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Abstract

This paper documents a new feature in Norges Bank’s policy model NEMO, namely
the ability to handle structural break points, i.e. shifts in one or more parameter
values at a specific point in time. This property is introduced to enable the model
to answer new policy-relevant questions, such as the effect of changes in the in-
flation target and the effect of a sudden drop in the expected long-term oil price.
We document the theoretical solution technique and illustrate its usage through a
practical example. Additionally, we present a procedure for estimating break points.
Our results indicate that including structural shifts is important when interpreting
data. Neglecting structural shifts can lead to wrong interpretations of history, which,
potentially, could also affect forecast performance.
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1 Introduction

Standard solution methods for linear rational expectations models deal with the case
where the parameters of the structural model, such as individual preferences, are con-
stant (Kulish and Pagan, 2017). In many circumstances, however, this does not give a
satisfactory description of the economy. To accurately model a change in some underlying
preference or policy, one would need to change one or more parameters at a specific point
in time. Usually, this relates to steady-state parameters which cause permanent changes
in the model.1 For instance, if the inflation target changes or there is a sudden drop in
the expected long-term oil price, this should be accounted for in the model by a shift in
one or more parameter values at time t, i.e. we should include structural break points2 in
the model.

Since Norges Bank’s inflation target was changed in March 2018, the Bank has had the
ability to include structural break points in their main model for economic and monetary
policy analysis, the Norwegian Economy Model (NEMO). As will be explained below, the
method has already been used in the Bank’s conduct of monetary policy. We are not
aware of other central banks that utilize this procedure in large scale DSGE models on a
regular basis.

This staff memo documents the theoretical solution technique of break points in
NEMO, illustrate its usage through examples and show possible implications of not in-
corporating structural break points properly.

The document is organized as follows: Section 2 gives a short introduction to NEMO,
whereas section 3 discusses the solution technique and challenges that break points can ac-
commodate. We demonstrate the importance of including break points in NEMO through
an example in Section 4. Section 5 describes a procedure to estimate the magnitude and
timing of break points based on Bayesian techniques. Lastly, Section 6 concludes.

2 Norges Bank’s policy model NEMO

The forecasting and policy analysis system in Norges Bank is organized around NEMO.
NEMO is a large-scale DSGE open-economy New Keynesian model for monetary policy
analysis and forecasting. The model was launched in 2006 and has continuously been
updated and extended along several dimensions.

NEMO consists of households, domestic (traditional) firms, an oil sector, a government
sector and the monetary authority. In addition, there are separate production sectors for
housing and non-housing capital goods as well as a banking sector. All agents have
rational, or model-consistent, expectations with respect to all prices and quantities, with
households’ house price expectations being an important exception.

The central bank conducts optimal monetary policy, i.e. sets the interest rate to
minimize a loss function. Alternatively the model can be solved under a Taylor type rule.

A schematic illustration of NEMO along with some more explanatory text is placed
in Appendix B.1. In 2019, the model was re-estimated and thoroughly documented in
Kravik and Mimir (2019).

1This need not be the case, however. One could also have shifts in dynamic parameters that do not
affect the steady state.

2In the document, we use the terms (structural) break points, (structural) breaks and parameter shifts
interchangeably.
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3 Break points in NEMO

Traditionally, when solving DSGE models, parameters of the model have been assumed
to stay constant. Up until recently, that was also the case with NEMO. However, new
solution techniques have been developed making it possible to include structural break
points without large computational costs.3

The benefits of including structural break points in DSGE policy models such as
NEMO, should be obvious. For instance, if data display abrupt and long-lasting changes
in particular observable variables, indicating a structural break, a proper way of handling
such breaks would be to change one or more structural parameters of the model that can
be mapped back to the observable(s) at the time of the break. Another useful case is when
structural breaks appear in observed policy targets or regulations that are embedded into
the model as parameters, such as the inflation target or bank capital requirements. In
most cases, the structural parameters in question also change the steady state of the
model (as in the examples given below), but the procedure also makes it possible to alter
parameters that only change the dynamics of the model.4 The change in parameters after
the break makes the model interpret historical data differently, draw other shocks and
therefore give different forecasts.

In recent history, there have been two episodes in Norway where Norges Bank has
decided to include break points in NEMO:

• First, on 2 March 2018 Norges Bank’s inflation target was lowered from 2.5 to 2
percent. This induced a corresponding change in the steady-state inflation rate in
NEMO that would otherwise be hard to implement without the new procedure.5

• Second, in Monetary Policy Report 1/19 Norges Bank wrote that they “now apply
the assumption that the depreciation of the equilibrium exchange rate after the oil
price fall was slightly more pronounced than assumed earlier.” This is likely to mean
that a permanent decline in the real oil price in NEMO was introduced, which, given
the structure of the model, resulted in a weaker steady-state real exchange rate and
a lower real wage.

