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Underidentified SVAR models: A framework for combining short

and long-run restrictions with sign-restrictions

Andrew Binning1,2

10 June 2013

Monetary Policy Department, Norges Bank, Oslo, Norway

Abstract

I describe a new method for imposing zero restrictions (both short and long-run) in combi-
nation with conventional sign-restrictions. In particular I extend the Rubio-Ramı́rez et al.
(2010) algorithm for applying short and long-run restrictions for exactly identified models
to models that are underidentified. In turn this can be thought of as a unifying framework
for short-run, long-run and sign restrictions. I demonstrate my algorithm with two exam-
ples. In the first example I estimate a VAR model using the Smets & Wouters (2007) data
set and impose sign and zero restrictions based on the impulse responses from their DSGE
model. In the second example I estimate a BVAR model using the Mountford & Uhlig (2009)
data set and impose the same sign and zero restrictions they use to identify an anticipated
government revenue shock.

Keywords: SVAR, Identification, Impulse responses, Short-run restrictions, Long-run
restrictions, Sign restrictions

1. Introduction

Vector Autoregression (VAR) models have become an integral part of most macroecono-
metricians’ toolkits. Not only have they proven their worth in forecasting but they have
also proven useful in uncovering the transmission mechanisms of key macroeconomic shocks.
Guided by economic theory, the econometrician imposes restrictions on how the structural
shocks impact variables within the model system transforming the VAR model into a Struc-
tural Vector Autoregression (SVAR) model. This paper deals with how econometricians can
impose zero restrictions on their VAR models when there are not enough restrictions to iden-
tify a unique SVAR model (i.e. the model is not globally identified). In particular I develop
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an algorithm for combining short-run and long-run restrictions with sign restrictions.
Sims (1980) was the first to consider using a recursive identification scheme (through the

Cholesky decomposition) to impose zero constraints on the short-run impact matrix of a VAR
model. Under such a scheme, the ordering of the variables (chosen by the econometrician)
determines which variables are allowed to respond to a given shock upon impact, and which
variables have a one period delayed response. Blanchard & Quah (1989) extended this
recursive identification scheme to identifying the model through long-run restrictions (see
Gali (1999) and Christiano et al. (2006) for applications). As with the short-run restrictions,
the ordering of the variables determines which variables are allowed to have a non-zero
cumulative response to a given shock and which variables are forced to have a cumulative
response equal to zero. In both cases the Cholesky decomposition results in an exactly
identified model. Gali (1992) continued this line of research by using both short-run and
long-run restrictions to identify an SVAR model using zero restrictions derived from an
IS-LM model. However combining zero restrictions on both short and long-run impulse
response functions results in a highly non-linear problem that must be solved using numerical
optimisation routines, as demonstrated in Gali (1992). This limits the usefulness of such
methods if the short-run and long-run restrictions are imposed on many matrices which is the
case when the model is simulated under many parameterisations. For example Bayesian VAR
models include parameter uncertainty which means model based analysis requires taking a
large number of parameter draws from the posterior distribution and then simulating to
produce the impulse responses or moments of interest. In a recent paper Rubio-Ramı́rez
et al. (2010) (RWZ from now on) propose a more efficient algorithm for imposing short
and long-run restrictions in exactly identified models. They recast the problem in terms of
finding an appropriate rotation matrix that satisfies the zero restrictions. This eliminates
the covariance constraint, which is nonlinear in the coefficients of the problem, making the
problem a linear one which allows the use of more efficient linear algebra. In the same paper
RWZ establish conditions under which a model is globally identified and exactly identified.

Short-run and/or long-run restrictions have been primarily applied to exactly identified
SVAR models. Exact identification imposes strict assumptions on the number of zero restric-
tions and their location in the impact matrix. Such “incredible” identifying assumptions may
be inconsistent with the identification of many shocks. Sign restrictions have been proposed
as an alternative method for identifying SVAR models (see Faust (1998), Uhlig (2005) and
Canova & De Nicolo (2002)). Sign restrictions can be used to identify underidentified SVAR
models by sampling from all possible SVAR models that are consistent with the reduced
form VAR model. As a consequence a “band” of impulse responses is generated which can
be pruned using an acceptance/rejection criteria based on the sign of selected impulse re-
sponses. The sign restrictions are chosen by the econometrician and are usually derived from
economic theory. Canova & De Nicolo (2002) propose the use of Givens rotation matrices
to draw from the set of models consistent with the reduced form VAR model. RWZ (in the
same paper they describe solving exactly identified SVAR models) describe a more efficient
algorithm for imposing sign-restrictions using the QR decomposition.

Combining zero restrictions with sign restrictions when the model is underidentified has
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until recently been quite difficult and only used in a limited number of applications. A
common application occurs with small open economy SVAR models that use the block
exogeneity assumption (see Liu et al., 2011). While popular this approach has limitations in
terms of where the zero restrictions can occur. Mountford & Uhlig (2009) present another
application that combines zero restrictions with sign restrictions to identify anticipated or
announced fiscal policy shocks. Under their identification scheme, an anticipated fiscal policy
shock results in no change to the fiscal variable (government revenue or expenditure) for the
first four quarters, followed by an increase in the fiscal variable for the next four quarters.
This identifying assumption can be represented as a combination of sign and zero restrictions.
Mountford & Uhlig (2009) impose these restrictions by setting up a penalty function based on
the desired sign restrictions, subject to the covariance constraint, an orthogonality constraint
on the identified shocks and zero constraints on the fiscal impulses for the first four quarters.
The shocks are solved in a recursive fashion, so that the ordering determines the importance
of the shocks. Those ordered first are likely to explain more of the variation than those
ordered later.3 This approach has the advantage that draws are more likely to match the
sign restrictions and that the ordering of shocks can be used to weight shocks importance.
However orthogonality is only imposed on a small subset of identified shocks and because
of the recursive solution the results are likely to be sensitive to the shock ordering.4 This
method also relies on numerical optimisation methods which can be slow to implement.

