cubic spline to account for the typical production profile of a shale

well. Third, Bjørnland, Nordvik, and Rohrer (2021) estimate a model with well age and

well fixed effects, while Newell and Prest (2019) instead include only well fixed effects.

Fourth, Bjørnland, Nordvik, and Rohrer (2021) include both the spot price and the spot-

futures spread in their model, arguing that the latter carries important information about

producers’ price expectations. Newell and Prest (2019) do not include the spot-futures

spread in their model, but instead argue that it is important to control for natural gas

prices, since many oil producers are also gas producers. Finally, the two papers also differ

in terms of their controls. Bjørnland, Nordvik, and Rohrer (2021) include well and year

fixed effects in addition to adding several macroeconomic controls, while Newell and Prest

(2019) only include well fixed effects.7

Being aware of the two different model specifications, we construct a baseline model

which incorporates the most important features of both models. We estimate the following

baseline model

ln qit = ηoil lnP
oil
t + ηF (lnP

oil
t − lnFt,t+3) + ηgas lnP

gas
t

+Xt + g(Ageit) + λy + µi + εit
(2)

where qit is oil production in terms of barrels for well i at time t. On the right hand

side, P oil
t is the WTI spot price, Ft,t+3 is the 3-month WTI futures price and P gas

t is

the Henry Hub natural gas spot price. We construct these time series as a monthly

averages over daily observations. g(Ageit) is a cubic spline with knots at every twelfth

7Newell and Prest (2019) estimate two separate specifications. The first includes technical details about

the well such as well depth as control variables. The second includes only well fixed effects. It is the

latter that we consider for our comparison.
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month constructed from the age of the individual well, λy is a year fixed effect and Xt

is a vector of macro controls. This vector consist of the federal funds rate, the copper

price, the Chicago Fed National Activity Index, the U.S. dollar foreign exchange rate, the

MSCI world stock index and the VIX index. These are included to control for aggregate

demand and uncertainty in financial markets. We apply two-way clustering across well

and time when computing the standard errors to allow for within well time-dependence

as well as within year-month across well correlation in the error term. The latter will

allow for correlation across wells that occur when wells respond to the same oil price

movements. Since the main source of variation in this study, the oil price, is common

to all individual wells and there is strong serial dependence for each well, this feature is

critical for valid inference. We are interested in the sum (ηoil + ηF ) and the appropriate

standard error. To obtain these estimates, we run an auxiliary regression where we have

added and subtracted ηF (lnP
oil
t ) in Equation (2).8

We start with reporting results from models estimated on aggregate data for uncon-

ventional and conventional oil production, respectively. To facilitate direct comparison

with results using well-level information, we estimate an aggregate version of Equation (2),

including the same regressors and controls. Results for specifications that are estimated

in log-levels are shown in columns (1) and (3) for shale and conventional production, re-

spectively, while similar results for specifications in log-differences are reported in columns

(5) and (7). We find no evidence of an effect of the spot price and spot-futures spread on

both aggregate shale and aggregate conventional oil production.9

As discussed above, a challenge with estimating an aggregate oil production equation

is that it may suffer from both simultaneity bias and aggregation bias. We therefore

now turn to study the price responsiveness of oil producers using a well-level panel, as

described in Equation (2). In Table 1, columns (2) and (6), we report results for estimating

a model with shale wells in log-levels and in log-differences, respectively. Consistent with

Bjørnland, Nordvik, and Rohrer (2021) and Newell and Prest (2019), we find a negligible

effect of the spot price on shale oil production. However, we complement Bjørnland,

Nordvik, and Rohrer (2021) by finding a significant and strong response of the spot-

futures spread, which is estimated to be 0.68, yielding a total price responsiveness of

around 0.6. Results remain robust when specifying the model in first differences (column

6), although the coefficient increases somewhat. This shows that the spot-futures spread

8Given the relatively strong correlation between lnP oil
t and lnFt,t+3, one concern may be that the data is

uninformative about the value of (ηoil + ηF ), due to a multicollinearity problem. Such a problem would

be reflected in a large standard error of the estimated value of (ηoil + ηF ). However, in the estimation

results reported below, we find this standard error to be small.
9While not reported here, results are also similar if we instead used the lagged value of spot prices and

spot-futures spread, commonly used in the literature.
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Table 1. Shale vs. conventional wells on aggregated and panel data

Specification (1) (2) (3) (4) (5) (6) (7) (8)

ln qt ∆ ln qt

Shale Conventional Shale Conventional

ηoil 0.02 −0.06∗ −0.02 −0.01 0.08 −0.15∗ 0.03 −0.06

(0.07) (0.04) (0.04) (0.03) (0.06) (0.09) (0.05) (0.05)

ηF −0.66 0.68∗∗∗ −0.34 −0.16 −0.07 0.98∗∗ −0.16 0.38

(0.47) (0.25) (0.25) (0.24) (0.23) (0.42) (0.25) (0.31)

ηgas −0.03 −0.03 0.00 −0.01 −0.04 −0.04 0.00 −0.01

(0.04) (0.03) (0.02) (0.02) (0.04) (0.04) (0.03) (0.04)

ηoil + ηF −0.64 0.62∗∗∗ −0.35 −0.17 0.01 0.83∗∗ −0.13 0.33

(0.45) (0.23) (0.23) (0.22) (0.19) (0.36) (0.22) (0.28)

Macro controls Yes Yes Yes Yes Yes Yes Yes Yes

Well FE No Yes No Yes No Yes No Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Linear trend Yes No Yes No Yes No Yes No

