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Abstract

We present a framework for quantifying the impact of fire sales in a network
of financial institutions with common asset holdings, subject to leverage or capital
constraints. Asset losses triggered by macro-shocks may interact with one-sided
portfolio constraints, such as leverage or capital constraints, resulting in liquidation
of assets, which in turn affects market prices, leading to contagion of losses and
possibly new rounds of fire sales when portfolios are marked to market.

Price-mediated contagion occurs through common asset holdings, which we
quantify through liquidity-weighted overlaps across portfolios. Exposure to price-
mediated contagion leads to the concept of indirect exposure to an asset class, as a
consequence of which the risk of a portfolio depends on the matrix of asset holdings
of other large and leveraged portfolios with similar assets.

Our model provides an operational stress testing method for quantifying the
systemic risk arising from these effects. Using data from the European Banking
Authority, we examine the exposure of the EU banking system to price-mediated
contagion. Our results indicate that, even with optimistic estimates of market
depth, moderately large macro-shocks may trigger fire sales which may then lead to
substantial losses across bank portfolios, modifying the outcome of bank stress tests.
Price-mediated contagion leads to a heterogeneous cross-sectional loss distribution
across banks, which cannot be replicated simply by applying a macro-shock to bank
portfolios in absence of fire sales.

Unlike models based on ‘leverage targeting’, which assume symmetric reactions
to gains or losses, our approach is based on the asymmetric interaction of portfolio
losses with one-sided constraints, distinguishes between insolvency and illiquidity
and leads to substantially different loss estimates in stress scenarios.
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1 Introduction

1.1 The need for macroprudential stress tests

In October 2008, the IMF’s estimate of losses in the US subprime mortgage sector was
on the order of 500 bn USD, a large loss but still lower than, say, the loss from the Dot-
com bubble burst Hellwig (2009). However, as the US subprime crisis developed into a
full-blown global financial crisis, losses spilled over into other asset classes, sectors and
countries and ballooned into trillions of dollars Hellwig (2009), exceeding the losses of the
Dot-com bubble by an order of magnitude.

Supervisory stress tests for banks, which have become a cornerstone of financial reg-
ulation, have focused on examining the resilience of bank balance sheets to severe stress
scenarios. However, as the above example illustrates, loss amplification mechanisms which
may compound initial losses may be just as important for understanding the nature of
systemic risk.

Indeed, as pointed out in the Basel Committee on Banking Supervision’s recent report,
stress tests conducted by bank supervisors still lack a genuine macroprudential component
Basel Committee on Banking Supervision (2015). The report identifies the key missing
ingredients as “endogenous reactions and feedback effects to initial stress”. As noted
by ECB Vice-President Vitor Constâncio Anderson (2016), in the current approach to
bank stress tests “no bank reaction is considered. It would be far more realistic to assume
that market participants could react to adverse conditions, rather than assuming passive
bank behaviour throughout the entire stress test period. Bank behaviour or reaction could
take the form of deleveraging, straight capital increases or working out of non-performing
loans.”

There is ample empirical evidence that such deleveraging occurred on a large scale in
2008, leading to cross-asset contagion and amplification of losses in the financial system
Kashyap et al. (2008); Brunnermeier and Pedersen (2009); Khandani and Lo (2011);
Manconi et al. (2012); Cont and Wagalath (2016). The well-documented occurrence of
fire sales during market downturns Ellul et al. (2011); Coval and Stafford (2007); Shleifer
and Vishny (2011); Jotikasthira et al. (2012) is not a coincidence: portfolio constraints
-capital, leverage or liquidity constraints- that financial institutions are subject to forces
them to deleverage when these constraints are breached as a result of losses, leading to
fire sales of assets Kyle and Xiong (2001); Cont and Wagalath (2013). Similar large-
scale deleveraging is also foreseeable in future stress scenarios, and foreseen by financial
institutions themselves: “If we are unable to raise needed funds in the capital markets
(including through offerings of equity and regulatory capital securities), we may need to
liquidate unencumbered assets to meet our liabilities. In a time of reduced liquidity, we
may be unable to sell some of our assets, or we may need to sell assets at depressed
prices, which in either case could adversely affect our results of operations and financial
condition” Credit Suisse (2015).

Fire sales generate endogenous risk Shin (2010) and can act as channel of loss conta-
gion across asset classes and across financial institutions holding these assets Cont and
Wagalath (2016); Caccioli et al. (2014). Unlike direct contagion through counterparty ex-
posures Cont et al. (2013), fire-sales spillovers are mediated by prices and thus defy limits
on counterparty exposures and institutional ring-fencing measures. As noted by Glasser-
man and Young (2014), following the introduction of large exposure limits and collateral
requirements, the likelihood of direct contagion through counterparty exposures has di-
minished in the banking system.
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It is therefore important for supervisors to include in macro-stress testing frameworks
used for assessing bank capital adequacy the impact of fire sales and the deleveraging of
portfolios in stress scenarios. This is especially relevant given that, post-crisis, supervisory
stress tests have set a binding constraint for bank capital adequacy.1

Fire sales and the resulting destabilizing feedback effects have been extensively studied
in the literature Kyle and Xiong (2001); Shleifer and Vishny (2011) from a conceptual
viewpoint. The challenge is to develop a quantitative framework versatile enough to be
taken to empirical data and used in an operational macro-stress testing framework to
quantify the endogenous risk and spillover effects arising from fire sales.

The goal of the present work is to address this challenge, by proposing a modeling
framework for quantifying the exposure of the financial system to the endogenous losses
and feedback effects resulting from fire sales in a macro-stress scenario. We provide a
detailed discussion of the model, its use for the design of systemic stress tests, and the
results obtained by applying the methodology to EU bank portfolios.

Previous attempts by regulators to account indirectly for the impact of fire sales in
bank stress tests include the use of (exogenously specified) liquidation costs or increasing
the severity of shocks in single-bank stress tests to account for possible loss amplification
due to feedback from fire sales. These adjustments may mimick the severity of potential
losses which may result from fire sales but fail to capture key cross-sectional features
of fire-sales spillovers, such as the contagion across asset classes and the heterogeneous
distribution of fire-sales losses across financial institutions and across asset classes of
varying liquidity.

More recently, Greenwood et al. (2015); Duarte and Eisenbach (2013) have proposed
a stress testing approach incorporating the impact on asset prices of deleveraging in bank
portfolios, based on the assumption of leverage-targeting Adrian and Shin (2010) i.e.
that, in response to a shock, financial institutions rebalance their portfolios to maintain a
constant leverage, which leads to a linear deleveraging rule in reaction to market shocks.
This approach was used to analyze fire-sales spillovers in the EU banking system by Green-
wood et al. (2015) and in the US banking system by Duarte and Eisenbach (2013). Both
studies find evidence of potentially large exposures of the banking system to contagion
via fire sales. This approach has been explored by supervisors as a possible method for
incorporating fire sales in macro stress tests Henry et al. (2013); Cappiello et al. (2015).
There is some empirical evidence that in the medium term large financial institutions
maintain fairly stable levels of leverage Adrian and Shin (2010) but it is not clear why
the same institutions would enforce such leverage targets in the short term, especially in
stress scenarios where this could entail high liquidation costs.