Another recent approach to combining simple zero restrictions with sign restrictions uses
special rotation matrices known as the Householder transformation matrix and the Givens
rotation matrix. Baumeister & Benati (2012) show how to impose a single zero restriction
on impact in combination with sign restrictions using Givens rotation matrices. The Givens
rotation matrix rotates a matrix along two axes until a particular entry is equal to zero.
Entire blocks can be zeroed out with just a single rotation using block Givens rotations.
In a series of papers Benati & Lubik (2012a), Benati & Lubik (2012b), Benati (2013a)
and Benati (2013b) show how to impose zero restrictions on the long-run impact matrix in
combination with sign restrictions using the Householder transformation. The Householder
transformation zeros out an entire row or column of a matrix below a given entry. With some
additional matrix manipulation the Householder transformation can be used to zero out any
adjacent entries in a row or column of the impact matrix. Applying various combinations of
these rotation matrices would make it possible to simultaneously apply short and long-run

3Mountford & Uhlig (2009) impose orthogonality on the business cycle shock, monetary policy shock and
the fiscal shocks. They also assume that business cycle shocks explain the largest amount of the variation in
GDP, Consumption and Investment so they find this shock first. Then monetary policy shocks are expected
to explain the second largest amount of variation, so they are found second. Fiscal shocks are expected to
have the smallest contribution to the business cycle out of the three identified shocks, so they are found
last. Such an identifying assumption ensures the natural variation of government spending and taxation
due to the business cycle is not attributed to fiscal shocks.

4As Mountford & Uhlig (2009) mention, the shock ordering is key to identifying fiscal policy shocks. However
there may be similar examples where the econometrician wants the identification scheme to be invariant
to the shock ordering, in which case this algorithm would need to be modified. The resulting constrained
optimisation problem is likely to be more difficult to solve.

3



zero restrictions with sign restrictions.5 In this paper I present an alternative method for
combining zero restrictions with sign restrictions.

My contribution in this paper is the extension of the RWZ algorithm for imposing short
and long-run restrictions on exactly identified models to the case where the SVAR models
are underidentified. In particular I combine the RWZ algorithm for short and long-run re-
strictions (for exactly identified models) with the RWZ algorithm for sign restrictions. This
results in a very general algorithm that can handle short-run restrictions, long-run restric-
tions, sign restrictions and any combination of the three. In the case where the model is
exactly identified, the algorithm reverts to the standard RWZ algorithm for exactly iden-
tified models. When there are no zero restrictions, the algorithm reverts to the RWZ sign
restrictions algorithm, and when there are some zero restrictions, but not enough to exactly
identify the model, a band of impulse responses is generated, and this band can be further
pruned with the addition of some sign restrictions. This algorithm can be thought of as a
theory of underidentified SVAR models, or as a way of including zero restrictions with sign
restrictions.

I demonstrate my algorithm with two examples. In the first example I use the Smets &
Wouters (2007) data set to estimate an SVAR model. I use identifying assumptions based
on the SW DSGE model and I plot the impulse responses from my identified SVAR model
against those from the SW DSGE model to compare the validity of the DSGE model and
my identification assumptions. In the second example I demonstrate how my algorithm can
be extended to include zero restrictions on the impact matrices for multiple periods. These
are similar to the identifying assumptions used to find anticipated fiscal policy shocks in
Mountford & Uhlig (2009). However I do not use their recursive identification scheme. I
demonstrate this extension to the algorithm by estimating a BVAR using the Mountford
& Uhlig (2009) data set and by applying the same sign and zero restrictions. As such this
example can be used to see how sensitive the results from Mountford & Uhlig (2009) are to
their recursive identification assumption. I provide Matlab code for my algorithm.

I proceed as follows, in section 2, I describe the general VAR setup along with some nota-
tion and in section 3, I discuss identification. In section 4, I describe the RWZ algorithm for
exactly identified models and in section 5, I describe the RWZ algorithm for sign restrictions.
Section 6 explains a new algorithm for underidentified models, while in section 7, I look at
the implementation of the new algorithm, and in section 8, I conclude.

2. Preliminaries

In this section I give a brief description of a VAR model and I introduce some notation.
For the m× 1 vector of data Yt, I define the VAR(q) model as follows

Yt+1 = B(L)Yt + ut+1, Eutu
′
t = Σ,

B(L) ≡ B1 +B2L+ . . .+BqL
q−1,

(1)

5I thank Luca Benati for pointing out the additional utlity in these methods not presented in his papers.
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where ut+1 is the date t+ 1 forecast error, q is the number of lags, Σ is the m×m covariance
matrix of the forecast errors and L is the lag operator. Econometricians usually make the
following additional assumptions regarding the relationship between the structural and the
reduced form shocks:

ut = Zεt, Eεtε
′
t = I

m×m
, ZZ ′ = Σ,

where Z is the short-run impact matrix and εt are the structural shocks. Typically there are
many matrices, Z, that satisfy ZZ ′ = Σ, so additional information, usually economic theory,
must be used to pin down Z, or in the case of sign restrictions, the Zs. This information can
be imposed via short-run restrictions (see section 4), long-run restrictions (see section 4), sign
restrictions (see section 5) or some combination of all three (to be explained in section 6).