Well Age FE No Spline3 No Spline3 No Spline3 No Spline3

First observation 2005:M01 2005:M02 2005:M01 2005:M02 2005:M01 2005:M03 2005:M01 2005:M03

Last observation 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 84,760 57,455 81,252

N × T 156 2,649,951 156 5,700,878 156 2,543,410 156 5,316,017

R̄2 0.72 0.77 0.85 0.82 0.44 0.08 0.40 0.12

Clustering Time Well Time Time Well Time Time Well Time Time Well Time

Num. clusters 156 155 156 155 156 154 156 154

Notes: Estimation results for various baseline model specifications. ηoil is the coefficient on the WTI

spot price, ηF is on the spot-futures spread, ηgas is on the Henry Hub gas spot price and the coefficient

(ηoil + ηF ) is the sum of the spot and spread coefficients estimated by an auxiliary regression. Columns

1–4 are for models in log-level and 5–8 on log-difference. Columns 1, 2, 5 and 6 are for shale wells while

columns 3, 4, 7 and 8 are on vertically drilled Texas wells. Columns 1, 3, 5 and 7 are on aggregated data

and columns 2, 4, 6 and 8 are on our well-level panel. The macro controls consist of the federal funds rate,

the trade-weighted foreign exchange rate, the Chicago Fed National Activity Index, the copper price, the

MSCI world stock index and the VIX index. The cubic spline has knots at every 12th production month.

N refers to the number of unique wells included in the estimation.

carries important forward looking information which U.S. shale producers reacts to. When

the spot-futures spread increases, the oil spot price is expected to fall in the future, urging

shale producers to increase their production now. Importantly, we see that the we can

reconcile the opposite conclusions reached by Bjørnland, Nordvik, and Rohrer (2021)

and Newell and Prest (2019) by introducing the spot-futures spread.10 As expected, we

10Table A.1 in the Appendix reports results for the baseline specification with and without the spot-futures

spread. It shows that a specification without the spread (Newell and Prest (2019)) gives no price response,

regardless of whether we estimate in levels or first differences, while a specification that includes the spread

will give a significant price response for shale producers regardless of whether we estimate in levels or

16



do not find a similar price responsiveness for conventional oil wells. Results in Table 1,

columns (4) and (8), show negligible effects of both the spot price and spot-futures price on

conventional production. This reaffirms results in Anderson, Kellogg, and Salant (2018)

and mirrors the results of Bjørnland, Nordvik, and Rohrer (2021) (for North Dakota) and

Newell and Prest (2019).

3.3 The mechanism behind the shale price responsiveness

Having established a significant and positive price responsiveness of U.S. shale producers,

we are interested in understanding the mechanism behind the shale oil producer price re-

sponsiveness further. As a starting point, we investigate whether the price responsiveness

depends on the production level. There are at least two reasons why the production level

could affect the price responsiveness of a well. First, as discussed in Section 2, shale wells

have front-loaded production profiles. One would therefore expect there to be a positive

association between favourable oil prices and output given that the production level is

high during this phase of a well life cycle. This phase is initiated by a well completion

event and as such, a possible interpretation can be that, on average, well completions

are associated with favourable market conditions. This would favour a large production

response when oil prices are high and expected to fall. For wells that are at a later stage

in their life cycles with lower output levels, we would generally expect a more muted price

response. Finally, if the oil producer believes there is an additional revenue potential in

a well, the producer may be more willing to take on the additional cost of refracturing

the well. As discussed above, almost 25% of all wells in our sample have at least once

been refractured. Once a well is refractured, the production can increase substantially—in

many cases almost to the same level as initial production levels. This would indicate a

strong price response when the production level is high.

We study whether the price responsiveness depends on the production level, by es-

timating a quantile regression version of Equation (2).11 Since we are interested in the

marginal effects of the spot price and spot-futures spread on shale production, we use

the unconditional quantile regression approach developed by Firpo, Fortin, and Lemieux

(2009).12 This method consists of running a regression of the recentered influence func-

not.
11Quantile regressions have recently been a popular tool for studying drivers of macroeconomic tail risks.

For instance, Adrian, Boyarchenko, and Giannone (2019) study the conditional distribution of GDP

growth as a function of economic and financial conditions and argues that financial conditions are par-

ticularly informative about future downside macroeconomic risk.
12It is more common to estimate conditional quantile regressions. However, this would mean estimating

the marginal effect conditional on the values of all other covariates that are included in the model. Given

the considerable amount of control variables that we include in our regressions, it would be unappealing
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tion (RIF) of the unconditional quantile on the explanatory variables. This allows for

a marginal effect interpretation similar to the one of standard OLS. In implementing

the Firpo, Fortin, and Lemieux (2009) approach in our panel data setting with high-

dimensional fixed effects and multi-way clustering of standard errors, we use the Stata

code developed by Rios-Avila (2019). We focus on the 1st, 5th, 25th, 50th, 75th, 95th

and 99th percentiles.13

Table 2 shows the quantile estimation results. The lineMean b/d gives an indication of

where in the output distribution the different percentiles are found in units of barrels per

day. The median level of well production is 1427 barrels per month. This may seem small

for a shale well, but Figure 3 indicates that the average shale well reaches this production

level within 40 months after their initial start of production month. At the median, there

is no statistically significant association with the oil prices. However, that is not the case

in the upper tail of the distribution. With all our controls and fixed effects included, we

find that there is a strong association between production output and oil prices given that

the production level is high. The upper section of the production distribution is likely to

pick up either wells that have just started their production (been completed) or wells that

have just been refractured. Given the front-loaded production profile of shale wells, it is

reasonable that producers would like to take advantage and there being an association

between high prices and high production levels.