We propose a different approach for modeling fire sales, based on the premise that
deleveraging by financial institutions occurs in reaction to losses in their portfolios Kyle
and Xiong (2001); Cont and Wagalath (2013). This deleveraging may be the result of
investor redemptions for funds, as evidenced in Ellul et al. (2011); Coval and Stafford
(2007); Shleifer and Vishny (2011); Jotikasthira et al. (2012); but for regulated financial
institutions such as banks, large scale deleveraging is mainly driven by portfolio constraints
– capital, leverage or liquidity constraints – which may be breached when large losses
occur. We have focused for simplicity on leverage constraints, but the model is easily
extendable to multiple constraints on portfolios. Given the one-sided nature of these
constraints, such institutions react asymmetrically to large losses and large gains Ang

1See the Section “Process and Requirements after CCAR 2016: https://www.federalreserve.gov/
newsevents/press/bcreg/bcreg20160629a1.pdf.
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et al. (2006). The asymmetry and the threshold nature of deleveraging differentiates our
approach from models based on leverage targeting, leading to quite different outcomes.

Deleveraging by financial institutions impacts market prices and, when portfolios are
marked to market, leads to further losses which may in turn trigger further deleverag-
ing. We quantify this impact and the resulting endogenous risk, paying attention to the
estimation of market impact parameters; the magnitude of these parameters, and their
heterogeneity across asset classes, is shown to greatly influence the results of the stress
tests.

We use these ingredients to design a systemic stress testing framework for banking
systems. Application of the method to the EU banking system shows that this approach
may lead to outcomes which are substantially different from single-bank stress tests. We
emphasize in particular the concept of indirect exposure, which we show to be relevant for
bank stress testing.

1.2 Summary and main findings

We present a framework for quantitative modeling of fire sales in a network of financial
institutions with common asset holdings, subject to leverage or capital constraints. Asset
sales may be triggered in reaction to external shocks to asset values when portfolios are
subject to capital or leverage constraints; the market impact of these asset sales then leads
to contagion of mark-to-market losses to other portfolios, which may in turn be led to
deleverage if their constraints are breached. In contrast to balance sheet contagion which
arises through direct bilateral exposures, this price-mediated contagion occurs through
common asset holdings, even in absence of direct linkages between financial institutions.
The resulting feedback loop may lead to loss amplification, systemic risk and large-scale
instability of the financial system. Our model provides a method for quantifying the
exposure of the financial system to these effects, which we apply to data on European
banks. This leads to several interesting findings.

• Existence of a tipping point: we show the existence of a critical macro-shock level
beyond which fire sales trigger considerable contagion. The level of this critical shock
depends on the institutions’ leverage, as well as the concentration, commonality and
liquidity of their asset holdings. In the European banking system, this critical shock
size is found to correspond to large, but not extreme, losses in asset values.

• Magnitude and heterogeneity of losses due to fire sales: we find that fire
sales contribute significantly to system-wide losses in stress scenarios, accounting
for more than 35% of the total losses and between 20 to 40% of system bank equity.
These results are significant enough to modify the outcome of bank stress tests.

Moreover, while the total system-wide loss can always be replicated in a stress test
without fire sales by applying a larger shock to assets, the heterogeneous cross-
sectional distribution of losses across banks cannot be reproduced in absence of fire
sales by simply applying a larger macro-shock.

• Importance of gain-loss asymmetry and the threshold nature of fire sales:
We argue that fire sales arise when portfolio constraints such as leverage, liquidity or
capital ratios are breached as a result of large portfolio losses. The one-sided nature
of these constraints leads to an asymmetric reaction of banks to gains and losses,
which differentiates our model from the ‘leverage targeting’ model used in some
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previous studies of fire sales Adrian and Shin (2010); Duarte and Eisenbach (2013);
Greenwood et al. (2015). Comparison with stress tests based on leverage targeting
shows substantial differences in outcomes: leverage targeting models overestimate
the magnitude of fire sales, especially at smaller shock levels, but underestimate
the acceleration (convexity) of fire sales with increasing shock size present in the
threshold model.

• Distinction between insolvency and illiquidity: unlike previous models of con-
tagion, which have mainly focused on modeling insolvency, our model distinguishes
between failure due to insolvency and failure due to illiquidity. We observe that,
while insolvency is the dominant mode of failure of banks in scenarios associated
with extremely large initial shocks, illiquidity is the dominant mode of failure in
scenarios associated with moderate shocks which are nevertheless large enough to
trigger fire sales.

• Indirect exposures: As a result of fire-sales spillovers, a portfolio’s exposure to
an asset class in a stress scenario may be larger than its notional exposure. This
naturally leads to the notion of indirect exposure, which is scenario-dependent, and
can be quantified using our model. One striking finding is that many EU banks have
significant (indirect) exposures to asset classes they do not hold, such as commercial
and residential mortgages in EU countries where they do not issue loans.

• Sensitivity to market depth across asset classes: Calibration to data on mar-
ket prices, trading volumes and turnover reveals a significant dispersion in market
depth across asset classes. We show that ignoring this heterogeneity of market depth
across asset classes leads to a considerable bias in the estimation of fire-sales losses
in stress tests. This highlights the importance of conducting a rigorous sensitivity
analysis on liquidity estimates.

• Second-round effects are significant: fire sales may lead to a feedback loop
which generates market losses and further fire sales across other financial institu-
tions. Ignoring these feedback effects and the corresponding second- and higher-
round deleveraging may lead to a significant underestimation of system-wide losses.

These findings have many implications for risk management in financial institutions and
for the monitoring systemic risk in the financial sector. In particular, they underline the
need for a systemic approach to stress testing and the necessity of macroprudential tools
for tackling the risks resulting from price-mediated contagion. We believe the model pre-
sented here provides a useful tool for monitoring of system-wide and bank-level exposure
to price-mediated contagion.

1.3 Outline

The paper is structured as follows. Section 2 introduces our modeling framework and
outlines a method for systemic stress testing in presence of fire sales. Section 3 describes
the application of this stress testing approach to the European banking system using data
from the European Banking Authority (EBA) and details our empirical findings. In Sec-
tion 4, we introduce the concept of indirect exposure resulting from fire-sales spillovers and
illustrate the magnitude of indirect exposures in the European banking system. Section
5 discusses implications of our findings for systemic stress testing, risk management in
institutions and macroprudential policy.
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2 Modeling spillover effects from fire sales

2.1 Balance sheets and portfolio constraints

We consider a stylized model of the financial sector, with multiple financial institutions
whose portfolios may contain holdings across multiple asset classes. We will sometimes
refer to these institutions as ‘banks’ although, as we will explain below, it is relevant to
include non-banks in the scope of the model. Each institution holds two types of assets:

1. Illiquid assets: These are portfolio holdings which are either not easily marketable
or would be subject to a deep discount if they were to be sold during a stress
scenario; we assume that they are not subject to fire sales. This category includes
non-securitized loans, commercial and residential mortgage exposures and retail
exposures.2

2. Securities: These are positions in marketable securities which may be liquidated
over a short time scale if necessary. Sovereign bonds, corporate bonds and deriva-
tives exposures are included in this category. Each asset class µ in this category is
characterized by a market depth parameter Dµ, whose estimation we will describe
in detail below. The market liquidity of assets within this group can vary strongly
and our model accounts for this heterogeneity.

Financial institutions are labeled by i = 1..N , security (types) by µ = 1..M , illiquid
asset classes by κ = 1..K. Securities holdings (in euros) of institution i are denoted
(Πi,µ, µ = 1..M) and holdings in illiquid assets are denoted (Θi,κ, κ = 1..K).