3. Identification

I discuss what is meant by exact identification and underidentification in this section
using results from RWZ and I demonstrate these using some examples. Having a clear
understanding of the identification problem will allow us to choose an appropriate strategy
when it comes to identifying an SVAR model. First I introduce some additional notation
that will prove useful in the discussion in this section and the subsequent sections. Following
RWZ the restrictions on the short-run and long-run impact matrices can be written as

f(Z,B) =

[
L0

L∞

]
=

s1 s2 · · · sm



v1 0 × · · · ×
v2 × × · · · ×
...

...
...

vm × × · · · ×
v1 × × · · · ×
v2 × × · · · ×
...

...
...

vm × × · · · ×

, (2)

where L0 is the m×m short-run impact matrix (such that L0 = Z and L0L
′
0 = Σ) and L∞ is

the m×m long-run impact matrix (such that L∞ = (I −B)−1L0 where B =
∑q

j=1Bj). The
labels on the rows represent the variables where the ith variable is denoted by vi, and the
labels on the columns represent shocks so that si is the ith structural shock. × represents
a number that is typically not known at this stage and must be found. The econometrician
imposes zeros in the f(Z,B) matrix where she wants a shock to have no contemporaneous
effect on a variable and/or no long-run effect on a variable. However the zeros cannot be
placed anywhere, there are conditions on how many zero restrictions can be applied and
where they can occur. These conditions will be discussed in this section in terms of exact
identification and underidentification.
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Following RWZ, the zero restrictions imposed on each shock can be written in terms of
an m× 2m matrix Qj such that6

Qjf(Z,B)ej = 0, (3)

where ej is the jth column of the m ×m identity matrix. Given there are m shocks, there
will also be m Qj matrices, one for the set of restrictions placed on each shock. Letting
qj = rank(Qj), I follow RWZ by ordering the columns in f(Z,B) in descending order of the
ranks for the corresponding Qj matrices. This is consistent with the theory they develop and
the algorithm they use to find the solution. I now define what is meant by exact identification
by reproducing Theorem 7 from RWZ:

Theorem 1. Consider an SVAR with restrictions represented by R. The SVAR is exactly
identified if and only if qj = m− j for 1 ≤ j ≤ m.

Proof See RWZ. �

Theorem 1 defines a rank condition for checking whether a model is exactly identified. It also
implies that the total number of restrictions imposed is equal to m(m− 1)/2. The solution
will also be unique so that by RWZ’s definitions it will be globally identified. When a model
is exactly identified, RWZ’s algorithm for exactly identified models can be used to find the
unique solution (see section 4).

It follows from RWZ’s definition of exact identification that if qj ≤ m− j for 1 ≤ j ≤ m
and for some j : qj < m − j for 1 ≤ j ≤ m then the model is underidentified. When the
model is underidentified, there will typically be multiple solutions that are consistent with
the reduced form VAR model. Sign restrictions could be used with an underidentified model
to remove some of the spurious solutions. This will be discussed further in sections 5 and 6
along with a method of imposing zero short and long-run restrictions.

To illustrate the concepts of exact identification and underidentification I follow RWZ
and specify restrictions on a VAR model with four variables; GDP growth (∆log Y), inflation
(log P), interest rates (R), and the change in the exchange rate (∆log Ex), to identify four
shocks; the exchange rate shock (Ex), the monetary policy shock (P), the demand shock (D)
and the supply shock (S).

Example 1: Exact Identification

6This is the case where both short and long-run restrictions are imposed on the model. I only deal with
this case because it is the most general case and it allows for only short-run restrictions, only long-run
restrictions and the combination of both. In one of the examples in section 7, I extend my algorithm to
impose zero restrictions on the impact matrices for the first four quarters. The same conditions for the
number of zero restrictions that can be imposed on a model will also apply to this example.
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In the first example I impose the following restrictions

f(Z,B) =

[
L0

L∞

]
=

Ex P D S



∆log Y 0 0 × ×
log P × × × ×

R 0 × × ×
∆log Ex × × × ×
∆log Y 0 0 0 ×
log P × × × ×

R × × × ×
∆log Ex × × × ×

.

These restrictions translate into the following Qj matrices

Q1 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

 , Q2 =


1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

Q3 =


0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 , Q4 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 .
Applying Theorem 1 to Example 1, it is easy to verify that this model is exactly identified.
The rank for the restrictions on the exchange rate shock is q1 = 3, and the ranks for the
monetary policy, aggregate demand and the aggregate supply shocks are q2 = 2, q3 = 1, and
q4 = 0 respectively. Thus the rank condition for exact identification is satisfied.

Example 2: Underidentification

I impose the following short-run restrictions on my model

Ex P D S



∆log Y 0 0 × ×
log P × × × ×

R 0 × × ×
∆log Ex × × × ×
∆log Y × × × ×
log P × × × ×

R × × × ×
∆log Ex × × × ×

In this particular case the rank for the restrictions on the exchange rate shock is q1 = 2,
for the monetary policy shock q2 = 1, for the aggregate demand shock q3 = 0 and for the
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aggregate supply shock q4 = 0. This model is underidentified because the rank condition
from Theorem 1 says the rank for the exchange rate shock should be 3, for the monetary
policy shock it should be 2, for the demand shock it should be 1 and for the supply shock it
should be zero. There are not enough restrictions imposed on each of the shocks to uniquely
identify them. There are in fact many models that are consistent both with this identification
scheme and the reduced form VAR model.

Example 3: Underidentification

I impose the following zero restrictions on the model

Ex P D S



∆log Y 0 0 × ×
log P × × × ×

R 0 × × ×
∆log Ex × × × ×
∆log Y 0 × × ×
log P × × × ×

R × × × ×
∆log Ex × × × ×

In this example the rank condition for exact identification is met by the exchange rate shock
(q1 = 3). However the rank conditions for the monetary policy shock (q2 = 1), the aggregate
demand shock (q3 = 0), and the aggregate supply shock (q4 = 0) are not met resulting in a
model that is underidentified. Note that because the rank condition is met for the exchange
rate shock, the exchange rate shock will be unique, while their will be many solutions for
the other shocks that will be compatible with the reduced form model.