To further explore this, we add interaction effects to our baseline model in Equation

(2). We construct two dummy variables to account for the front-loaded production. startit

is a dummy variable which equals 1 if t is the first full production month for well i

and refracturedit is a dummy variable which equals 1 if the well is likely to have been

refractured at time t. The variable refracturedit is set to equal 1 if the level or production

between period t and t+1 increases by 2000 barrels or more.14 We report results in Table

3. In column 1 we list the results for our baseline model without interaction terms. In

column (2) we show results for a model where we add the interaction dummy startit.

Somewhat surprisingly, the additional impact of the interaction terms is small, indicating

no additional effect for newly started wells. The results are however more supportive when

adding the interaction dummy refracturedit. As shown in column (3) in Table 3, both

to pick specific values of these variables when computing the price responsiveness of shale producers.
13To control for substantial one-off output dips (outliers) in otherwise ordinary well production profiles, we

include dummy variables that are equal to 1 if such a dip event occurs for well i at time t. As is indicated

by Figure 4, the output distribution has a long left tail and the results in the lower percentiles may be

sensitive to these outlying observations.
14Our results are robust to setting the number of barrels to, for instance, 1000 or 5000. Results for the

interaction effect with the dummy startit are also robust to including more than just the starting month.

We have checked results when including up to the first six months of production.
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Table 2. Unconditional quantile regression on log-level full cross-section

Distributional stat. Q1 Q5 Q25 Q50 Q75 Q95 Q99

ηoil 0.17 0.09∗∗ −0.01 −0.02 −0.10∗∗ −0.21∗∗ −0.25∗

(0.10) (0.04) (0.04) (0.04) (0.04) (0.10) (0.15)

ηF 0.98 0.12 0.36 0.10 0.48∗ 1.96∗∗∗ 2.30∗∗∗

(0.60) (0.18) (0.24) (0.27) (0.28) (0.47) (0.63)

ηgas −0.01 −0.03∗ −0.01 −0.02 −0.03 −0.05 0.00

(0.05) (0.02) (0.02) (0.03) (0.03) (0.04) (0.05)

ηoil + ηF 1.15 0.21 0.35 0.09 0.38 1.75∗∗∗ 2.05∗∗∗

(0.71) (0.15) (0.22) (0.25) (0.26) (0.40) (0.52)

Macro controls Yes Yes Yes Yes Yes Yes Yes

Well FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

Well Age FE Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3

Dip dummies Yes Yes Yes Yes Yes Yes Yes

First observation 2005:M02 2005:M02 2005:M02 2005:M02 2005:M02 2005:M02 2005:M02

Last observation 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 58,422 58,422 58,422 58,422 58,422 58,422

N × T 2,649,951 2,649,951 2,649,951 2,649,951 2,649,951 2,649,951 2,649,951

R̄2 0.62 0.59 0.59 0.62 0.57 0.38 0.26

Mean b/d 0.74 4.64 19.48 47.58 106.64 348.98 702.75

Clustering Well Time Well Time Well Time Well Time Well Time Well Time Well Time

Num. clusters 155 155 155 155 155 155 155

Notes: Unconditional quantile regression estimation results on data in log-levels. Estimation is based on

Firpo, Fortin, and Lemieux (2009). Parameters ηoil and ηgas are the coefficients on the natural log of WTI

and Henry Hub spot prices. ηF is the coefficient on natural log of the spot-futures spread. (ηoil + ηF ) is

the total response of quantities produced from the level of spot-futures spread estimated by an auxiliary

regression. Mean b/d gives an indication of where in the distribution each percentile is located in units

of barrels per day. All wells are shale wells. The dip dummies are included to control for sudden one-off

dips in otherwise ordinary production profiles that cause outliers. For example, we construct a dummy

that is equal to 1 for well i at time t if output at time t is below 25 barrels and the observations for t− 1

and t + 1 are larger than 25. 25 barrels per month is an extraordinarily small amount of output for a

shale well.

interaction terms are statistically significant, indicating that the price response indeed is

stronger for wells going through a refracturing event.

Together with the results reported from the unconditional quantile regression analysis,

we conclude that there is substantive evidence in the data that unconventional oil wells

respond systematically to signals of favourable oil prices. Furthermore, these responses

are found to be associated with the two ways unconventional oil producers can time their
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Table 3. Regression results conditional on refracturing and production start

Specification (1) (2) (3) (4)

ln(qit) ln(qit) ln(qit) ln(qit)

ηoil −0.06∗ −0.06∗ −0.06∗ −0.06∗

(0.04) (0.04) (0.04) (0.04)

ηoil × (startit = 1) 0.07∗∗∗ 0.07∗∗∗

(0.01) (0.01)

ηoil × (refracturedit = 1) −0.19∗∗∗ −0.20∗∗∗

(0.01) (0.01)

ηF 0.68∗∗∗ 0.66∗∗∗ 0.67∗∗∗ 0.65∗∗∗

(0.25) (0.24) (0.24) (0.24)

ηF × (startit = 1) 0.26 0.25

(0.39) (0.39)

ηF × (refracturedit = 1) 1.90∗∗ 1.93∗∗

(0.76) (0.75)

ηgas −0.03 −0.03 −0.03 −0.03

(0.03) (0.03) (0.03) (0.03)

Macro controls Yes Yes Yes Yes

Well FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Well Age FE Spline3 Spline3 Spline3 Spline3

First observation 2005:M02 2005:M02 2005:M02 2005:M02

Last observation 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 58,422 58,422 58,422