In both of these cases, introducing the break points led to shifts in the steady state
of the model. However, in the former case, the steady states of real variables remained
unchanged.

Subsections 3.2 and 3.3 below illustrate the effects of a change in the inflation target
and a change in the steady-state real oil price in NEMO, respectively.

3The model parameters used for the examples in Section 3 and 4 deviate somewhat from the ones in
Norges Bank’s MPR framework and in Kravik and Mimir (2019).

4For instance, one can imagine that there are periods when rigidities are higher than “normal” times,
due to, say, political turbulence. This could then be mapped back to the model by a change in one or
more adjustment cost parameters.

5In NEMO, the new inflation target was gradually introduced as the Bank assumed some lag in
expectations formations (see Special Feature: Monetary policy implications of a new inflation target
in Norges Bank’s Monetary Policy Report (MPR) 1/18). All MPRs are available at https://www.
norges-bank.no/en/topics/Monetary-policy/monetary-policy-report/.
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3.1 The solution technique

Constant parameter DSGE models can be represented in the following form

Et[F (Xt+1, Xt, Xt−1, Ut, θ)] = 0, (1)

where F is the set of possibly non-linear equations of the model, Xt is a Q× 1 vector of
endogenous variables, Ut is a N × 1 vector of exogenous variables, and θ is the parameter
vector of the model. Introducing break points entails that we let the parameters become
regime-dependent:

Et[F (Xt+1, Xt, Xt−1, Ut, θr)] = 0, (2)

where θr is the vector of parameters in regime r ∈ {1, ..., s}. As long as the structural
break points are unanticipated, i.e. the parameter changes are not known or expected by
the agents before they occur, solving equation (2) is reduced to finding the solution for
each regime separately. In general, where regime r depends on time t. See Appendix A.1
for details.

The procedure outlined above gives a simple and flexible way of applying break-points
to a model, with the only computational cost being to solve the model once per regime.
These properties of the technique are important because of the large size of NEMO and
the heavy reliance on the model in the MPR process.

Note that this approach is different from what is often referred to as regime-switching
DSGE models (RS-DSGE models), in which the regime in period t is (either endogenously
or exogenously) determined by a Markov process and the agents have the capability
to form expectations over the regimes.6 Also within the RS-DSGE framework one can
have absorbing regimes by proper calibration of the Markov chain, but in general, this
procedure is computationally more demanding.7

Kulish and Pagan (2017) show how a similar method to the one used in NEMO can
be extended to the case where the structural changes are foreseen. Implementing this
feature in NEMO is left for future work.

3.2 A change in the inflation target

Altering structural parameters can be interpreted as permanent shocks. When a structural
break is introduced, potentially all endogenous variables will transition from the previous
to the new steady state (similar to impulses responses from a temporary shock). See
Appendix A.2 for details.

Figure 1 shows impulse responses from a sudden (and unanticipated) negative shock of
0.5 percentage points to the (annualized) inflation target in NEMO. Variables are shown
in percent deviation from the original steady state. Flow variables are in fixed prices on
a quarterly basis. The dotted lines indicate the new steady state. The model is solved
under optimal policy.

6Strictly speaking, both the Markov switching framework and the break point framework deal with
switching regimes. However, the term regime-switching model is usually applied to the former case.

7For a number of years there has been a growing literature on how to deal with structural breaks in RS-
DSGE models, and technically, implementing regime switching is now relatively easy. For instance, Maih
(2015) has developed a flexible and easy-to-use object-oriented toolbox, named RISE, that is able to solve
RS-DSGE models, allowing for endogenous transition probabilities and for agents to react to anticipated
events (freely available). See reference for a comprehensive review of the literature on Markov switching
models up until 2015.
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Although agents in the model have rational expectations (except with respect to house
prices), the change in inflation target leads to a relatively slow transition to the new steady
state due to rigidities operating in the model. The new inflation level is reached after about
20 quarters. The positive inflation gap that immediately opens causes the central bank
to hike the policy rate which increases the real policy rate by about 20 basis points (at
maximum) on an annual basis. The contractionary monetary policy is transmitted to the
real economy through the banking sector via a gradual pass-through from the policy rate
to the household and corporate lending rates. This suppresses demand components, such
as output, investment and consumption. The real wage level also falls. The rise in the
real policy rate contributes to a stronger real exchange rate, generating a reduction in
exports.