Example 4: Over/Underidentified

In this example, I impose the following short and long-run restrictions

Ex P D S



∆log Y × 0 × 0
log P × × × ×

R 0 × × 0
∆log Ex × × × ×
∆log Y 0 0 × ×
log P × × × ×

R × × × ×
∆log Ex × × × ×

The ranks for each shock are given by q1 = 2, q2 = 2, q3 = 0 and q4 = 2. This violates the
condition for ordering the columns (from highest rank to lowest rank), so the third and the
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fourth columns are switched to obtain

Ex P S D



∆log Y × 0 0 ×
log P × × × ×

R 0 × 0 ×
∆log Ex × × × ×
∆log Y 0 0 × ×
log P × × × ×

R × × × ×
∆log Ex × × × ×

The first and second shocks satisfy the condition for the model to be underidentified. However
because the rank of the third shock is q3 = 2, which is greater than the rank condition for
the model to be exactly identified, this shock is overidentified. The RWZ algorithm cannot
be used to solve this model.

4. The RWZ algorithm for exactly identified models

In this section I outline the pseudocode for the RWZ algorithm for imposing short and
long-run restrictions on exactly identified models. The novelty of the RWZ algorithm is its
ability to solve highly non-linear problems by recasting them as linear. Instead of trying to
find the individual elements of Z that are consistent with the short and long-run restrictions
subject to the covariance matrix (as is done in Gali (1992)), an orthogonal rotation matrix
is found that is consistent with rotating an initial short-run impact matrix until the zero
restrictions are met. Because the zero restrictions on each shock can be written as linear
restrictions in a matrix (these are the Qj matrices) and the covariance constraint (which
is non-linear in the unknown coefficients in Z) is eliminated, the problem of finding an
orthogonal rotation matrix is linear allowing linear algebra to be used to solve the problem.7

This also improves the speed of the algorithm because the linear algebra is implemented
much faster than the optimisation routines required to solve the nonlinear problem.

My implementation of the RWZ algorithm proceeds as follows. For a given short-run and
long-run impact matrix f(Z,B), the RWZ algorithm finds an orthogonal matrix that will
rotate an initial impact matrix until it satisfies the zero restrictions placed on L0 and L∞. I
let L∗0 denote the initial short-run impact matrix and L∗∞ the initial long-run impact matrix.

One particular candidate for the initial impact matrix is the lower Cholesky decomposi-
tion of the covariance matrix, Σ, so that

C = chol(Σ)′, where CC ′ = Σ,

7Reframing the problem in terms of rotation matrices removes the non-linear covariance constraint and
replaces it with an orthogonality constraint (the rotation matrix to be found must be orthogonal). This
orthogonality constraint on the rotation matrix can be included in the problem in a linear fashion.
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L∗0 = C. (4)

The corresponding long-run impact matrix consistent with this short-run impact matrix is
given by

L∗∞ =

[
I

m×m
− B

]−1
C. (5)

The matrix of short and long-run impacts consistent with the Cholesky decomposition is
then given by

F =

[
L∗0
L∗∞

]
. (6)

This will form the initial impact matrix. The RWZ algorithm finds an orthogonal rotation
matrix P so that F is consistent with the restrictions imposed in equation (2).

FP = f(Z,B), where PP ′ = I
m×m

.

This implies
L0 = L∗0P, L∞ = L∗∞P, L∗0PP

′(L∗0)
′ = Σ.

The first step of my implementation of the RWZ algorithm is to translate equation (2) into
a matrix of zeros and ones, with the zeros representing the location of the zero restrictions
and ones located everywhere else. One such example could be

f =



0 0 · · · 1
0 1 · · · 1
...
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
...
1 1 · · · 1


. (7)

Note that the zero restrictions need to satisfy the rank condition in Theorem 1 so that the
model is exactly identified. Now the bulk of the algorithm is written as the following block
of pseudocode:
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Algorithm 1 RWZ Short and Long Run Restrictions

1: for i = 1, m do
2: H = fe(:, i) == 0 . create an index for the zero entries in each column of f
3: Qi = diag(H) . turn this index into a Qi matrix
4: Ri = rank(Qi) . store the rank of the Qi matrix
5: end for
6: Sort R so that the ranks are in descending order, use this ordering to change the order

of the Qi matrices (the reordered matrices will be denoted by Qj). Create an index to
map the new ordering back into the old ordering.

7: Check the rank condition is satisfied.

8: F =

[
L∗0
L∗∞

]
where L∗0 = C, L∗∞ = [I − B]−1C and C = chol(Σ)′.

9: Initialise P matrix: P = 0
m×m

10: for j = 1, m do
11: if j = 1 then
12: Q̃j = QjF
13: else

14: Q̃j =

[
QjF
P ′

]
15: end if
16:

[
Q̂, R̂

]
= qr(Q̃′j)

17: P (:, j) = Q̂(:,m)
18: end for
19: Reorder the columns of P using the index so that they are consistent with the original

column ordering.
20: Z = CP, ZZ ′ = Σ
21: Produce the impulse responses

The For loop on lines 1 to 5 produces the m Qi matrices, one for the restrictions on each
shock in the model. The ranks of these matrices are also stored so that the Qi matrices
and the columns in the covariance matrix can be reordered from highest rank to lowest rank
(line 6) as required. A mapping from the old ordering to the new ordering is also created,
so that the columns of the P matrix can be made consistent with the original ordering. The
ranks of the linear restrictions are checked to see if the model is exactly identified (line 7).
An initial impact matrix is created on line 8. The next step is to find the rotation matrix,
P , column by column. This is done in the For loop on lines 10 to 18. In each step of the loop
I solve for P (:, j), or the jth column of P . Because it is an underdetermined system (there
are more unknowns than equations at each iteration of the loop), the QR decomposition is
used to find the minimum norm solution (see Appendix A for a more indepth description).
The rank of Q̃j is only m− 1, which means the last column of Q will be the solution to the
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system of equations.8