N × T 2,649,951 2,649,951 2,649,951 2,649,951

R̄2 0.77 0.77 0.77 0.77

Clustering Well Time Well Time Well Time Well Time

Num. clusters 155 155 155 155

Notes: Estimation results on the full cross-section of our dataset with data on log-levels. Parameters ηoil

and ηgas are the coefficients on the natural log of WTI and Henry Hub spot prices. ηF is the coefficient

on natural log of the spot-futures spread. refracturedit is a dummy variable equal to 1 if the well is likely

to have been refractured at time t. startit is a dummy variable equal to 1 if t is the first full production

month for well i. All wells are shale wells.

production decisions: well completion and refracturing.
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3.4 Well ownership, publicly traded firms and firm-level panel

We continue our analysis by exploring three additional sources of heterogeneity. First, we

study whether the price responsiveness varies across the distribution of well ownership.

We hypothesize that larger firms have more resources available to quickly act on signals

of favourable market conditions. Second, we want to learn whether firms that are publicly

traded behave differently from privately held firms. One hypothesis is that publicly traded

firms are more careful when making investment decisions so that they can obtain positive

net cash flows and shareholder return. And third, we recognize that the relevant decision-

maker is the individual firm. We therefore study whether firms expand their production

volumes when prices are expected to increase.

To investigate whether well ownership affects the price responsiveness, we proceed by

counting the number of wells operated by each firm. We then examine the distribution

of well counts and identify the firms that together account for 25% of the wells in op-

eration in our sample. These firms are in descending order EOG Resources, Occidental

Petroleum (Oxy), Chesapeake, Marathon Oil, Continental Resources, ExxonMobil and

ConocoPhillips. Using this information, we construct a dummy variable largei that is

equal to 1 if well i is operated by one of these firms. To assess the additional price

response for wells operated by these seven firms relative to the other firms, we add inter-

actions between the price variables and the dummy variable. The estimation results are

reported in Panel A of Table 4.

The results show that there is an additional statistically significant average response

to the spot-futures spread for wells that are operated by the seven largest firms. In fact,

the estimates suggest that the total price responsiveness effect is more than twice as large

as for the other firms. The total effect (ηoil + ηF ), including the interaction effect, is 0.95

and significant at the 1% level. A comparison of this result with those of column (2)

in Table 1 indicates that it is the largest firms that respond the most since the baseline

average response without the interaction term is 0.62. This aligns with the findings of

Bjørnland, Nordvik, and Rohrer (2021) who identify a stronger effect for the top 99 firms

in North Dakota in terms of production volumes.

Second, we turn to examine whether firm ownership affects price responsiveness. We

have information about what corporate entity owns each individual well i in our sample.

We match this information with stock market data and identify which corporate entities

are publicly traded. We thus construct a dummy variable publici which takes the value

1 if well i is owned by a publicly traded firm. The estimation results are reported in

Panel B of Table 4. As the results suggest, the responsiveness seems to be weaker for

wells operated by publicly traded firms. The estimate for the interaction effect between

the spot-futures spread and the dummy variable is not large, -0.18, and not statistically
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Table 4. Regression results accounting for firm size, publicly traded firms and firm-level panel

Panel A: Firm size and price response Panel B: Publicly traded firms Panel C: Price response in firm-level panel

ln(qit) ln(qit) ln(q̃kt)

ηoil −0.03 ηoil −0.07∗ ηoil −0.20∗∗∗

(0.04) (0.04) (0.06)

ηoil × (largei = 1) −0.11∗∗∗ ηoil × (publici = 1) 0.00

(0.02) (0.04)

ηF 0.52∗∗ ηF 0.84∗∗∗ ηF 0.80∗∗

(0.25) (0.28) (0.34)

ηF × (largei = 1) 0.57∗∗ ηF × (publici = 1) −0.23

(0.23) (0.18)

ηgas −0.03 ηgas −0.03 ηgas −0.01

(0.03) (0.03) (0.04)

(ηoil + ηF ) 0.49∗∗ (ηoil + ηF ) 0.78∗∗∗ (ηoil + ηF ) 0.60∗∗

(0.23) (0.25) (0.25)

(ηoil + ηF ) + (η
′

oil + η
′
F )× (largei = 1) 0.95∗∗∗ (ηoil + ηF ) + (η

′

oil + η
′
F )× (publici = 1) 0.54∗∗

(0.28) (0.23)

Macro controls Yes Macro controls Yes Macro controls Yes

Well FE Yes Well FE Yes Firm FE Yes

Year FE Yes Year FE Yes Year FE Yes

State FE No State FE No State FE Yes

Well Age FE Spline3 Well Age FE Spline3 State-Firm trend Linear

First observation 2005:M02 First observation 2005:M02 First observation 2005:M01

Last observation 2017:M12 Last observation 2017:M12 Last observation 2017:M12

N 58,422 N 58,422 N 1,050

N × T 2,649,951 N × T 2,649,951 N × T 98,910

R̄2 0.77 R̄2 0.77 R̄2 0.69

Clustering Well Time Clustering Well Time Clustering Firm Time

Num. clusters 155 Num. clusters 155 Num. clusters 156

Notes: Panel A shows estimation results for a well-level model where we have interacted the oil prices

with a dummy variable for whether the well is owned by a large oil firm. In particular, we use the

distribution of well ownership to identify the firms in the dataset that are among the top 25% in term

of number of wells in operation. These are EOG Resources, Occidental Petroleum (Oxy), Chesapeake,