Note that a change in the inflation target causes a trade-off as it opens up a positive
inflation gap and a negative output gap. As a result, the monetary authority chooses a
smooth transition to the new inflation target.

The real effects of a change in the inflation rate in the long-run are negligible.

Inflation (in annul. ppts.)

5 10 15 20 25 30 35 40

0 0
Policy rate (in annul. ppts.)

5 10 15 20 25 30 35 40

0 0

Real policy rate (in annul. ppts.)

5 10 15 20 25 30 35 40

0

0.1

0.2

0

0.1

0.2

Investment

5 10 15 20 25 30 35 40

0 0

Real wage

5 10 15 20 25 30 35 40

0 0

Real exchange rate

5 10 15 20 25 30 35 40

0 0

Mainland output

5 10 15 20 25 30 35 40

0 0

Consumption

5 10 15 20 25 30 35 40

0 0

Mainland export, excl. oil supply

5 10 15 20 25 30 35 40

0 0

Figure 1: A drop in the inflation target in NEMO. Flow variables are in fixed prices on
quarterly terms in percent deviation from the original steady state. The real wage, real
exchange rate and real policy rate are deflated by the inflation rate. The dotted lines
indicate the new steady states.

3.3 A change in the steady-state oil price

Oil and gas production have traditionally made up about 45 to 50 percent of total export
value and between 20 to 30 percent of total GDP in Norway since 2000 (Statistics Norway,
2016). Permanent changes in the oil price can therefore potentially have large effects the
long-term growth path and real wages in Norway.
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The oil sector in NEMO builds on Bergholt et al. (2019). The sector consists of supply
firms as well as a domestic and a foreign extraction firm. A decrease in real oil prices
(caused by an increase in supply of oil internationally) reduces demand for supply goods
both from the foreign and domestic extraction firms (as oil production and oil investments
are discouraged). This will affect the rest of the economy as the oil supply sector uses
domestic and imported factor inputs in production. Lower oil prices also has a positive
effect on trading partners’ production and export demand of traditional goods (as foreign
marginal costs are decreased).8

Figure 2 shows impulse responses to a 10 percent permanent reduction in international
oil prices. Starting with the new steady state levels (the dotted lines in the figure), NEMO
shows that the oil price drop necessitates a 6 percent depreciation of the real exchange
rate in order to keep the country’s net foreign asset position unchanged in the steady
state. This causes a shift in the production structure, leading to a 6.6 percent increase in
traditional (non oil-related) exports and a 1.6 percent decrease in oil supply export goods.
Oil investments (which is part of mainland Norway) contracts about 7 percent. Imports
are reduced by 9 percent. All numbers are in fixed prices.

The real wage level as well as consumption and investment fall by around 4 percent
in the long run. Given the reduction in imports and the increase in exports, mainland
output is reduced less than 1 percent.

Turning to the dynamics of the model, the UIP and the rational expectation properties
of the model make the real exchange rate quickly adjust to (and overshoot) the new steady
state. This increases traditional export and reduces import. Export of oil supply goods
is reduced due to lower foreign demand.

Consumption, investment and the real wage are adjusted quite slowly to their new
steady state, whereas oil investment under-shoots its new steady state for a rather long
time because of the necessary downsizing of the capital level in the oil sector. The policy
rate is increased less than inflation in the first quarters (creating a reduction in the real
interest rate) to avoid mainland output from falling further below its new steady state.
At maximum, the real interest rate is increased by 0.3 percent (on an annualized level).

8Currently, the foreign block in NEMO is modelled in gap-terms only. As a consequence, permanent
oil price changes do not lead to permanent changes in economic developments for trading partners, and
hence no permanent change in export demand. As the oil price gap is always zero in the exercise depicted
in this particular exercise, there will also be no effects from export demand in the dynamics of the model.
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Figure 2: A 10 percent permanent reduction in international oil prices in NEMO. Eco-
nomic development for trading partners is assumed to be unchanged. Flow variables are
in fixed prices on quarterly terms in percent deviation from the original steady state.
The real wage, real exchange rate, real oil price and real policy rate are deflated by the
inflation rate. The dotted lines indicate the new steady states.

4 A practical illustration of the importance of break
points

How will the ability to include break points affect our understanding of the workings of the
economy? In this section, we highlight the importance and advantages of the new solution
technique by comparing it to an example where data is filtered using a constant-parameter
model.

We first simulate NEMO for 100 periods starting at period -50 (see Appendix A.3 for
technicalities). In the simulation, we include a 10 percent drop in the steady-state oil
price in period 0 and onwards – we refer to this model as the True Model (TM). Then
we construct what we label the Naive Model (NM): a model that is identical to the TM
except that there is no steady-state shifts in the oil price.