By appending the j − 1 columns of P that have been solved to the Q̃j matrix on each
iteration of the loop, the orthogonality of P is ensured. The columns of P are then reordered
using the mapping created, so that they are consistent with the original ordering of the
shocks. Finally the initial short-run impact matrix (from the Cholesky decomposition) is
post multiplied by P and impulse responses are produced. Even though the algorithm finds
the minimum norm solution for each column of P the resulting P matrix will be unique
because the model is exactly identified (assuming the rank condition is satisfied) and because
P has to be an orthogonal matrix.9

5. The RWZ algorithm for imposing sign restrictions

In this section I outline the RWZ algorithm for imposing sign restrictions. As before

C = chol(Σ)′, CC ′ = Σ

The RWZ sign restrictions algorithm proceeds as follows

Algorithm 2 RWZ Sign Restrictions

1: while j < required number of draws do

2: N
m×m

= randn

(
0, I

m×m

)
3: [Q∗, R∗] = qr(N)
4: for i = 1, m do
5: if R∗(i, i) < 0 then
6: Q∗(:, i) = −Q∗(:, i)
7: end if
8: end for
9: Z = CQ∗

10: Shock the model, produce impulse responses
11: if sign restrictions satisfied then
12: keep the draw
13: j = j + 1
14: end if
15: end while

8The solution requires Q̃jP (:, j) = 0. The QR decomposition gives Q̃j = R̂′Q̂′. The proposed solution is:

Q̃jP (:, j) = Q̃jQ̂(:,m) = R̂′Q̂′Q̂(:,m) = 0, because Q̂′Q̂(:,m) =

[
0

1×m−1
, 1

]′
, and R̂ =

[
R̂′

1
m−1×m−1

, 0
m−1×1

]′
.

9This is because the orthogonality condition implicity adds an additional constraint to each shock/column.
Any scalar multiple of the vector Q̂(:,m) will be a solution to Q̃jP (:, j) = 0, but only Q̂(:,m) will result

in P (:, j) being orthogonal to the other columns in P . This means there are m constraints for each Q̃j

resulting in a unique solution even though this matrix only has rank equal to m− 1.
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The algorithm begins by randomly drawing an m×m matrix from a normal distribution. The
QR decomposition of this matrix is taken to produce a randomly drawn orthogonal matrix
Q∗. By ensuring that the diagonal elements of R∗ are positive (and the corresponding
columns of Q∗ are consistent with the diagonal elements of R∗) the normality of Q∗ is
maintained. Draws of Z are then generated by post multiplying the initial impact matrix
by the random orthogonal draw. Impulse responses are produced, if they satisfy the sign
restrictions they are kept. This continues until the required number of draws is obtained.

6. An algorithm for underidentifed models

This section describes an algorithm for combining zero restrictions with sign restrictions
when the model is underidentified. RWZ show that their algorithm for imposing restrictions
on the short and long-run impact matrices is valid in exactly identified models. The RWZ
algorithm also finds a valid solution when the model is underidentified, however the solution
is not unique, there will in general be many P matrices that are consistent with the zero
restrictions. For the given initial short-run impact matrix C, the RWZ algorithm will find
the minimum norm orthogonal matrix P that rotates C to match the zero restrictions.
To generate a random draw from all possible Z matrices consistent with the restrictions,
random draws could be generated for the initial impact matrix in the RWZ algorithm for
exactly identified models (that is use CQ∗ from algorithm 2 in place of C in algorithm
1). Repeating this process many times will generate a band of impulse responses. Further
restrictions could be applied through sign restrictions. The pseudocode for such an algorithm
is presented below.

Algorithm 3 An Algorithm for Underidentified Models

1: for i = 1, m do
2: H = fe(:, i) == 0
3: Qi = diag(H)
4: Ri = rank(Qi)
5: end for
6: Sort R so that the ranks are in descending order, use this ordering to change the order

of the Qi matrices (the reordered matrices will be denoted by Qj). Create an index to
map the new ordering back into the old ordering.

7: Check the rank condition is satisfied.
8: C = chol(Σ)′

9: while j < draws do
10: N

m×m
= randn

11: [Q∗, R∗] = qr(N)
12: for i = 1, m do
13: if R∗(i, i) < 0 then
14: Q∗(:, i) = −Q∗(:, i)
15: end if
16: end for
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Algorithm 3 An Algorithm for Underidentified Models cont.

17: F =

[
L∗0
L∗∞

]
where L∗0 = CQ∗ and L∗∞ = [I − B]−1CQ∗.

18: Initialise P ∗ matrix: P ∗ = 0
m×m

19: for i = 1, m do
20: if i = 1 then
21: Q̃j = QjF
22: else

23: Q̃j =

[
QjF
(P ∗)′

]
24: end if
25:

[
Q̂, R̂

]
= qr(Q̃′j)

26: P ∗(:, j) = Q̂(:,m)
27: end for
28: Reorder the columns of P ∗ using the index so that they are consistent with the

original column ordering.
29: Z = CQ∗P ∗

30: Shock the model, produce impulse responses
31: if sign restrictions satisfied then
32: keep the draw
33: j = j + 1
34: end if
35: end while

The key difference between algorithm 1 and algorithm 3 is the initial matrices used in F
(line 17 of algorithm 3). In algorithm 3 the initial short-run impact matrix (the Cholesky
decomposition of the covariance matrix) is randomised by post multiplying by a randomly
drawn orthogonal matrix Q∗. This allows draws to be taken from all models consistent with
the reduced form VAR model and the zero restrictions. Note that I differentiate between
the rotation matrix P calculated in algorithm 1 and the second rotation matrix calculted in
algorithm 3 by using the notation P ∗, where P ∗ is consistent with the initial impact matrix
CQ∗.