Marathon Oil, Continental Resources, ExxonMobil and ConocoPhillips. If well i is operated by on of

these firms, the dummy variable largei is equal to 1. Parameters ηoil and ηgas are the coefficients on the

natural log of WTI and Henry Hub spot prices. ηF is the coefficient on natural log of the spot-futures

spread. (ηoil + ηF ) is the total price response estimated by an auxiliary model. (η
′

oil + η
′

F ) is the total

additional price response from the interaction terms. Panel B shows estimation results from a well-level

model where we have interacted the oil prices with dummy variable publici which is equal to 1 if well i is

owned by a publicly traded firm. Panel C shows estimation results from a firm-level model. The model

has the same specification as the baseline model, but q̃kt is the aggregate production volumes across all

wells i operated by firm k.

significant. When the total effect is considered, the responsiveness is estimated to be 0.54,

which is significant at the 5% level. However, this estimate is only somewhat smaller than

the baseline estimate of 0.62. This finding indicates that publicly traded firms, which to

a larger extent have to consider how their decisions are viewed by investors, are more

cautious so as to ensure a positive net cash flow and shareholder return, but we note that
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the effect is not large.

The above analysis was conducted at the well level. As a third exercise we study

whether firms overall expand their production volumes when prices are expected to in-

crease. We proceed by aggregating our well-level data for each firm to obtain a firm-level

panel. Since we observe the same firms across multiple states, we include a state fixed

effect as well as firm fixed effects to control for unobserved firm- and state-level variation.

The standard errors are now clustered on firm and time for the same reasons as previously

argued for well and time. We substitute the well-specific cubic spline by a linear trend

as we do not expect to see the typical well decline curves for firm-level output. We allow

the linear trends to be state-firm-specific. Apart from these modifications, we retain the

baseline model specification. The results are reported in Panel C of Table 4. We find the

same positive and statistically significant response to oil prices as we found for individual

wells. We interpret this as evidence that individual shale well operating producers on

average increase their aggregate production across the states in our sample when they re-

ceive signals of increasing prices. This is in line with the findings of Bjørnland, Nordvik,

and Rohrer (2021).

3.5 Individual states

We complete the analysis by examining the price responsiveness across geographic regions.

In particular, we are interested in assessing to what extent the price responsiveness differ

across state borders. We go about this by estimating our baseline model separately on

subsets of the data by geography. Table 5 first provides information on a variety individual

state characteristics. We note that Texas and North Dakota are by far the largest shale

oil producing states, followed by Montana and Oklahoma. However, by 2017 all states,

with the exception of California, Kansas and Utah, have more than 50% of their total

oil production stemming from shale oil producers. Notably, California and Kansas have

had a reduction in the share of shale wells between 2014 and 2017. At the same time,

Utah saw its share increase, but had no significant reduction in the market share of top

five firms. The Utah Herfindahl-Hirschmann Index also remains the highest among these

states, which suggests a highly non-competitive environment.

The results for all the states are reported in Table 6. The first column shows the

parameter estimates using well level information of the ten oil producing states in our

sample taken together, which are identical to those presented in Column (2) in Table 1

above, and included here for comparison. The results from the estimation of the individual

states follow in columns (2)–(11) respectively for California, Colorado, Kansas, Montana,

North Dakota, New Mexico, Oklahoma, Texas, Utah and Wyoming.

We find that for seven of the states; Colorado, Kansas, Montana, North Dakota,
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Table 5. Summary of state characteristic

CA CO KS MT NM ND OK TX UT WY

Share shale 2014 4.19% 84.04% 10.16% 71.62% 59.68% 97.40% n.a 62.96% 16.05% 44.67%

Share shale 2017 3.68% 93.00% 4.63% 63.31% 78.49% 98.12% n.a. 75.87% 32.62% 53.64%

HH index full sample 0.31 0.34 0.04 0.14 0.13 0.15 0.14 0.04 0.52 0.22

HH index 2010– 0.31 0.23 0.06 0.13 0.11 0.07 0.06 0.04 0.39 0.16

Market share top 5 firms 87.20% 59.67% 21.04% 71.17% 53.83% 39.45% 21.99% 26.34% 90.27% 45.34%

Market share top 5 firms 2010– 89.52% 83.76% 34.18% 69.41% 61.82% 46.22% 35.12% 36.68% 90.02% 67.22%

Average share of total shale production 0.73% 2.53% 1.59% 12.38% 4.39% 33.10% 4.63% 38.81% 0.24% 1.67%

Notes: Summary of state characteristics across a variety of dimensions. Share shale refers to the share

of oil produced in the state that is from shale wells. HH index is the Herfindahl-Hirschmann Index

which measures market concentration. The higher number for the HH index, the closer a market is to

a monopoly (i.e, the higher the market’s concentration, and the lower its competition). We rank firm

size by the number of barrels of crude oil produced. Total shale production refers to the total amount of

barrels of crude oil produced by shale wells across the ten states. State characteristics data is courtesy

of Rystad Energy.