To make the experiment policy relevant, we then save down 26 level variables from the
simulations of the TM, corresponding to the observables in NEMO, and create gaps out
of these variables.9 For real variables, we take logs and run a two-sided HP-filter (with

9The 26 variables comprise the following: Real domestic variables: Output, consumption, exports
(traditional and oil supply), imports, government expenditures, investment (traditional, housing and oil
related), and hours worked. Financial variables: Household and corporate credit. Price variables:
Wages, consumer prices (CPI and imported), house prices, lending rates (households and corporations),
money market interest rates, and the policy rate. International variables: The exchange rate, the
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λ = 1600), whereas for prices and interest rates, we take logs and subtract the mean.
Figure 3 shows the true levels, the true trends (i.e. the steady state of the variables)

and the constructed trends for output, output growth, the oil price, the real exchange
rate, the policy rate and inflation around the time of the oil price shift in period 0.
The corresponding gaps are shown in Figure 4. As is clear, the HP-filter struggles to
capture the structural break and, hence, the estimated gaps for mainland output, the real
exchange rate and the oil price differ quite a lot from the true gaps. This highlights the
importance of handling structural breaks correctly, but also sheds light on the larger issue
of pre-filtering data itself.10
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Figure 3: The blue lines show the true (simulated) levels, whereas the yellow lines show
the HP-filtered/demeaned trends based on the level variables. Black lines indicate the
true steady state. For the top three figures, the y-axis indicates deviation from the original
steady state.

international oil price and foreign GDP (trading partners and global), money market rates, and inflation.
10See Canova and Ferroni (2011) for a discussion.
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Mainland output gap
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Figure 4: The blue lines indicate the true (simulated) gaps, whereas the yellow lines
are the constructed gaps based on true level variables. Gaps are defined as percentage
deviation from the steady state.

Next, we treat the gaps as observables and use a Kalman smoother approach to filter
out shocks in the two models, respectively, as described in Appendix A.4. We then
create shock decompositions of the output gaps and output growth gaps based on the two
different models, as depicted in Figure 5 and 6. The 26 shocks are grouped in accordance
with Table 2 in Appendix B.2.

The ability to include structural breaks allows the TM to filter the data with per-
manent shocks instead of attributing structural changes to a set of temporary shocks.
Therefore, the story is quite different across the two models for how they interpret the
observed output gap and the output growth gap.

Looking at Figure 5, the TM correctly recognizes that there has been a shift in the
steady-state oil price level from period 0. The shift contributes to a drop in output growth
for the first periods after time 0 (grey bars). Furthermore, as it takes time before mainland
output reaches the new lower steady-state level (see the behaviour of mainland output in
Figure 2), some of the positive output gap in the periods after the break is also correctly
attributed to the steady-state shift in oil prices.

Turning to the NM and Figure 6, the misinterpretation of data is clear. In the NM,
there is no steady-state shift and hence the model instead is forced to explain the con-
structed output gap by using temporary shocks. In general, the NM draws larger supply
shocks and lower demand shocks, foreign shocks and oil sector shocks.

The NM also draws more monetary policy shocks compared to the TM. Before the
structural break, the NM interprets the output gap to be close to zero or positive (whereas
it in fact is negative in the TM), and hence uses negative monetary policy shocks to partly
explain the negative policy rate gap and the near-zero output gap. After the break,
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however, this is reversed. The negative output gap in the NM would, all else equal, lead
to a stronger reduction of the interest rate. The NM therefore needs to draw positive
monetary policy shocks to explain the observed policy rate gap. The positive monetary
policy shocks partly explain the negative output gap in the NM, but due to the persistence
of the shocks before the structural break, it takes time before the net effect of monetary
policy shocks on the output gap becomes negative.

The difference between the shock decompositions are placed in Appendix B.3.
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Figure 5: Historical shock decomposition of the true (simulated) output gap and the
output growth gap using the True Model. A 10 percent oil price drop takes place at
period 0. Shocks are grouped according to Table 2 in Appendix B.2.
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Naive model: Output gap
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Naive model: Output growth gap
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Figure 6: Historical shock decomposition of the constructed output gap and the output
growth gap using the Naive Model. Shocks are grouped according to Table 2 in
Appendix B.2.

5 Estimation of break points

In the last section we assumed that both the magnitude and the timing of the decline
in the steady-state oil price was known prior to filtering. In a real life application, this
information is not necessarily known, and we need to estimate it based on the data at
hand. In this section we do this by applying a Bayesian approach, where we maximize
the posterior distribution given the observed data and the model.