When the SVAR is exactly identified, the model is globally identified so that the impact
matrix Z is unique. The RWZ algorithm for exactly identified models (algorithm 1) finds
the unique orthogonal rotation matrix that satisfies the zero restrictions such that:

Z = CP

In the case of sign restrictions, the model is underidentified, so that there are many Z
matrices that are consistent with the reduced form model. The RWZ algorithm (algorithm
2) draws random rotation matrices to sample from all possible Z matrices that are consistent
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with the reduced form model:
Z = CQ∗

When there are zero restrictions but not enough to exactly identify the model, the model is
underidentified. In which case my algorithm (algorithm 3) produces two rotation matrices,
the first randomises the initial impact matrix, the second rotates this matrix so that it
matches the zero restrictions.

Z = CQ∗P ∗

My algorithm combines the RWZ algorithm for exactly identified models with the RWZ
algorithm for sign restrictions. If my algorithm is used when the model is exactly identified,
the algorithm will always find the appropriate rotation matrix consistent with the unique Z
matrix (that is Q∗P ∗ = P ). If no zero restrictions are imposed, the algorithm will always
set P ∗ = I

m×m
so that it collapses to the RWZ sign restrictions algorithm.

7. Examples

In this section I demonstrate how my algorithm can be used to combine zero restrictions
with sign restrictions using two simple examples.

7.1. Example 1: Smets and Wouters (2007) data
In this first example I estimate a VAR model for the US between 1966:1 and 2004:4

using the data set of Smets & Wouters (2007) (SW from now on). The set of observables
used to estimate the model include interest rates (it), GDP growth (∆ log(Yt)), CPI inflation
(πt), hours worked (Ht) and wage inflation (∆ log(Wt)), where all the data definitions are
the same as those used in SW. The VAR is estimated using OLS with the lag length set
to 2 based on the lowest BIC. The shocks I try to identify are the monetary policy shock
(εMP

t ), the aggregate demand shock (εAD
t ), the aggregate supply shock (εAS

t ) and the wage
mark-up shock (εWM

t ). A fifth shock (εUt ) is left unidentified. To help with specifying an
identification scheme, I base some of my identifying assumptions on the impulse responses
obtained from the DSGE model in SW. I will then compare the impulse responses from my
SVAR model against those from the SW DSGE model as a cross check for both the validity
of the identifying restrictions and the DSGE model. I use the following identification scheme

f(Z,B) =

εMP εAD εAS εWM εU



i0 + + − − ×
∆ log(Y0) − + + + ×

π0 − + − − ×
H0 × × × + ×

∆ log(W0) × × × − ×
i∞ × × × × ×

∆ log(Y∞) 0 0 × 0 0
π∞ × × × × ×
H∞ × × × × ×

∆ log(W∞) × × × × ×

.
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Upon impact it is assumed that a monetary policy shock will result in an increase in the
interest rate and a fall in both GDP growth and inflation. The monetary policy shock will
have no long-run effect on GDP growth. The aggregate demand shock is assumed to cause
interest rates, GDP growth and inflation to increase upon impact. The aggregate demand
shock will not have any long-run effect on GDP growth. The aggregate supply shock is
assumed to cause interest rates and inflation to fall, and GDP growth to increase on impact.
The fall in the interest rate on impact is based on impulse responses from the SW DSGE
model. It is assumed that the aggregate supply shock is the only shock that has a long-
run impact on GDP growth. This is a common assumption in papers that use long-run
identifying restrictions (see Gali (1999), Blanchard & Quah (1989) and Christiano et al.
(2006) for examples). The sign restrictions used to identify the wage mark-up shock come
directly from the SW DSGE model. It is assumed that on impact the wage mark-up results
in a decrease in interest rates, CPI inflation and wage inflation. Upon impact the wage
mark-up shock is assumed to result in an increase in GDP growth and hours worked. The
wage mark-up shock cannot affect GDP growth in the long-run. While the sign restrictions
on the aggregate supply shock and the wage mark-up shock are very similar, the aggregate
supply shock is unrestricted when it comes to its effects on hours and wage inflation on
impact and the wage mark-up shock cannot have a permanent effect on GDP growth. The
only assumption made on the unidentified shock is that it cannot affect GDP growth in the
long-run.

The impulse responses for the monetary policy shock are presented in figure B.2 in
Appendix B. The 95% bands for the SVAR model are plotted alongside the median impulse
response function, the SVAR model nearest to the median of the impulse responses (as
advocated by Fry & Pagan (2011)) and the impulse responses from the monetary policy
shock in the SW DSGE model. The impulse responses from the SVAR and the SW model
are quite similar. The responses of interest rates, GDP and hours worked are slightly stronger
in the SW model, while the inflation and wage inflation responses are slightly weaker.

The impulse responses for the demand shock in the SVAR are plotted against the govern-
ment spending shock, the risk premia shock and the investment shock from the SW DSGE
model in figure B.3 in Appendix B. These impulse responses are also quite similar. The
DSGE model is slightly more persistent as can be seen in the responses of GDP and hours
worked to the shocks. The only major difference between the SVAR and the DSGE model
occurs with the response of wage inflation to the demand shocks. The median response of
wage inflation falls following the shock, while wages increase in the DSGE model following
the demand shocks.