Table 6. Regression results on log-level state-level data

Subsample All states CA CO KS MT ND NM OK TX UT WY

ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit) ln(qit)

ηoil −0.06∗ −0.04 −0.07 −0.37∗∗∗ −0.05 −0.11∗∗∗ 0.02 −0.11∗∗ −0.04 −0.06 0.03

(0.04) (0.12) (0.07) (0.10) (0.03) (0.04) (0.05) (0.05) (0.04) (0.10) (0.06)

ηF 0.68∗∗∗ 0.20 0.95∗∗ 1.47∗∗∗ 0.45∗∗ 0.89∗∗∗ 0.55 1.04∗∗∗ 0.51∗ 1.11∗ −0.12

(0.25) (0.41) (0.40) (0.53) (0.20) (0.26) (0.36) (0.38) (0.29) (0.60) (0.27)

ηgas −0.03 −0.02 −0.01 −0.09 0.00 −0.07∗∗ 0.01 0.02 −0.03 0.06 −0.04

(0.03) (0.05) (0.04) (0.06) (0.02) (0.03) (0.03) (0.03) (0.03) (0.06) (0.03)

ηoil + ηF 0.62∗∗∗ 0.16 0.88∗∗ 1.10∗∗ 0.40∗∗ 0.78∗∗∗ 0.58 0.93∗∗∗ 0.46∗ 1.05∗∗ −0.09

(0.23) (0.37) (0.34) (0.46) (0.19) (0.23) (0.36) (0.35) (0.27) (0.53) (0.24)

Macro controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Well FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Well Age FE Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3

First observation 2005:M02 2005:M02 2007:M04 2006:M05 2005:M02 2005:M02 2005:M04 2006:M03 2005:M02 2005:M04 2005:M02

Last observation 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 761 4,286 388 1,255 12,893 3,615 5,526 28,063 219 1,416

N × T 2,649,951 38,759 150,211 13,511 110,560 705,220 161,652 236,259 1,164,466 9,612 59,701

R̄2 0.77 0.60 0.77 0.77 0.75 0.65 0.78 0.84 0.78 0.82 0.81

Clustering Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time Well-Time

Num. clusters 155 155 129 139 155 155 153 142 155 153 155

Notes: Estimation results for each individual U.S. state with data on log-level. Parameters ηoil and ηgas

are the coefficients on the natural log of WTI and Henry Hub spot prices. ηF is the coefficient on natural

log of the spot-futures spread. (ηoil + ηF ) is estimated by an auxiliary model. All wells are shale wells.

Oklahoma, Texas, and Utah, there is a significant positive prices response. Of these, all

states but Texas and Montana have a response rate that exceeds the average across all

ten states (0.62). However, for California, New Mexico and Wyoming, the response is

smaller and insignificant. California differ from the other ten states by its isolation west
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of the Rocky Mountains. This, coupled with the minuscule share of shale wells in this

state, may explain the low price response.

New Mexico has a sizeable coefficient estimate, but it is not statistically significant.

The majority of shale production in New Mexico stems from the Permian shale play (see

Figure 1). According to our data from Rystad Energy, there was little development of

new shale wells in this region prior to 2014, with production growth accelerating as late as

2016. The primary reason for this is the lack of pipeline infrastructure to carry the crude

oil to market.15 The higher productivity of shale wells can make legacy transportation

infrastructure insufficient.16 These bottlenecks affect incentives to complete or refracture

wells and as such price responsiveness. In particular, facing local gluts and limited storage

capacity, price discounts relative to the WTI spot benchmark set in Cushing, Oklahoma

will encourage operators to keep the crude oil in the ground. Such price discounts for

the Permian play can be observed by comparing the price for crude oil with delivery in

Midland, Texas (WTI Midland) and Cushing (WTI). Midland serves as a delivery point

for oil produced in the Permian play.
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Figure 5. Per barrel difference in price level between crude oil delivered to Cushing, Oklahoma (WTI)

and Midland, Texas (WTI Midland) in U.S. dollars from 2005:M01 to 2017:M12. Price data courtesy of

Rystad Energy.

Figure 5 shows the difference between the WTI and the WTI Midland prices. Prior

to 2013, the discount was stable at between 2 USD and 4 USD per barrel. Following

15In its Today in Energy article of November 15, 2017, the U.S. Energy Information Administration writes

that “As U.S. crude oil production has increased, particularly in regions such as the Permian basin, so

has the need for more transportation infrastructure to accommodate it. However, the rate of production

growth and the scale and timing of when additional pipeline capacity is brought online are not always

aligned.”
16Lack of pipeline infrastructure in North America following the shale oil boom and its effects on local

prices have been discussed previously by Kilian (2016) and Gundersen (2020).
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the opening of new pipeline infrastructure and the end of a volatile period beginning

with the 2014 global oil price decline, the gap between these prices has narrowed signif-

icantly. These developments may explain strong positive yet non-significant response of

New Mexico.

Wyoming has a negative response, but it is not statistically significant. While Figure

1 indicates that Wyoming does have legacy infrastructure in place, the same hypothesis of

insufficient infrastructure can be posed for this state. Only in the recent years have invest-

ments into expanding transportation capacity been prioritized. Furthermore, Wyoming,

which is dominated by the two independent producers EOG Resources and Devon Energy,

did not progress past the exploration and testing phases during our sample period.

To summarize, there is a degree of heterogeneity across states, but apart from the

three aforementioned states, we find a positive and in some cases very strong response

across the states in our sample. We therefore conclude that shale oil producers respond

significantly to price signals, and in particular to movements in the spot-futures spread,

by increasing their production on impact when the spot-futures spread increases. These

empirical results call for new models that can account for a growing share of shale oil

in the U.S., the inherent flexibility of shale extraction technology in production, the role

of shale oil in transmitting oil price shocks to the global economy, and implications for

optimal policy.