First, we formulate a prior on the magnitude and the timing of the break. For the
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magnitude, we choose a normal prior with mean of no break, and standard deviation of
0.1. For the timing of the break, we use a uniform discrete prior on the interval -4 to 4.
To evaluate the log-likelihood given the parameters we use the Kalman filter described in
Appendix A.4. For more details on the estimation procedure, see Appendix A.5.

We estimate the model over the same simulated sample as in the previous section. The
estimation results are provided in Table 1. We can see the estimation is able to detect
the timing and magnitude of the decline in the oil price quite well: Results indicate the
timing of the break at period 0 and a decline in the steady-state oil price of 9.8 percent.

Table 1: Estimation results
Parameter Prior distribution Prior mean Prior st. dev. Posterior mode
Magnitude of break Normal 1 0.1 0.902

Parameter Prior distribution Prior mean Prior bounds Posterior mode
Timing of break Discrete Uniform 0 [-4,4] 0

In Figure 7 we plot the curvatures of the log-posterior distributions, log-likelihood
and log-prior distributions around the prior means. As we see from the figure, the prior
distributions do not steer the estimation to the conclusion, as the shape of the log-posterior
distributions and log-likelihoods are almost identical. Based on this, we can conclude that
we are able to identify the decline in the oil price well.

Curvature of oil price decline

0.8 0.9 1 1.1 1.2

0

10000

Curvature of timing of oil price decline

0 2 4

0

5000

10000
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Likelihood
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Figure 7: The blue lines (hidden behind the yellow lines) indicate the curvatures of the log-
likelihoods, the yellow lines are the curvatures of the log-posterior distributions,a whereas
the purple lines are the log-prior distributions of the magnitude of the oil price decline
and timing of the oil price decline, respectively. The figures are centered around the prior
means. The orange dashed lines indicate the posterior modes. The true value is 0.9 for
the decline in the oil price, while it is 0 for the timing of the decline in the oil price.
a As defined by the last term in equation (33) in Appendix A.5.

Although the estimation routine was successful, a weakness of this exercise is that the
data are simulated from the model, and that the sample is quite long. As noted by Kulish
and Pagan (2017), in practice, it is usually the magnitude of changes in the properties
of observable variables that is used to help define subsamples for which a time-invariant
structure is assumed to be valid. This is also the procedure followed by Norges Bank in
the examples mentioned in Section 3. Investigating the estimation procedures on actual
data is left for future research.
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6 Concluding remarks

Standard solution methods for rational expectations models deal with the case where the
parameters of the model are time-invariant. However, to accurately model a change in
some underlying preference or policy, one would need to change one or more parameters
at a specific point in time. Since Norges Bank’s inflation target was changed in March
2018, Norges Bank has had the ability to include simple structural break points in their
main model for economic and monetary policy analysis, the Norwegian Economy Model
(NEMO). This property was introduced to enable the model to answer new policy-relevant
questions, such as the effect of changes in the inflation target and the effect of a sudden
drop in the expected long-term oil price.

This staff memo has documented the theoretical solution technique of break points,
illustrated its usage through examples and showed possible implications of not incorpo-
rating structural break points properly. Additionally, we have presented a procedure for
estimating break points. Our results indicate that including structural shifts is important
when interpreting data. Neglecting structural shifts can lead to wrong interpretations of
history, which, potentially, could also affect forecast performance.
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Appendices
A Algorithm for handling break points in DSGE

models

A.1 The solution technique

Dynamic stochastic general equilibrium (DSGE) models can be put on the form

Et[F (Xt+1, Xt, Xt−1, Ut, θS(t))] = 0, (3)

where F is a function that represents the set of possibly non-linear equations of the model,
Xt are the endogenous variables. Ut are the exogenous variables, which cannot appear with
any order of lead or lag, with size N . Let the number of equations be given by M , which
must also be the number of endogenous variables (= Q).11 θS(t) is the parameter vector
of the model that may change unexpectedly over time. In what follows we assume that
θS(t) ∈ Rp, and that there are countable number of different regimes, i.e. θS(t) ∈ {θ1, ..., θs}
for some finite s ∈ N+, and that the function S(t) is a indicator function for which regime
we are in at the time t. p ∈ N+ will be the number of parameters of the model.

To be able to solve the non-linear system in equation (3) we need to do an approxi-
mation. The first step is to solve the multivariate non-linear system

F (Xss
r , X

ss
r , X

ss
r , 0, θr) = 0 ∀r ∈ [1, s], (4)

where the found solution Xss
r is the steady state in regime r. Then we do a 1st order

Taylor expansion around the steady state in each regime to get

A+
θr
(Xt+1 −Xss

r ) + A0
θr(Xt −Xss

r ) + A−θr(Xt−1 −Xss
r ) +BθrUt = 0. (5)

In the case of optimal monetary policy we optimize a loss function (where W are the
weights in the loss function)

∞∑
t=0

βtX ′tWXt, (6)

s.t. equations in (5). In the monetary policy rule case the rule is already part of the
equations in (5).