The impulses for the aggregate supply shock in the SVAR are plotted against the im-
pulses for a technology shock and a cost push shock from the SW DSGE model. These
are presented in figure B.4 in Appendix B. In general the signs of the impulses from the
SVAR are consistent with the signs of the impulses from the DSGE model (some of this is
by construction). The fall in hours worked after the supply shock from the SVAR model is
consistent with the response following a technology shock in the DSGE model. The interest
rate, GDP, hours and inflation response are slightly stronger in the SVAR model.
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The signs of the impulse responses used to identify a wage mark-up shock have been
imposed using the same signs as the DSGE model (presented in figure B.5). However the
impulses are quite different. The DSGE model is more persistent for nearly all the variables.

Using these sign and zero restrictions the SVAR model gives similar results to the demand
and monetary policy shocks in the SW DSGE model. However while the signs are the same
for the supply and wage markup shocks, there are some differences in the persistence and
magnitudes of the responses.

7.2. Example 2: Mountford & Uhlig (2009) type restrictions

In this second example, I demonstrate how my algorithm can be extended to deal with
Mountford & Uhlig (2009) (MU from now on) style sign and zero restrictions. In their paper
MU discuss how anticipated government spending shocks can be identified by assuming that
the response of government spending is zero for the first four quarters and then positive for
the next four quarters, which is a combination of zero and sign restrictions. They adopt
a recursive identification scheme by identifying business cycle and monetary policy shocks
first using sign restrictions which they impose via a penalty function that penalises impulse
responses with the wrong sign. By minimising the penalty function they allow these shocks
to explain the maximum amount of variation in GDP and the GDP component variables.
This is important because it separates the endogenous fluctuations of government spending
and taxation due to the business cycle from the purely exogenous fiscal policy interventions.
Then they identify the government spending shock using the same penalty function approach
but with zero and orthogonality constraints in addition to the sign restrictions. They use a
similar approach when identifying an anticipated government revenue shock.

In this example I demonstrate how my algorithm can be extended to include zero restric-
tions on multiple impact matrices in combination with sign restrictions following a shock. In
particular I follow MU and identify an anticipated government revenue shock by estimating
a BVAR model with an independent Normal-Wishart prior using the MU data set. The MU
data set uses US data from 1955:1 to 2000:4 and includes: GDP, government expenditure,
government revenue, the federal funds rate, adjusted reserves, the producer price index, pri-
vate consumption, non-residential investment and real wages, where all the definitions are
the same as those in MU. I use six lags and do not include a constant or a time trend. I apply
the same zero and sign restrictions as MU do to identify an anticipated government revenue
shock, a business cycle shock and a monetary policy shock. I also plot my results against the
results from MU obtained used a recursive penalty function method, for comparison. Using
my algorithm the shocks are identified simultaneously which differs from the recursive iden-
tification approach in MU. The recursive approach is key to the MU identification scheme
and as such I do not advocate my method as a replacement for their method. However the
MU type sign and zero restrictions without the recursive assumption are well suited to illus-
trate the types of problems my methodology can deal with. Comparing the results using my
methodology against the results using the MU methodology also provides a nice test of the
sensitivity of the MU identification scheme to the recursive assumption. There are likely to
be similar problems where zero restrictions are required for multiple periods in combination
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with sign restrictions where shocks receive equal importance, in which case my algorithm
would be a natural choice.

The MU sign restrictions and zero restrictions can be summarised as follows

Li =

εBC εMP εGR



GDP + × × × × × × × × ×
Govt. Expenditure × × × × × × × × × ×

Govt. Revenue + × 0 × × × × × × ×
Fed. FundsRate × + × × × × × × × ×

Adjusted Reserves × − × × × × × × × ×
PPIC × − × × × × × × × ×

GDP Deflator × − × × × × × × × ×
Private Consumption + × × × × × × × × ×

Priv. Non-res. Inv. + × × × × × × × × ×
Wages × × × × × × × × × ×

.

for i = 0, · · · , 3. Where εBC is the business cycle shock, εMP is the monetary policy shock
and εGR is the government revenue shock. These are the sign and zero restrictions applied
to the first four impact matrices following the shock. The sign restrictions for the next four
quarters can be summarised as follows

Li =

εBC εMP εGR



GDP × × × × × × × × × ×
Govt. Expenditure × × × × × × × × × ×

Govt. Revenue × × + × × × × × × ×
Fed. FundsRate × × × × × × × × × ×

Adjusted Reserves × × × × × × × × × ×
PPIC × × × × × × × × × ×

GDP Deflator × × × × × × × × × ×
Private Consumption × × × × × × × × × ×

Priv. Non-res. Inv. × × × × × × × × × ×
Wages × × × × × × × × × ×

.

for i = 4, · · · , 7. Only the impact matrices for the first four quarters are required to solve the
zero restrictions because it is only in these periods that the zero restrictions occur. Equation
(2) can be modified as follows

f(Z,B(L)) =


L0

L1

L2

L3

 . (8)

Equation (8) implies that both the SVAR model and the government revenue shock are
underidentified. If the columns were reordered based on the ranks of the restriction matrices
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(the Qjs in equation (3)), the government revenue shock would be in the first column and
have a rank of q1 = 4, which is smaller than the maximum allowed of 9 by Theorem 1.
The next step requires obtaining the initial impact matrices to be used in the algorithm.
To derive these matrices, it is useful to rewrite the VAR model in equation (1) in moving
average form

Yt = Φ(L)ut, (9)

where Φ(L) =
∑∞

i=0 ΦiL
i, Φ0 = I

m×m
, Φi =

∑i
j=1 Φi−jBj. This allows equation (1) to be

rewritten as

Yt =
∞∑
i=0

Φiut−i. (10)

This moving average form of the model can be used to write the impulse response function
for the variables Yt, h periods after a shock as

Yh = Φhu0,

= ΦhZε0. (11)

The initial impact matrices on line 17 in algorithm 3 can be replaced with

F =


L∗0
L∗1
L∗2
L∗3

 , (12)

where L∗0 = CQ∗, L∗1 = Φ1CQ
∗, L∗2 = Φ2CQ

∗, and L∗3 = Φ3CQ
∗. As before, C is the

lower Cholesky decomposition of the shock covariance matrix and Q∗ is a randomly drawn
orthogonal matrix. No further modifications to algorithm 3 are required.