The capital (equity) of financial institution i is denoted Ci and Ii =
∑K

κ=1 Θi,κ is the
total value of illiquid assets. The leverage ratio of the institution is then given by

λi(Π, C, I) =

∑M
µ=1 Πi,µ + Ii

Ci
=

∑M
µ=1 Πi,µ +

∑K
κ=1 Θi,κ

Ci
≤ λmax, (1)

where the upper bound λmax > 1 corresponds to a regulatory leverage constraint, as for
instance required by Basel 3. We consider here for simplicity that the leverage ratio will
be the binding constraint for financial institutions’ capital, but the model may be easily
adapted to include more than one constraint: for instance, if we introduce regulatory risk
weights wµ for each asset class, the constraint on the ratio of capital to risk weighted
assets may be expressed as∑M

µ=1 wµΠi,µ +
∑K

κ=1wκΘ
i,µ

Ci
≤ Rmax.

Other portfolio constraints, such as liquidity ratios, lead to similar one-sided linear in-
equalities.

The state of the financial system is summarized by the matrices of holdings Π,Θ
and the capital levels C. We will now describe how this system evolves when subject to
macroeconomic stress.

2This category further includes assets that do not suffer any direct or indirect losses, are not available
for deleveraging, but still contribute to balance sheet size and leverage (e.g. intangible assets).
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2.2 Stress scenarios

We consider stress scenarios described through the percentage loss εκ ∈ [0, 100%] in
values for each asset class κ, as in the approach used in regulatory bank stress tests.
For simplicity, and to emphasize contagion across asset classes, we will consider shocks
to illiquid assets in the examples below, but the model perfectly accommodates stress
scenarios with heterogeneous shocks across all asset classes. The initial loss of bank i in
the stress scenario ε = (εκ, κ = 1..K) is given by

< Θi, ε >=
K∑
κ=1

εκΘ
i,κ. (2)

This results in a loss (i.e. a reduction) in the value of illiquid holdings, reducing it to

Ii(ε) := Ii− < Θi, ε >

and a corresponding decrease in equity:

Ci
0(ε) = (Ci− < Θi, ε >)+. (3)

The leverage of bank i then increases to

λi(Π, C0(ε), I(ε)) =

∑M
µ=1 Πi,µ + Ii(ε)

Ci
0(ε)

=

∑M
µ=1 Πi,µ + Ii− < Θi, ε >

(Ci− < Θi, ε >)+

. (4)

If this value exceeds the leverage constraint λmax then the institution needs to deleverage,
i.e. sell some assets.3 This occurs if the loss level exceeds the threshold

< Θi, ε > ≥ Ci (λmax − λi(Π, C, I))

λmax − 1
, (5)

which is proportional to the capital buffer of i or its distance from the leverage constraint
prior to the shock. The amount of loss an institution can absorb before being led to
deleverage is equal to its capital buffer in excess of regulatory requirements (Hellwig
(2009)).

In the case where the shock is applied to a single asset class κ, institution i is led to
deleverage when the (percentage) loss εκ exceeds the level

ε∗i,κ(Π, C, I) =
Ci(λmax − λi(Π, C, I))

(λmax − 1)Θi,κ
. (6)

This threshold is clearly different across institutions, depending on their initial lever-
age, capital buffer and holdings in the illiquid asset subject to losses. The model hence
explicitly accounts for the heterogeneity in the individual bank’s resilience to losses.

Hence, any stress scenario ε which falls outside of the (convex) set

S(Π, C,Θ) =

{
ε ∈ [0, 1]K

∣∣∣∣∀i = 1..N,< Θi, ε > ≤ Ci(λmax − λi(Π, C, I))

(λmax − 1)
,

}
. (7)

3If one allowed for negative capital by removing the positive part in (3), one would need to distinguish
the additional case of negative leverage, which we avoid here. We also note that as Ii(ε) > 0 for all
reasonable shocks (c.f. Table 2), the ratio is well defined.
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will lead to deleveraging by one or more financial institutions. The convex set S(Π, C,Θ)
corresponds to a ‘safety zone’ of stress scenarios which all banks can withstand; the larger
this safety zone, the more resilient is the network to losses.

We assume that no major deleveraging occurs inside this zone. This is different from
‘leverage targeting’ models such as Greenwood et al. (2015), where portfolios react (sym-
metrically) to arbitrarily small shocks.

The size of the safety zone depends on the capital levels Ci of the financial institutions
but also on their capital buffers in excess of requirements. If the vector ε of shocks to
assets lies outside the safety zone, then one or more institutions are led to deleverage their
portfolios. We now describe how this deleveraging is modeled.

2.3 Deleveraging

If (and only if) the magnitude of losses in asset values is such that the leverage constraint
is breached for institution i, it deleverages a proportion Γi of its portfolio in order to
restore its leverage ratio to a leverage target λb ≤ λmax. This leads to the following
equation for Γi ∈ [0, 1]:

(1− Γi)
∑M

µ=1 Πi,µ + Ii(ε)

Ci
0(ε)

= λb (8)

Thus, in response to an external shock ε, institution i needs to deleverage a fraction

Γi(Π, C0(ε)) =

(∑M
µ=1 Πi,µ + Ii(ε)− λbCi

0(ε)∑M
µ=1 Πi,µ

∧ 1

)
1∑M

µ=1 Πi,µ+Ii(ε)

Ci
0(ε)

>λmax

(9)

=

(
Ci

0(ε)(λi(Π, C0(ε), I(ε))− λb)∑M
µ=1 Πi,µ

∧ 1

)
1λi(Π,C0(ε),I(ε))>λmax

,

of its marketable assets, where Π0, C0, I(ε) are given by (3) In terms of the initial capital
C and the illiquid holdings Θ, this can be written as

Γi(Π, C) =

(
(λb − 1) < Θi, ε > +Ci(λi(Π, C, I)− λb)∑M

µ=1 Πi,µ
∧ 1

)
1∑M

µ=1 Πi,µ+I−<Θi,ε>

(C−<Θi,ε>)+
>λmax

.

(10)
Unlike the state variables Π, C which evolve as deleveraging occurs, Θ and ε (and I(ε)),
which represent respectively the holdings in illiquid assets and the initial shocks to these
assets, are static parameters.
As in Greenwood et al. (2015); Duarte and Eisenbach (2013), we assume that banks
delever their marketable assets proportionally. This proportional deleveraging assumption
is supported by empirical studies on asset sales of large financial institutions Getmansky
et al. (2016), Schaanning (2017). An alternative would be to assume a pecking order
of liquidation, or that banks determine their liquidation policy by maximizing expected
liquidation value Braouezec and Wagalath (2017). Greenwood et al. (2015); Duarte and
Eisenbach (2013) perform robustness tests on the order of liquidation, finding that it
reduces the magnitude of fire-sales losses.

Figure 1 (circles) displays the dependence of the deleveraging ratio (10) on the shock
level ε for a portfolio holding a single class of illiquid asset: this ratio is zero for shocks
lower than the threshold ε∗i corresponding to the breach of the leverage constraint, then
increases linearly thereafter. There is a discontinuity at the onset of deleveraging, which
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depends on the size of the capital buffer which the bank intends to rebuild by deleveraging.
In the case where the leverage constraint is saturated after deleveraging, i.e. λb = λmax,
the dependence on the shock size is continuous and convex (solid line). In the example
shown in Figure 1 we have assumed λb = 0.95λmax, which corresponds to a safety buffer
5% below the leverage constraint.

Previous studies on fire sales have assumed instead a linear dependence of the volume
of deleveraging with respect to the shock size (dotted line): this is the leverage targeting
model, which we will discuss further in Section 2.6.

Unlike the leverage targeting model, our model gives rise to deleveraging only if the
shock level exceeds a (bank-specific) threshold ε∗i . Once this threshold is reached, the
volume of deleveraging increases linearly with (ε − ε∗i )+ until no more marketable assets
are available for sale (i.e. Γi = 1). At this point, although the institution is still solvent,
it may become illiquid. The model thus leads to a natural distinction between failures
due to insolvency, which may occur if the initial loss in asset values is large enough, and
failures due to illiquidity, which may occur further down the road if the liquidation of
marketable assets fails to raise enough liquidity.