We are looking for a solution on the form

Xt = Xss
S(t) + AS(t)(Xt−1 −Xss

S(t)) + CS(t)Ut, (7)

As noted in section 3.1.1 of Kulish and Pagan (2017) we can then find the solution
to the problem by finding the solution for each regime separately. Which means that
we can use one of the standard solution methods suggested in the literature. We use
the generalized Shur form suggested by Klein (2000) when monetary policy is specified
using a rule, and the loose commitment algorithm suggested by Debortoli et al. (2010) if
monetary policy is specified using a loss function.

11Except if the model is solved with optimal monetary policy. In this case M = Q− 1.

14



A.2 Impulse response functions (IRFs)

For break point models the break points are set to precise dates, but since IRFs do not
relate to any date, we need to use another way of defining the regimes. In the case where
we have added B break points we have R = B + 1 regimes. In the case of B = 1 we have
the first regime is going from the beginning of time until, but not including the given
break period, and the second regime is going from the break period to the end of all time.
By classifying the regimes in this way we can produce IRFs by condition on the regimes
for all periods of the IRFs, call this path of regimes ρ(t) ∀ t ∈ {0, ..., T}, where T is the
total number of periods of the IRF. ρ(0) is the regime we start out from. An IRF for the
structural shock j that hits at period 1 is then given by

E

[
(∂Xt −Xss

ρ(t))

∂Uj,1

]
= Aρ(t)E

[
∂(Xt−1 −Xss

ρ(t))

∂Uj,1

]
∀t ∈ {1, ..., T}, (8)

where E
[
∂(X0−Xss

ρ(1)
)

∂Uj,1

]
= Cρ(1)ej,1 + Aρ(1)(X

ss
ρ(0) −Xss

ρ(1)). ej,1 is a vector of zeros except at
the element j where it is 1, and Xss

ρ(0) is the starting values of the endogenous variables,
e.g. the steady state in the regime we start out from. Equation (8) will then give you the
IRF of the variables as deviation from the steady state. To get the IRF in levels we need
to add the steady state at each period (Xss

ρ(t)) to E
[
(∂Xt−Xss

ρ(t)
)

∂Uj,0

]
. In the special case that

ρt = r ∀t ∈ {1, ..., T} we get the definition of IRF of a shock in a specific regime r.
We can also specify a IRF to a change from one regime r to regime s. It is given by

E
[
Xt −Xss

ρ(t)

]
= Aρ(t)E

[
Xt−1 −Xss

ρ(t)

]
∀t ∈ {1, ..., T}, (9)

where X0 = Xss
ρ(0), where ρ(0) = r and ρ(t) = s ∀t > 0.

A.3 Simulating the model

To simulate a model with unexpected structural break points one can use the solution
found in equation (7) to get

Yt+h = Xss
S(t+h) + AS(t+h)(Yt−1+h −Xss

S(t+h)) + CS(t+h)Ut+h. (10)

In equation (10) we first remove the steady-state at time t + h from the initial value
Yt−1+h, before we make a simulation of the deviation from the steady-state by the full
second term. Then the contribution from the simulated exogenous shocks may be added,
before we re-add the steady-state values at time t + h again. To simulate a series with
length H, one iterates equation (10) H periods, and Ut+h ∼ N(0, I).

A.4 Filtering and smoothing with break points

We can rewrite the model in equation (7) into a state-space representation. The measure-
ment equation can be posted as

Yt = HXt + vt. (11)

Yt are the observable variables with size O × 1, H is the observation matrix with size
O ×M , and vt are the measurement errors with size O × 1. The measurement error is
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assumed to be normally distributed with covariance matrix R, where R has size O×O,12
i.e.

vt ∼ N(0, R). (12)

The state equation linking the current state of the state variables with its own lags and
some exogenous disturbances is given by (7). The disturbances (Ut) is assumed to be
normally distributed with covariance matrix I,13 i.e.

Ut ∼ N(0, I). (13)

See Hamilton and Press (1994), Section 13.1, for a more thorough description of the
state-space representation.

A.4.1 Kalman filter

The piecewise linear Kalman filter can be used to get estimates of state variables, or the
unobservable variables, given the observable variables and the parameter values of the
model. This filter assumes that the model is stationary in each regime.