4 Extensions

We do two different extensions to the baseline model. First, we analyze whether spacing

between wells affects their price responsiveness. As shown above, a refracturing event

can occur when an operator has favourable expectations about future market conditions

and is willing to incur the cost of repeating the process of pumping water, sand and other

chemicals into the well to create new or expand existing cracks in the shale rock layer. This

event will potentially increase the output of a well by many orders of magnitude. However,

the process of refracturing is unpredictable and if wells are not sufficiently spaced apart,

proceeding with the refracturing process for a given well can cause irreversible damage to

the well and other wells located around it. As such, we should expect oil producers that

have drilled wells too close together to be more restrictive at restimulating their wells—

or put differently, wells located further apart from other wells should respond more to

favourable movements in oil prices. From Rystad Energy, we have obtained categorical

data on the distance from a given well to the closest neighbouring completed well.17

17Instead of the exact distance from well i to well j, the data places wells into categories by distance. The

shortest distance category is defined as wells located ≤ 600 feet apart.
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The distances are measured from the bottom of the wells in feet. We construct a dummy

variable spacei that takes the value 1 if well i is not located within 600 feet (approximately

183 metres) of another well. We interact this dummy variable with the spot price and

the spot-futures spread to estimate the additional effect of a well being spaced more than

600 feet apart from its closest neighbour.

The estimation results are reported in Table A.2 in the Appendix. Also in this case,

there is a significant positive additional effect from the interaction term on the spot-

futures spread. This means that wells that are spaced more than 600 feet from their

neighbouring wells tend on average to have a stronger response relative to wells that

are located closer than this.18 The total estimate of 1.26 for wells that are spaced more

than 600 feet from their neighbouring wells is more than twice as high as the baseline

average response without the interaction of 0.62.19. Furthermore, the estimated response

for spacei = 0 is negative. We are cautiously interpreting this result as an indication

of wells located closely together lose well productivity in response to positive oil price

expectations. Put differently, one can make the argument that a refracturing event on

average causes irreparable damage to the wells which results in large productivity losses

as the results suggest.

Second, we extend the analysis with respect to the maturity of the futures contracts.

In our baseline specification, we include the spot-futures spread computed using futures

contracts with delivery in three months to capture forward-looking behaviour of oil pro-

ducers. Table A.3 in the Appendix reports estimation results analogous to those reported

in Table 1, but here we have replaced the 3-months spot-futures spread with the 6- and

12-months spreads. As before, the previous results of no response for the non-panel mod-

els and conventional wells persist. For the shale well panel however, the results indicate

that operators respond less to the information in the contracts with delivery further in

the future. The responses for the 6- and 12-months spreads are estimated to be 0.41 and

0.18 respectively, with only the former being statistically significant. This is in line with

the findings of Bjørnland, Nordvik, and Rohrer (2021), although their model is specified

on first-difference form.

5 Conclusion

We investigate the price responsiveness of U.S. oil producers. With a novel well-level

dataset covering ten of the largest oil producing states, we construct a rich panel dataset

18Approximately 40% of the wells in the sample belong to the ≤ 600 feet category.
19Note that the estimation sample when including well spacing information excludes about 1,000 wells that

we do not have well spacing data for.
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and estimate a fixed effects model. Because shale wells need to be fracked in order to

start production, it introduces a new margin for the producers to exploit that conven-

tional producers do not have. In particular, shale producers is confronted with an option

to postpone production and thus are able to better time their revenue stream to more

favourable market conditions.

We find that shale wells respond strongly positively to expected increases in the price

of oil as measured by the spot-futures spread. In particular, across all ten states in our

sample, the estimated response is 0.62. Examining the geography dimension of the cross-

section we find that there is some heterogeneity across states, but except for California,

New Mexico and Wyoming, that are either topographically separated from the rest of the

U.S. crude oil market or have insufficient pipeline infrastructure, the responses are positive

and statistically significant. We further show that the responsiveness depends on the level

of well output, and the strongest price responses are found for wells operated by the largest

firms and wells that are sufficiently spaced apart from their closest neighbouring well.

Our empirical results call for new models that can account for a growing share of shale

oil in the U.S., the inherent flexibility of shale extraction technology in production and

the role of shale oil in transmitting oil price shocks to the global economy. Our results can

also serve to reconcile some of the opposing conclusions in the literature when it comes to

how one should analyse the role of oil in the macroeconomy. In particular, oil price macro

models have often assumed aggregate oil production to be price inelastic in the short run

when identifying oil market shocks. However, as production from drilled shale wells will

be responsive to shocks to the oil price also in the short term, this assumption may no

longer hold. Instead, our results support exploring alternative identification strategies for

oil market macro models that relax the assumption of a zero short-run oil supply elasticity.
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Appendix: Additional results

Table A.1. Shale vs. conventional wells and the spot-futures spread

Specification (1) (2) (3) (4) (5) (6) (7) (8)

ln qt ∆ ln qt

Shale Conventional Shale Conventional

ηoil 0.01 −0.06∗ −0.02 −0.01 −0.02 −0.15∗ 0.00 −0.06

(0.03) (0.04) (0.03) (0.03) (0.07) (0.09) (0.05) (0.05)

ηF 0.68∗∗∗ −0.16 0.98∗∗ 0.38

(0.25) (0.24) (0.42) (0.31)

ηgas −0.03 −0.03 0.01 −0.01 −0.04 −0.04 −0.01 −0.01

(0.03) (0.03) (0.02) (0.02) (0.05) (0.04) (0.04) (0.04)

ηoil + ηF 0.62∗∗∗ −0.17 0.83∗∗ 0.33

(0.23) (0.22) (0.36) (0.28)

Macro controls Yes Yes Yes Yes Yes Yes Yes Yes

Well FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Well Age FE Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3 Spline3

First observation 2005:M02 2005:M02 2005:M02 2005:M02 2005:M03 2005:M03 2005:M03 2005:M03

Last observation 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 58,422 84,760 84,760 57,455 57,455 81,252 81,252

N × T 2,649,951 2,649,951 5,700,878 5,700,878 2,543,410 2,543,410 5,316,017 5,316,017

R̄2 0.77 0.77 0.82 0.82 0.08 0.08 0.12 0.12

Clustering Well Time Well Time Time Well Time Well Time Well Time Time Well Time

Num. clusters 155 155 155 155 154 154 154 154

Notes: Estimation results for various baseline model specifications with and without the spot-futures

spread. ηoil is the coefficient on the WTI spot price, ηF is on the spot-futures spread, ηgas is on the

Henry Hub gas spot price and the coefficient (ηoil + ηF ) is the sum of the spot and spread coefficients

estimated by an auxiliary regression. Columns 1–4 are for models in log-level and 5–8 on log-difference.