Figure 1: Volume of asset sales ( % of marketable assets) as a function of the percentage
loss in value of illiquid assets for a portfolio with 20% in illiquid assets and initial leverage
of 25, and a leverage constraint of 33. Leverage targeting leads to a linear response (dashed
line), whereas our assumption of deleveraging to comply with a leverage constraint leads to
no asset sales for shocks smaller than a threshold and a linear increase above the threshold
(solid line). Finally, if we assume that the bank deleverages to restore a non-zero capital
buffer we obtain the discontinuous response function (circles).

Summing across all institutions j = 1..N in the network yields the total volume of
asset sales (in monetary units) in the stress scenario ε:

qµ(ε,Π, C) =
N∑
j=1

Γj(Π, C0(ε))Πj,µ

for the asset class µ. In the case λb = λmax, the functions Γj(Π, C0(ε)) are convex with
respect to ε over a large range of values, i.e. in the region maxi Γ

i ≤ 1. In this range,
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the aggregate volume of asset sales qµ(ε,Π, C) exhibits a convex dependence in ε, which
leads to a ‘multiplier effect’: as more severe stress scenarios (larger ε) are considered, the
marginal response in terms of deleveraging also increases. An example, based on data
from the EU banking system (see next section) is shown in Figure 2.

Figure 2: Volume of asset sales ( % of marketable assets) across EU banks in reaction
to a scenario in which banks realize losses of ε percent of the notional value on Spanish
residential and commercial real estate exposures (horizontal axis). The Basel 3 leverage
constraint λmax = 33 is used in this example. The solid red line corresponds to λmax = λb,
the circles correspond to λb = 0.95λmax.

2.4 Market impact and price-mediated contagion

If this volume of deleveraging represents a sizeable fraction of the market depth, it may
have a non-negligible impact on the market price of these assets and lead to a price decline,
whose magnitude ∆Sµ is an increasing function of qµ:

∆Sµ

Sµ
= −Ψµ(qµ) (11)

where Ψµ : R → [0, 1] is a continuous, increasing and concave function with Ψµ(0) = 0,
which we call the market impact function for asset class µ. Ψµ may be thought of as an
inverse demand function. Assuming Ψµ is a smooth function, linearizing for small volumes
yields

Ψµ(q) ' q

Dµ

where Dµ =
1

Ψ′µ(0)

is a measure of market depth for asset class µ. Naturally this quantity depends on the asset
µ, as the same dollar liquidation volume q will have a different price impact depending
on the asset class. A simple one-parameter specification often used in practice is Ψµ(q) =
ψ(q/Dµ) where ψ(.) is an increasing function with ψ′(0) = 1. We discuss parametric
specifications of Ψµ and their estimation in Section 3.2.
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We can now describe the processes which occur at (the k-th round of) deleveraging.
Denote by Πk−1, Ck−1, Sk−1 respectively the holdings in marketable assets, the equity and
the (vector of) asset prices after k − 1 rounds of deleveraging. At round k:

1. Each institution j deleverages by selling a proportion Γj(Πk−1, Ck−1) of its mar-
ketable assets, leading to an aggregate amount qµk =

∑N
j=1 Γj(Πk−1, Ck−1)Πj,µ

k−1 of
sales in asset class µ.

2. The market impact of asset sales results in a decline in market prices, moving the
market price to

Sµk = Sµk−1 (1−Ψµ (qµk )) . (12)

3. This decline in price changes the market value of holdings in asset class µ to

Πi,µ
k := Π(Πk−1, Ck−1) (13)

=
(
1− Γi(Πk−1, Ck−1)

)︸ ︷︷ ︸
Remainder after deleveraging by i

Previous value︷︸︸︷
Πi,µ
k−1

(
1−Ψµ

(
N∑
j=1

Γj(Πk−1, Ck−1)Πj,µ
k−1

))
︸ ︷︷ ︸

Price impact on remaining holdings

.

This generates two types of losses for portfolio i. First, the price moves due to the market
impact of fire sales, which leads to a mark-to-market loss given by

M i(Πk−1, Ck−1) =
M∑
µ=1

(
(1− Γi(Πk−1, Ck−1))Πi,µ

k−1 − Πi,µ
k

)
(14)

= (1− Γi(Πk−1, Ck−1))
M∑
µ=1

Πi,µ
k−1Ψµ

(
N∑
j=1

Γj(Πk−1, Ck−1)Πj,µ
k−1

)
.

A second source of loss, not accounted for in previous studies, stems from the fact that
assets are not liquidated at the current market price but at a discount: this ‘implemen-
tation shortfall’, as it is called in the literature on optimal trade execution Almgren and
Chriss (2000)) corresponds to the difference between the market price at the time of sale
and the volume-weighted average price (VWAP) during liquidation. This VWAP lies
somewhere between the pre- and post-fire-sales prices. We model it as a weighted average
with weights (1 − α, α), α ∈ [0, 1] of the pre- and post-fire-sales prices, where α = 0 cor-
responds to zero implementation shortfall, and α = 1 corresponds to full implementation
shortfall (assets liquidated at post-fire sales price). This leads to the general formula for
the implementation shortfall:

Ri(Πk−1, Ck−1) =
M∑
µ=1

[
ΓikΠ

i,µ
k−1 −

(
(1− α)ΓikΠ

i,µ
k−1 + αΓikΠ

i,µ
k−1(1−Ψµ(qµk ))

)]
= αΓi(Πk−1, Ck−1)

M∑
µ=1

Πi,µ
k−1Ψµ

(
N∑
j=1

Γj(Πk−1, Ck−1)Πj,µ
k−1

)
. (15)

where we wrote Γik as shorthand for Γi(Πk−1, Ck−1). In the empirical examples below, we
will use α = 1

2
, which corresponds to a VWAP midway between the pre- and post-fire-sales
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prices. In Cont and Schaanning (2017) it is shown that α ≥ 1
2

is a plausible assumption,
also from a modeling perspective.

Summing (15) with (14) yields the total loss of portfolio i at the k-th round of devel-
eraging:

Li(Πk−1, Ck−1) = M i(Πk−1, Ck−1) +Ri(Πk−1, Ck−1) (16)

=
(
1− (1− α)Γi(Πk−1, Ck−1)

) M∑
µ=1

Πi,µ
k−1Ψµ

(
N∑
j=1

Γj(Πk−1, Ck−1)Πj,µ
k−1

)
.

This loss reduces the equity of institution i by the same amount:

Ci
k =

(
Ci
k−1 − Li(Πk−1, Ck−1)

)
+

(17)

Linearizing the market impact function Ψµ yields

Li(Πk−1, Ck−1) ≈ (1− (1− α)Γi)
M∑
j=1

N∑
µ=1

Πi,µ
k−1Πj,µ

k−1

Dµ︸ ︷︷ ︸
Ωij(Πk−1)

Γj = (1− (1− α)Γi)
M∑
j=1

Ωij(Πk−1)Γj,

(18)
which shows that the magnitude of fire-sales spillovers from institution i to institution j
is proportional to the liquidity-weighted overlap Ωij between portfolios i and j Cont and
Wagalath (2013):

Ωij(Π) :=
M∑
µ=1

Πi,µΠj,µ

Dµ

. (19)

The matrix of portfolio overlaps

Ω(Π) = ΠD−1Π>, (20)

where D is the diagonal matrix of market depths Dµ, can be viewed as a weighted adja-
cency matrix of the underlying network, linking portfolios through their common expo-
sures. We will further analyze the properties of this matrix in Section 3.
In summary, an initial loss in asset values may trigger a feedback loop, schematically
represented in Figure 3, in which, at each iteration, portfolio deleveraging leads to fire
sales, leading to price declines and mark-to-market losses which may in turn trigger further
fire sales. The state variables representing the matrix Π of portfolio holdings in marketable
assets and the equity levels C = (Ci, i = 1..N) are initialized as described in equations
(3)-(4) (for k = 0) and updated at each round of deleveraging

(Πk, Ck) = f(Πk−1, Ck−1), (21)

where Πk is defined in (13) and

Ci
k =

(
Ci
k−1 − Li(Πk−1, Ck−1)

)
+

(22)

where the loss Li is defined in (16).
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Deleveraging

Mark to market losses

Market impact
to assets

Figure 3: An initial loss in asset values may generate a feedback loop which may lead to
multiple rounds of deleveraging and further declines in asset values.