Let us start out with some definitions. Xt|t−1 = Et−1[Xt] is the expectation of Xt

given information on the observed variables up until time t− 1, while Xt|t = Et[Xt] is the
expectation of Xt given information on the observed variables up until time t.

First we can use equation (11) to predict Yt using Xt|t−1

Yt|t−1 = HXt|t−1, (14)

as Et−1[vt] = 0. To get a measure of the forecast error variance we can use equations (11)
and (14) to get

Ft = E[(Yt − Yt|t−1)(Yt − Yt|t−1)′]
= E[H(Xt −Xt|t−1)(Xt −Xt|t−1)

′H ′] + E[vtv
′
t]

= HPt|t−1H
′ +R,

(15)

where Pt|t−1 is the variance in the error when forecasting Xt given information on the
observed variables up until time t − 1. We need Ft as we want to update the projection
of Xt|t−1 given the new information on Yt

Xt|t = Xt|t−1 + E[(Xt −Xt|t−1)(Yt − Yt|t−1)′]F−1t (Yt − Yt|t−1)
= Xt|t−1 + Pt|t−1H

′F−1t (Yt −HXt|t−1),
(16)

where we in line 2 have used equation (14) and

E[(Xt −Xt|t−1)(Yt − Yt|t−1)′] = E[(Xt −Xt|t−1)(H(Xt −Xt|t−1) + vt)
′]

= Pt|t−1H
′,

(17)

The associated variance of Xt|t is

12It is assumed that the measurement error is uncorrelated across time. In the examples in Section 4,
we assume R = 0.

13It is assumed that the exogenous disturbances is uncorrelated across time.
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Pt|t = E[(Xt −Xt|t)(Xt −Xt|t)
′]

= Pt|t−1 − Pt|t−1H ′F−1t HPt|t−1.
(18)

But we are interested in Xt+1|t and Pt+1|t. These we can find by first noting that

Xt+1|t = Xss
S(t+1) + AS(t+1)(Xt|t −Xss

S(t+1)). (19)

By substituting equation (16) into equation (19) we get

Xt+1|t = Xss
S(t+1) + AS(t+1)(Xt|t−1 −Xss

S(t+1)) +Ktνt, (20)

where we have defined νt = Yt −HXt|t−1 and Kt = AS(t+1)Pt|t−1H
′F−1t . With the associ-

ated variance

Pt+1|t = AS(t+1)Pt|tA
′
S(t+1) + CS(t+1)CS(t+1)

= AS(t+1)(Pt|t−1 − Pt|t−1H ′F−1t HPt|t−1)A
′
S(t+1) + CS(t+1)C

′
S(t+1)

= AS(t+1)Pt|t−1(A
′
S(t+1) −H ′K ′t) + CS(t+1)C

′
S(t+1).

(21)

The starting values of the filter is set to the unconditional mean of X1 and P1

X1|0 = E[X1] = Xss
1 (22)

vec(P1|0) = E[X1X
′
1] = (IM2 − A1 ⊗ A1)

−1vec(C1C
′
1). (23)

To evaluate the log likelihood we can at each step of the filtering calculate

`t = −log(|Ft|)− ν ′tF−1t νt. (24)

Which means that the full log likelihood over T periods can be calculated as

L = −T ·O · log(2π)
2

+

∑T
t=1 `t
2

. (25)

A.4.2 Kalman smoother

In contrast to the piecewise linear Kalman filter the piecewise linear Kalman smoother
uses all the information in the observable variables to estimate the unobservable variables.
The first part of the smoother is to run through the filter. Then by a backward recursion
on the following equation you can get the smoothed estimates

Xt−1|T = Xt−1|t−1 + Jt−1(Xt|T −Xt|t−1) for t = T, . . . , 2 (26)

Jt−1 = Pt−1|t−1A
′
tP
−1
t|t−1. (27)

See Hamilton and Press (1994), Section 13.6, for a more thorough description of the
Kalman smoother and its properties. The algorithm implemented in the code used in this
paper follows the smoothing steps of Koopman and Durbin (1998):

Rt = A′S(t)Rt+1 +H ′F−1t νt −H ′K ′tRt+1, (28)
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Xt|T = Xt|t−1 + Pt|t−1Rt, (29)

where RT+1 = 0. Smoothed estimate of Ut can be found using

ut|T = C−1S(t)(Xt|T −Xss
S(t) − AS(t)(Xt−1|T −Xss

S(t))). (30)

for t > 1, while for t = 1 we get

u1|T = C−1S(t)(X1|T −X1|0). (31)