Columns 1, 2, 5 and 6 are for shale wells while columns 3, 4, 7 and 8 are on vertically drilled Texas

wells. Columns 1, 3, 5 and 7 are results from regressions without the spot-futures spread and columns

2, 4, 6 and 8 are with the spot-futures spread. The macro controls consist of the federal funds rate, the

trade-weighted foreign exchange rate, the Chicago Fed National Activity Index, the copper price, the

MSCI world stock index and the VIX index. The cubic spline has knots at every 12th production month.

N refers to the number of unique wells included in the estimation.
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Table A.2. Regression results when accounting for well spacing

ln(qit)

ηoil 0.11∗∗

(0.04)

ηoil × (spacei = 1) −0.25∗∗∗

(0.03)

ηF −1.04∗∗∗

(0.39)

ηF × (spacei = 1) 2.44∗∗∗

(0.39)

ηgas −0.03

(0.03)

(ηoil + ηF )

(0.37)

(ηoil + ηF ) + (η
′

oil + η
′
F )× (spacei = 1) 1.26∗∗∗

(0.25)

Macro controls Yes

Well FE Yes

Year FE Yes

Well Age FE Spline3

First observation 2005:M02

Last observation 2017:M12

N 57,273

N × T 2,597,681

R̄2 0.77

Clustering Well Time

Num. clusters 155

Notes: Estimation results from a well-level model where we have interacted the oil prices with dummy

variable spacei which is equal to 1 if well i is located more than 600 feet (183 metres) away from the

closest completed well. Parameters ηoil and ηgas are the coefficients on the natural log of WTI and Henry

Hub spot prices. ηF is the coefficient on natural log of the spot-futures spread. (ηoil + ηF ) is the total

price response estimated by an auxiliary model. (η
′

oil + η
′

F ) is the total additional price response from

the interaction terms. Wells that we do not have well spacing information for have been omitted from

the estimation sample.
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Table A.3. Regression results for spot-futures spreads at longer horizons

Specification (1) (2) (3) (4) (5) (6) (7) (8)

ln q 6 months spot-futures spread 12 months spot-futures spread

Shale Conventional Shale Conventional

ηoil 0.05 −0.10∗ −0.01 −0.03 0.09 −0.09 0.01 −0.08

(0.07) (0.05) (0.04) (0.04) (0.07) (0.08) (0.04) (0.05)

ηF −0.51 0.51∗∗ −0.23 0.02 −0.48∗∗ 0.28 −0.20∗ 0.16

(0.31) (0.22) (0.16) (0.17) (0.23) (0.21) (0.11) (0.14)

ηgas −0.03 −0.02 0.00 −0.01 −0.04 −0.02 0.00 −0.01

(0.04) (0.03) (0.02) (0.02) (0.04) (0.03) (0.02) (0.02)

ηoil + ηF −0.46 0.41∗∗ −0.24∗ −0.01 −0.39∗ 0.18 −0.19∗∗ 0.07

(0.29) (0.18) (0.14) (0.14) (0.20) (0.14) (0.09) (0.10)

Macro controls Yes Yes Yes Yes Yes Yes Yes Yes

Well FE No Yes No Yes No Yes No Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Linear trend Yes No Yes No Yes No Yes No

Well Age FE No Spline3 No Spline3 No Spline3 No Spline3

First observation 2005:M01 2005:M02 2005:M01 2005:M02 2005:M01 2005:M02 2005:M01 2005:M02

Last observation 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12 2017:M12

N 58,422 84,760 58,422 81,760

N × T 156 2,649,951 156 5,700,878 156 2,649,951 156 5,700,878

R̄2 0.72 0.77 0.85 0.82 0.74 0.77 0.85 0.82

Clustering Time Well Time Time Well Time Time Well Time Time Well Time

Num. clusters 156 155 156 155 156 155 156 155

Table A.4. Extension for baseline model specifications, but where the futures price is for delivery either

6 or 12 months ahead instead of 3. ηoil is the coefficient on the WTI spot price, ηF is on the spot-futures

spread, ηgas is on the Henry Hub gas spot price and the coefficient (ηoil + ηF ) is the sum of the spot

and spread coefficients estimated by an auxiliary regression. Columns 1–4 are for models estimated using

6-month futures contracts and 5–8 12-month futures contracts. Columns 1, 2, 5 and 6 are for shale

wells while columns 3, 4, 7 and 8 are on vertically drilled Texas wells. Columns 1, 3, 5 and 7 are on

aggregated data and columns 2, 4, 6 and 8 are on our well-level panel. The macro controls consist of the

federal funds rate, the trade-weighted foreign exchange rate, the Chicago Fed National Activity Index,

the copper price, the MSCI world stock index and the VIX index. The cubic spline has knots at every

12th production month. N refers to the number of unique wells included in the estimation.
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