2.5 Feedback loops, insolvency and illiquidity

The iteration described above continues in principle as long as at least one institution is
in breach of its leverage/ capital constraint after losses due to deleveraging are accounted
for. However, in the (realistic) situation where we assume that institutions build a non-
zero buffer beyond the minimal capital requirements (i.e. λb < λmax in the notation of
Section 2.3 ), this fire-sales cascade terminates after a finite number T of iterations Cont
and Schaanning (2017). As we will discuss below, this is not the case in leverage targeting
models, which lead to infinite fire-sales cascades.

Along the way, some institutions may become insolvent: this occurs if at any point
in the iterations the loss Li(Πk, Ck) exceeds the capital Ck. Then instution i becomes
insolvent and does not play any further role in subsequent rounds. Another type of
failure which may occur along the cascade is failure due to illiquidity: this occurs when
an institution has sold all of its marketable assets and is left with no further liquid assets.
This may occur even though the institution is still solvent.

This distinction between failure due to insolvency and failure due to illiquidity is
highly relevant in practice. In fact, one can note that this was precisely the scenario that
occurred in the failure of Bear Stearns and Lehman Brothers.4 In contrast to most default
risk models and previous studies on fire sales, our model distinguishes between these two
causes of failure and highlights the fact that institutions can fail even when they have
positive equity.

In contrast to models of default contagion, contagion of losses across institutions occurs
not just at default but actually before the default of an institution, and its scope is not
limited to counterparties. Deleveraging by distressed institutions, which is precisely aimed
at preventing their default, is in fact what triggers this contagion.

Denoting by T the length of the cascade, the fire-sales loss for bank i triggered by the
stress scenario ε is given by

FLoss(i, ε) =
T∑
k=1

Li(Πk−1, Ck−1). (23)

and the total system-wide fire-sales loss in this scenario is

SLoss(ε) =
N∑
i=1

FLoss(i, ε). (24)

4See letter by the then SEC chairman Christopher Cox to the Basel Committee on Banking Supervision
https://www.sec.gov/news/press/2008/2008-48.htm.
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Note that the fire-sales loss (23) does not include the initial loss which triggers the delever-
aging: in absence of deleveraging and price-mediated contagion FLoss(i) = SLoss = 0.
Table 1 summarizes the notations of the model and references the equations where they
are defined.

Variable Notation Defined in
Financial institutions i, j = 1..N -

Asset class: illiquid assets κ = 1..K Section 2.1
Asset class: marketable assets µ = 1..M Section 2.1
Number of iterations (rounds) k -

State variables (in EUR)
Marketable assets Πi,µ Section 2.1

Capital Ci Section 2.1
Parameters

Illiquid asset (in EUR) Θi,κ Section 2.1
Initial shock (in %) εκ (4)

Market depth for asset class µ Dµ (13)
Key quantities

Deleveraging proportion at round k Γik (9)
Leverage of institution i λi (1)

Fire-sales loss (k-th round) Li(Πk−1, Ck−1) (16)
Fire-sales loss for bank i (all rounds) FLoss(i, ε) (23)

System-wide fire-sales loss SLoss(ε) (24)

Table 1: Overview of model notations.

2.6 Comparison with “leverage targeting”

Recent empirical studies on fire-sales spillovers Duarte and Eisenbach (2013); Greenwood
et al. (2015) have explored a different mechanism for fire sales, based on the idea that
banks maintain a ‘leverage target’, which leads them to rebalance their portfolios in a
procyclical manner following changes in asset values. An oft-cited argument to support
this model is the empirical correlations between quarterly changes in asset size and debt
size for banks Adrian and Shin (2010, 2014).

While both models incorporate the idea of market impact of deleveraging and the
resulting endogenous portfolio losses and contagion effects, they differ in some important
ways:

1. The threshold nature of fire sales: in the leverage targeting model, bank (de)leveraging
in response to arbitrarily small changes in asset values, regardless of their capital or
liquidity buffers, generates fire-sales losses even for low market stress levels. In our
model, deleveraging only occurs when losses are large enough to trigger portfolio
constraints: for shocks below this critical level, there is no deleveraging. By as-
suming that all institutions constantly respond to arbitrarily small changes in asset
values, the leverage targeting model overestimates the magnitude of deleveraging in
response to small shocks. This is illustrated in Figure 2, which compares the over-
all deleveraging across EU banks in response to losses on exposures to the Spanish
housing market.

15



2. Dependence of deleveraging on magnitude of losses: Leverage targeting implies a
volume of deleveraging linear in the size of the portfolio loss; since the volume of
deleveraging is capped at 100% of assets, this leads to a concave dependence of
the volume of asset sales on the shock size. By contrast, for small to moderate
shocks, the volume of deleveraging has a convex dependence on the loss size in
our model, as shown in Section 2.3 and illustrated in the example of Figure 2:
deleveraging accelerates as we increase the shock size to more extreme levels, leading
to a ‘multiplier effect’, absent in the leverage targeting model.

3. Finite length of fire-sales cascades: The assumption of leverage targeting leads to
an infinite sequence of iterations which never cease since at each round further
mark-to-market losses are generated endogenously, which leads to a deviation from
the target leverage and in turn generates new asset sales or purchases. In stress
tests, one then needs to choose an ad-hoc number of iterations to compute the loss.
Although losses converge as we iterate this cascade, in general estimates of fire-sales
losses depend on the actual number of iterations that chosen in a simulation.

By contrast, as shown in Cont and Schaanning (2017), in a threshold model with
a capital buffer λb < λmax, the fire-sales cascade always terminates after a finite
number of iterations, typically 5 to 10 rounds in most empirical examples, as shown
in the next section.

The consequences of these differences are explored in more detail in the next section,
where we compare the results of stress tests performed using the two approaches, and in
the companion paper Cont and Schaanning (2017). To implement the leverage targeting
model in our stress test, we simply replace the deleveraging function by

Γi(Π, C0(ε)) =

(∑M
µ=1 Πi,µ + Ii(ε)− λbCi

0(ε)∑M
µ=1 Πi,µ

∧ 1

)
.

Only marketable assets are assumed to be available for deleveraging. This assumption is
different from Duarte and Eisenbach (2013); Greenwood et al. (2015), where deleveraging
is applied to the entire portfolio.

3 A systemic stress test of the European banking sys-

tem

We now describe how the model may be used to perform a systemic stress test, in order
to quantify the exposure of the banking system to fire-sales spillovers, and apply the
framework to data on the European banking system.

3.1 Data

Our empirical study is based on data from the European Banking Authority (EBA), which
provides information, collected in 2011 and 2016, on notional exposures of 90 European
banks across 148 asset classes.5 Holdings are given by asset class and geographical region.