A.5 Estimating break points

We are interested in estimating the parameters θi ∀ i and potentially the timing of the
structural breaks, i.e. the S(t) function. When estimating S(t) we assume that the
number of structural breaks s is known prior to estimation. Let the timing of the s
breaks be collected into the vector θb, then we can collect all parameters of the model as
θ = [θ1, · · · , θs, θb]. θ will have size k = (p+ 1)s.14

As is normal in this literature, we first formulate a set of marginal independent priors

p(θ|M) = p(θ1)× · · · × p(θk). (32)

A Bayesian approach constitute of estimating the parameters θ by maximization of
the posterior distribution given by

p(θ|Y,M) =
L(Y |θ,M)× p(θ|M)

p(Y |M)
∝ L(Y |θ,M)× p(θ|M). (33)

As the prior and posterior distributions of the timing of break points are discrete we
cannot use a derivative based maximization methods to estimate the model. Instead we
use the artificial bee colony (ABC) algorithm. See for example the survey of Karaboga
et al. (2012) for an introduction to this method.

14Estimation can of course be limited to a subset of θ if wanted.
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B Non-technical Appendix

B.1 A short description of NEMO

NEMO consists of households, intermediate goods and final goods producing firms, an oil
sector, a government sector and the monetary authority. In addition, there are separate
production sectors for housing and non-housing capital goods as well as a banking sector.
All agents have rational, or model-consistent, expectations with respect to all prices and
quantities, with households’ house price expectations being an important exception.

The model is thoroughly documented in Kravik and Mimir (2019). A technical docu-
mentation of all derivations, first-order conditions, the full steady-state solution and the
stationarization of the model can be found in Kravik et al. (n.d.).15
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Figure 8: A bird’s eye view of NEMO

Figure 8 provides a schematic illustration of the model and displays how the different
sectors and agents are linked to each other. The numeraire good of the model, the final
good, is shown near the top of the figure. This is produced by combining inputs from the

15Kravik et al. (n.d.) is a live document. See the reference list for a link to the latest version.
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domestic firms (Q), labeled intermediate goods producers in the figure, and imports (M).
The final goods are converted into household consumption (C), corporate investment (IC),
housing investment (IH), government expenditures (G) and used as inputs in the oil sector
(QO). The intermediate goods producers employ labor supplied by households (LI), rent
capital from entrepreneurs (KI) and sell their goods to the final goods producers (Q) and
as export (M∗). The oil sector uses labor (LO), capital (KO) and final goods (QO) to
produce oil supply goods which are exported (MO∗) or sold to the domestic rig producers
(IOF ). The rig producers invest in oil rigs (FO) in order to extract oil (YO) that in turn
is exported in full. The revenues are invested in the Government Pension Fund Global
(GPFG), named “Oil fund” in Figure 8.

Households consume (C), work in the intermediate goods sector (LI) and in the oil
sector (LO), buy housing services (H), and interact with banks through borrowing (Bh)
and savings through deposits (D).

The banking sector lends to households (Bh) and entrepreneurs (Be), and is funded
through deposits (D), foreign borrowing (B∗), and equity (KB). An uncovered interest
parity relationship (UIP) together with the country’s net foreign debt position (private
borrowing, B∗, minus government claims on foreigners, BF ) tie down the debt-elastic risk
premium to ensure stationarity.16

B.2 Grouping of shocks

The shocks in the historical shock decompositions in Section 4 are grouped according to
Table 2.

Table 2: Categorization of estimated structural shocks
Domestic demand Domestic supply Foreign
Consumption preference Temporary productivity Foreign marg. costs
Housing preference Firm inv. adj. costs Global demand
Government spending Housing inv. adj. costs Export demand pref.
Import demand Price markup Foreign interest rate

Wage markup Foreign inflation
Trading partners’ output

Exchange rate Banking sector Oil sector
External risk premium Money market risk premium Real oil price

Household LTV ratio Oil investment
Monetary policy Entrepreneur LTV ratio Oil production abroad
Inflation target Markup of mortgage loan rate

Markup of business loan rate

Note: The exchange rate shock is an external risk premium shock in the UIP condition. The monetary policy
shock under the optimal policy setup is implemented as a shock to the inflation target, which is equivalent to
unanticipated deviations of the policy rate from the optimal monetary policy prescription.

16This is one of the standard ways of solving the unit problem inherent in small open economy models
with incomplete markets (see Schmitt-Grohé and Uribe (2003)).
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B.3 Difference in shock decompositions

Figure 9 shows the difference between the shock decompositions presented in Section 4
(Naive Model - True Model).

Difference: Output gap
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Figure 9: Difference between the Naive Model’s and the True Model’s historical shock
decomposition of the constructed output gap and the output growth gap. Shocks are
grouped according to Table 2.
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