Imposing such restrictions results in the following impulse responses to an anticipated
government revenue shock.
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Figure 1: Anticipated Government Revenue Shock
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Note: The red dashed line is the median and the gray shaded area covers the 16th to 84th per-
centiles. The blue dashed lines are the median impulse responses from MU.

In general the results using both algorithms are quite similar. However there are some
differences, in particular the MU approach results in a negative response to GDP over the
entire period plotted, while the algorithm used in this paper leads to no GDP response
initially followed by an increase in GDP. This is similar to the responses for consumption
and non-residential investment. This illustrates the motivation for MU adopting a recursive
identification scheme. In their paper GDP does not rise after an anticipated government rev-
enue shock because they order the shocks to remove the endogenous response of government
revenue to the business cycle which allows them to isolate what are likely to be exogenous
policy interventions. Combining the MU sign and zero restrictions with my algorithm con-
firms the role the recursive identifying assumption plays in the identification of fiscal policy
shocks. It also illustrates quite nicely how my algorithm can be generalised to included zero
restrictions on multiple impact matrices.
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8. Conclusion

In this paper I have presented a new method for combining zero restrictions with sign
restrictions. More specifically, I have extended the RWZ algorithm for imposing zero re-
strictions on exactly identified models to models that are underidentified by combining it
with the RWZ sign restrictions algorithm. This results in a fast and very general algorithm
that can be applied to identify SVAR models under a range of identifying assumptions in-
cluding standard zero restrictions and standard sign restrictions. I have demonstrated how
my algorithm can be applied using two examples. In the first example I have shown how
sign restrictions can be combined with long-run restrictions to identify an SVAR model es-
timated using the SW data set. The sign restrictions used are a combination of standard
restrictions in addition to some that are derived from the SW DSGE model. In the second
example I have demonstrated how the algorithm can be modified to impose zero restrictions
on the impact matrices for the first four periods following a shock. This is very similar to
the identification scheme used by Mountford & Uhlig (2009) to identify anticipated fiscal
shocks except the shocks are found simultaneous and not recursively. In addition to the two
examples presented in this paper there are many other problems where such an algorithm
could be used. For example, those working with small open economy SVAR models will
likely find this algorithm useful. In particular the algorithm could be used to impose short
and/or long-run restrictions on the small open economy VAR model in combination with sign
restrictions. The exogeneity of the foreign block on the domestic block could be maintained
by imposing additional zero restrictions on the short-run impact matrix.

Appendix A. Solving underdetermined systems

This Appendix describes how to solve an underdetermined system using the QR decompo-
sition and how this is applied in the RWZ algorithm. The first part of the example is taken
from page 272 of Golub & Van Loan (1996). Given the linear system

Ax = b, (A.1)

where A is m × n, x is n × 1 and b is m × 1. This system is under determined because
rank(A) = m, where m < n. Taking the QR decomposition of A′ results in

A′ = QR = Q
n×n

 R1
m×m

0
n−m×m

 . (A.2)

So that Ax = b becomes

(QR)′x = [R′1, 0]

 z1
m×1

z2
n−m×1

 = b, (A.3)

where

Q′x =

[
z1
z2

]
, and x = Q

[
z1
z2

]
.
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The minimum norm solution can then be obtained by setting z2 = 0 and solving for z1 and
then using Q to find x.

R′1z1 = b, (A.4)

x = Q1z1, (A.5)

where

Q =

[
Q1
n×m

, Q2
n−m×m

]
.

The application in this paper is slightly different because the right hand side is equal to 0.
The underdetermined system in this paper is given by

Q̃jPj = 0, (A.6)

where Q̃j is a known (m− 1) ×m matrix defined on line 12 or 14 of Algorithm 1, and Pj is
an m× 1 unknown vector. Taking the QR decomposition of Q̃′j gives

Q̃′j = QR = Q

 R1
m−1×m−1

0
1×m−1

 . (A.7)

Substituting equation (A.7) into (A.6) gives

[R′1, 0]Q′Pj = 0. (A.8)

Q′Pj can be rewritten as

Q′Pj = z =

[
z1
z2

]
. (A.9)

This implies
R′1z1 = 0. (A.10)

Because R1 has rank equal to m− 1, a solution to (A.10) is

z1 = 0. (A.11)

Plugging this back into (A.9) gives

z =

[
0

1×m−1
, 1

]′
. (A.12)

The last element in z has to be non-zero so that a solution exists. The solution will be the
last column of the orthogonal matrix created at each iteration of the algorithm. Setting the
value of the last element in z to one ensures that Pj, the solution to the problem, will be
orthogonal to the other columns in the rotation matrix P . This implies the solution for Pj

is given by
Pj = Qz = Q(:,m). (A.13)
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Appendix B. Examples: Impulses

Figure B.2: Monetary Policy Shock
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Figure B.3: Demand Shock
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Figure B.4: Supply Shock
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Figure B.5: Wage Mark-up Shock
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