5This dataset was also used in the study by Greenwood et al. (2015), and facilitates comparison with
the literature.
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Figure 4: Evolution of asset values (vertical axis) and capital (horizontal axis) in a fire-
sales cascade. The solid red line corresponds to the leverage constraint, the dashed green
line denotes a target leverage corresponding to an excess capital buffer, and the dotted
blue line is the path of a sample portfolio. Losses in asset values erode the equity, moving
the portfolio closer to the origin; when the portfolio crosses the red line corresponding to
the leverage constraint, deleveraging occurs: the institution tries to reconstitute a buffer
by returning to the target leverage (dotted line). The market impact of these asset sales
leads to further losses and displaces the state to the left; if it crosses the red line again, a
new round of deleveraging follows etc. An institution becomes insolvent when it reaches
the boundary C = 0 (vertical axis) and illiquid when it reaches the boundary Π = 0
(horizontal dashed line).

Asset classes are specified in Table 2. Greenwood et al. (2015) assumed all assets to be
available for liquidation; we only consider a subset to be marketable, i.e. available for
liquidation at short notice. We identify four classes of marketable assets (“securities”),
which may be liquidated in a stress scenario; the other asset classes are classified as illiquid
assets.6 Assets are further labelled by 37 geographical regions, which correspond to the
27 countries of the EU (i.e. without Croatia at the time) plus the United States (US),
Norway (NO), Iceland (IS), Liechtenstein (LI), Japan (JP), Asia (A1), Other non-EEA
non-emerging countries (E3), Eastern Europe non-EEA (E5), Middle and South America
(M1) and Rest of the world (R5). Hence, with the four marketable asset classes and 37
geographical regions, the matrix of marketable assets Π is given by a 90 × 148 matrix.

6Table 10 in the Appendix, we provide the data identifiers that allow correspondence with the EBA
dataset.
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The illiquid asset holdings are given by a 90× 75 matrix Θ. This corresponds to 74 asset
classes for commercial and residential mortgage exposures respectively in the 37 regions
and a 75th entry consisting of all remaining illiquid asset holdings.7

Illiquid assets
Residential mortgage exposures
Commercial real estate exposure

Retail exposures: Revolving credits, SME, other
Indirect sovereign exposures in the trading book

Defaulted exposures
Residual exposure (cf. Appendix Table 10)

Securities / marketable assets
Corporate bonds
Sovereign debt

Direct sovereign exposures in derivatives
Institutional client exposures: interbank, CCPs,...

Table 2: Asset classes used for the stress test.

3.2 Market impact and market depth

A key assumption in models of fire-sales spillovers concerns the impact of asset liquidations
on market prices. This may be summarized in the choice of a market impact function Ψµ,
which defines the correspondence between the liquidation size q (in monetary units) and
the relative price change for each asset class µ: ∆Sµ

Sµ
= −Ψµ(q). An adequate choice for

Ψµ should be increasing, concave, satisfy Ψµ(0) = 0 and lead to non-negative prices.
Common specifications are the linear model Kyle (1985); Bertsimas and Lo (1998),

Almgren and Chriss (2000); Obizhaeva (2012); Cont et al. (2014)

Ψµ(q) =
q

Dµ

with Dµ = c
ADVµ
σµ

(25)

where ADVµ is the average daily trading volume (in EUR), σµ the daily volatility (in %)
of the asset, c a coefficient close to 0.5, estimated from transactions data, and the square
root model Bouchaud (2010)

Ψµ(q) = c σµ

√
q

ADVµ
(26)

We note that both trading volume and volatility are associated with a liquidation horizon
τ , taken in most studies to be daily by default. If we assume the liquidation horizon τ
to be longer than a day, then the market depth parameter needs to be adjusted. In the
linear impact model, the adjustment is:

Dµ(τ) = c
ADVµτ

σµ
√
τ

= c
ADVµ
σµ

×
√
τ . (27)

7Our representation differs slightly from Greenwood et al. (2015), who considered 42 asset classes
consisting of the 37 sovereign exposures by geographical region and five further classes, aggregated across
all geographical regions: “commercial real estate”, “mortages”, “corporate loans”, “small and medium
enterprise loans” and “retail revolving credit lines”.This leads to a less granular model compared to ours
as we distinguish assets both by type and country.
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This adjustment is important, and corresponds to the intuitive observation that liquidat-
ing the same portfolio over a longer horizon reduces impact. The liquidation horizon τ
may be interpreted as the time window the banks dispose of to comply with portfolio
constraints. In the case study below we will use τ = 20 days.

By contrast, in the square root model, the impact of a transaction is invariant to a
change in the liquidation horizon since the denominator and the numerator in (26) scale
in the same way. This leads to the counterintuitive (and, we believe, incorrect) conclusion
that impact is insensitive to the rate of liquidation. For this reason, we refrain from using
the square-root model in the sequel.

In a linear impact model, asset classes are differentiated according to their market
depth Dµ. Greenwood et al. (2015) assume a uniform depth Dµ = 1013 (EUR) for all
asset classes. This homogeneity assumption is not supported by empirical studies on
market impact Bouchaud (2010); Obizhaeva (2012); Cont et al. (2014), which indicate
that market impact varies widely across assets. Ignoring this heterogeneity may lead to
biased results, overestimating losses in more liquid asset classes while underestimating
losses in less liquid asset classes.

Duarte and Eisenbach (2013) use haircuts and repo rates for determining the liquidity
of different asset classes; this does introduce some heterogeneity across asset classes but the
relation between these quantities and market impact is not clear. For instance, haircuts
may simply reflect the volatility of an asset, rather than its liquidity or market depth.

We use a direct, data-driven approach to the modeling of market impact. To estimate
the market depth parameters for each asset class using (27), we

• estimate volatility parameters σµ using daily returns of S&P sector indices8.

• obtain average daily volume estimates ADVµ from annual volume data provided by
the US Treasury and various central banks (Appendix A.1).

As noted above, we use τ = 20, which corresponds to a liquidation horizon of 4 weeks, a
fairly lenient assumption. Cont and Wagalath (2016) and Obizhaeva (2012) find c ≈ 0.33.
Ellul et al. (2011) find c ≈ 0.2 − 0.3 for US corporate bonds under fire-sales pressure by
insurance companies. An important difference is that in Ellul et al. (2011) the bonds
are being liquidated due to the bond issuer’s credit rating being downgraded, while in
our analysis, we assume that the fire sales are exogenous and not linked to the security
issuers. We have used c = 0.4 here.

ADV for US corporate bonds was obtained from SIFMA (see Appendix A.1). For
European bonds, we simply use the same sovereign-to-corporate ratio of ADV as ob-
served in the US (567.81bn/269.8bn ≈ 0.48) to estimate the ADV of the corporate and
“institutional” asset classes for European corporate bonds.

For some asset classes, data on trading volume are unavailable (or difficult to obtain).
We work around this issue by estimating, based on OECD data, the following regression
model for the relationship between average daily volume (ADV) and outstanding notional

logADVµ := c1 log (Nµ) + c0 + εµ (28)

where Nµ denotes outstanding notional, and using it to estimate volume for the remaining
asset classes. Table 3 shows the results of this regression analysis.

8 http://us.spindices.com/indices/fixed-income/sp-eurozone-sovereign-bond-index

http://us.spindices.com/index-family/us-treasury-and-us-agency/all

http://us.spindices.com/indices/fixed-income/sp-500-investment-grade-corporate-bond-index
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Coefficient US treas US corp UK DE ES
c1: 0.53*** 0.64*** 0.56*** 0.48 0.94***

std. dev. 0.13 0.15 0.05 0.30 0.14
c0: 0.63 -1.1** -0.35** 0.4 -1.35***

std. dev. 0.55 0.55 0.14 0.99 0.37
adj. R2 0.39 0.60 0.93 0.15 0.76

n 19 19 11 10 15

Table 3: Logarithmic regression of bond trading volume on outstanding notional (Equa-
tion 28).

Figure 5 shows the distribution of market depth estimates for all asset classes in the
EBA dataset, on a logarithmic scale. The histogram reveals considerable heterogeneity
in the cross-sectional distribution of market depth, with 4 orders of magnitude separating
the most liquid from the least liquid assets.

Market depth (EUR)

P
er

ce
nt

0.
0

0.
2

0.
4

0.
6

108 109 1010 1011 1012 1013 1014 1015

Holdings (EUR)

M
ar

ke
t d

ep
th

 (
E

U
R

)

106 107 108 109 1010 1011 1012

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Figure 5: Left: Histogram of estimated market depths for the 148 asset classes in the EBA
dataset. The dashed vertical line indicates the holdings-weighted average depth given by
(31).Right: Scatter plot of depth vs. holdings.

Table 4 provides values for average daily volumes (ADV) and market depths for the
asset classes representing the largest holdings. These values are used as base values; we
will later perform a sensitivity analysis of our results with respect to changes in these
values.

Extrapolation to large volumes When applied to large transaction volumes, linear
or square-root impact models may lead to negative prices. In Greenwood et al. (2015)

this was addressed by capping the loss at 100%: Ψµ(q) = min
{

1, q
Dµ

}
. Cifuentes et al.

(2005) use an exponential specification

Ψµ(q) = 1− exp

(
− q

Dµ

)
(29)

which also ensures that prices remain non-negative but gives a concave impact. Never-
theless, prices can get arbitrarily close to zero in both of these models. However, it is
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Asset class ADV Market depth Dµ Impact of 10 bn
(sovereign unless
specified)

(bn EUR) (1012 EUR)

US 567.8 428.8 0.2332
US (corp.) 269.8 70.2 1.424
IT 28.82 21.8 4.585
ES 28.0 21.1 4.737
DE 24.7 18.7 5.345
GB 24 18.1 5.522
FR 10 7.58 13.18
GR 8.17 6.18 16.16
SE 3.92 2.96 33.67
PT 2.27 1.71 58.14

Table 4: Average daily trading volume and estimated market depth over τ = 20 days, for
the largest holdings in the EBA dataset. The impact in basis points are also given for a
liquidation of 10 bn EUR over τ = 20 days.

realistic to assume that long before the price level reaches zero, arbitrageurs will step in to
purchase assets subject to fire sales at a discount Shleifer and Vishny (1992). To capture
this effect we introduce a price floor Bµ > 0 and consider a two-parameter level-dependent
price impact function:

Ψµ (q, S) :=

(
1− Bµ

S

)(
1− exp(− q

δµ
)

)
. (30)

Bµ determines how far the price can fall in a fire-sales scenario. Note that this is a lower
bound for the price and in a given stress test the price may not actually fall to this level.
In the empirical examples below, we set Bµ at 50 % of the market price levels. Choosing

δµ =

(
1− Bµ

Sµ0

)
Dµ

makes the specification (30) compatible with the linear specification (25) for small vol-
umes.

3.3 Portfolio overlaps

As shown in Eq. (18), the transmission of fire-sales losses from portfolio i to j depends
on the liquidity-weighted overlap between portfolio i and j:

Ωij(Π) :=
M∑
µ=1

Πi,µΠj,µ

Dµ

.

The matrix Ω of liquidity-weighted overlaps thus plays an important role in the trans-
mission of fire-sales losses, which may be viewed as a contagion process on a network of
financial institutions in which the link from i to j is weighted according to the liquidity-
weighted overlap Ωij. We call this network the indirect contagion network. Similar net-
work structures were explored by Braverman and Minca (2016); Guo et al. (2015) for
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mutual funds. Figure 6 displays the indirect contagion network for European banks as
implied by EBA data collected in 2011. The nodes correspond to different banks, with
node size proportional to balance sheet size, and edges correspond to non-zero portfolio
overlaps, with edge widths proportional to the logarithm of the liquidity-weighted overlap
Ωij.

Figure 7 (left) shows the distribution of Ωij in this network. The peak at zero reflects
the fact that many pairs of banks have no common asset holdings (so, zero overlap), i.e.
the network is sparse. On the other hand, the values are dispersed over five orders of
magnitude, which illustrates the heterogeneity of the network.

Figure 6: The core of the European indirect contagion network: Node sizes are pro-
portional to balance sheet size. Edge widths are proportional to the liquidity-weighted
overlap. Red nodes correspond to the banks with highest loading in the first principal
component of the portfolio overlap matrix Ω.

The overlap matrix Ω also gives a glimpse of the nature of ‘second-round’ contagion
effects in this network. The element (i, j) of the matrix Ω2 may be interpreted as the
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Figure 7: Left: histogram of liquidity-weighted portfolio overlaps across EU banks (2011).
Right: Ranked eigenvalues of the matrix Ω of liquidity-weighted portfolio overlaps.
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Figure 8: Histogram of ‘second-order overlaps’ (coefficients of the matrix Ω2).

(maximal) indirect contagion from i to j channeled through other nodes:

Ω2(i, j) =
∑
k

ΩikΩkj.

Figure 8 shows the histogram of these ‘second-order overlaps’. Unlike Figure 7, where we
see a large fraction of zero overlaps, here we see that all coefficients are strictly positive:
this means that, although many pairs of portfolios have zero overlaps, second-round effects
may potentially cause spillovers from any institution to any other! This observation shows
that second-round effects should not be ruled out a priori and may greatly increase the
scope of contagion in the network.

A quantitative way of examining the heterogeneity of this network is to compute the
eigenvalues and eigenvectors of Ω. The right-hand plot of Figure 7 shows the ranked
eigenvalues of Ω. The first few eigenvalues clearly dominate the others by an order of
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magnitude. This means that the overlap in the portfolio network can be characterised
quite well by a low-dimensional factor model for portfolio holdings. We discuss this point
further in a companion paper Cont and Schaanning (2017).

3.4 Stress scenarios

We define stress scenarios, similar to regulatory stress tests, in terms of percentage shocks
across asset classes9, given by a vector ε = (εκ, κ = 1..K) ∈ [0, 1]K where εκ is the
percentage loss (stress level) applied to asset class κ. We have chosen four scenarios in
the examples below to illustrate the properties of the model:

1. Losses on residential and commercial real estate exposures in Spain (Region: ES);

2. Losses on residential real estate exposures in Northern and Western Europe (Re-
gions: GB, BE, NO, SE);

3. Losses on commercial real estate exposures in Southern Europe (Regions: IT, GR,
ES, PT);

4. Losses on commercial real estate exposures in Eastern Europe (Regions: CZ, EE,
HU, LV, LT, PL, RO, SK, RU, BG, E3 (= other non-EEA non-emerging countries);

In each scenario, we increase the shock to the affected asset classes gradually from 0% to
20%; the other asset classes undergo no initial loss. To emphasise cross-asset contagion,
we have chosen stress scenarios where initial losses affect only illiquid assets in these
examples, but scenarios can be extended to include initial shocks to marketable assets.

Calibration of stress scenario severities In our parameterisation a shock ε = 5%
to asset class κ represents a loss equal to 5% of the notional exposure to this asset class.
This is commensurate with bank losses during severe housing crises10.

The EBA stress test report states (p. 10) that the net loss in the stress scenario
reduces the average capital ratio from 8.9 % down to 7.7 %11. This net stress-test loss in
the EBA scenario, is precisely the initial loss that our model uses as input to trigger a
(potential) fire-sales cascade. Taking as an example the Spanish bank Santander, which
had EUR 594 bn in risk-weighted assets (RWA), a 1.2% loss of RWA in capital corresponds
exactly to an initial loss of EUR 7.13 bn. From the dataset we know that Santander holds
EUR 82 bn direct exposures to Spanish residential and commercial mortgages. Hence an
initial shock of 8.7% in our Scenario 1 corresponds exactly to the severity of the EBA
stress-test loss for Santander. Our 20% shock in this scenario corresponds to an initial
loss that is about 2.3 times the severity of the EBA stress test. Figure 9 shows that
for different Spanish banks the initial shock size to Spanish residential and commercial
exposures which generates losses equal to 1.2 percent of RWA lies between 1.17 % and
8.7%. Taking the weighted (by RWA) average shock, one obtains an initial shock of 4.7%;

9The design of such scenarios is far from trivial and outside the scope of this presentation. On this
occasion, we note that ironically the 2016 EBA stress test did not feature a “Brexit” scenario.

10See a comparison of losses in percentage of gross lending across different countries’ housing crises in
Chart 6 of the Norges Bank Staff Memo:http://static.norges-bank.no/pages/104012/Staff_Memo_
5-2015_eng.pdf

11See http://www.eba.europa.eu/documents/10180/15935/EBA_ST_2011_Summary_Report_v6.

pdf.
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Figure 9: Level of initial stress ε applied to the Spanish residential and commercial real
estate exposures which, for each bank, generates an initial loss equal to 1.2 % RWA. Left:
for Spanish banks. Right: For banks with direct exposures to Spanish real estate in excess
of EUR 1 bn.

Correspondence of stress scenario intensities Scen. 1 Scen. 2 Scen. 3 Scen. 4

Weighted average shock size that creates EBA-
equivalent initial losses (regional sample)

4.71% 6.38 % 36.5% NA

Weighted average shock that creates EBA-
equivalent initial losses (“direct exp. > 25%
capital” sample)

9.28 % 9.14 % 24.0 % 33.5%**

Table 5: Initial stress level which leads to an average initial loss of 1.2% of RWA, (cor-
responding to the EBA stress scenario intensity), for each scenario. **Only six (small)
banks have exposure in excess of 25% of their capital to these asset classes.

the median shock is 2.03%. If instead of considering Spanish banks only, we consider
banks with direct exposures in excess of 25% of their capital, we obtain the right plot. In
this case, smaller Spanish banks with different business models have dropped out of the
sample. The weighted average shock required to trigger losses equal to 1.2% of RWA in
this case is equal to 9.3%. Overall, for this scenario, a reasonably severe regulatory stress
test would thus fall into the range of 4 - 10%.

We perform the same computations for scenarios 2, 3 and 4, and report the results in
Table 5 to provide a mapping of our scenario intensities to the official EBA stress scenario
intensity.

Finally, for completeness we note that in Greenwood et al. (2015) and Duarte and
Eisenbach (2013) the initial shocks are given by a 50% fall in GIIPS debt, and a 1%
reduction of all assets, respectively. This corresponds to initial losses of EUR 343 bn and
EUR 233 bn on a system wide level, and RWAs of 5.3 % and 2.07% for all affected banks,
respectively. In comparison to our scenarios, as well as the EBA official scenario, these
initial shocks are thus quite large. Greenwood et al. (2015) and Duarte and Eisenbach
(2013) consider one specific initial shock and do not vary the intensity of the stress.

25



Initial Losses EBA Greenwood et al. (2015) Duarte and Eisenbach (2013)*
Average bank 1.2% 7.63% (GIIPS banks) 2.07% (all banks)

loss in % of
RWA

7.17% (large exposure banks)

5.25 % (all banks)

Table 6: Magnitude of the initial loss in percent of RWA.

3.5 Systemic stress test of European banks: results

We now report the results of our systemic stress test for the European banking system.
To perform the stress test, we use a leverage constraint λmax = 33, which corresponds to
the Basel 3 leverage constraint. An alternative would be to use as constraint the ratio of
capital to risk-weighted assets (RWA), or both. Given the limitations of our dataset, we
have opted for the former, but the same exercise may be conducted with both constraints.
We note that for EU banks it is mostly the case that leverage, not the ratio of capital to
RWA, is the binding constraint.

As discussed in Section 2.3, we assume a target leverage slightly below the constraint
λb = 0.95λmax = 31.3 in order to have a buffer. We have conducted the stress test for
various values 0.9λmax ≤ λb ≤ λmax; results are similar across this range and for brevity
we only report them for λb = 0.95λmax. In most examples, fire sales die out after a few
rounds; in all cases we have limited the iterations to 20 rounds and report losses for each
round and the total loss for all rounds.

Magnitude of fire-sales losses. Figure 10 shows the contribution of fire-sales losses
to total system-wide loss in the stress test in Scenario 1. We observe that when stress
levels exceed 4-5%, fire-sales losses cannot be neglected and may account for up to 80%
of the total loss. This is definitely an argument for including fire sales and deleveraging
effect in a stress test.

Figure 11 represents the magnitude of fire-sales losses SLoss(ε) as a percentage of bank
equity for the four different stress scenarios. What is striking is the existence of a tipping
point which separates a stability zone corresponding to small shocks from a systemic
risk zone, where the magnitude of losses represents a considerable fraction of bank equity.
The existence of such tipping points is characteristic of the collective behavior of networks
whose components are subject to thresholds Granovetter (1978).

Another striking feature of Figure 11 is that while the 4 scenarios lead to different
outcomes in our model, they lead to similar outcomes in the leverage-targeting model
(represented by the dashed lines). This is a systematic difference between the two models,
which we will discuss further (see also Cont and Schaanning (2017)).
These results are based on market depth parameters estimated as described in Section 3.2.
To explore the sensitivity of the results to the market depth, we change the liquidation
horizon τ from 1 day to 100 days, which, as observed from (27), has the effect of scaling the
market depth parameters by

√
τ . This dependence of results on the liquidation horizon

may be alternatively seen as a sensitivity analysis with respect to the market depth
parameter for a fixed horizon τ .

Figure 12 analyzes the dependence of system-wide fire-sales losses SLoss(ε) to this
scaling. We observe the sensitivity of the result on the market depth level, which un-
derlines the importance of a proper estimation procedure for these parameters. We can
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Figure 10: Contribution of fire-sales losses to total system-wide loss, as a function of the
initial stress level.

Figure 11: fire-sales losses (as % of bank equity) in the four stress scenarios as a function
of the initial shock size. The fourth scenario does not generate fire sales in the threshold
model. The losses in the leverage targeting model are displayed by dashed lines.

distinguish three regimes: (i) no fire sales (losses) for small shocks ε < mini ε
∗
i , (ii) sig-

nificant fire-sales losses on the order of 10-15% of bank equity for large stress levels in
presence of large market depth, (iii) a region of high systemic risk, where fire-sales losses
deplete a large proportion of bank equity. The boundary between the regimes may be
attained either by increasing the stress level ε or by decreasing the market depth. In both
cases, there is a tipping point above/below which large-scale deleveraging is triggered.

Figure 13 displays a quite different picture for the leverage targeting model: here we
observe a very high level of losses (more than 30% of bank equity) at any level of market
depth and shock level. Moreover, fire-sales losses are essentially independent of the initial
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shock size. This shows that losses in the leverage targeting model are not driven by the
initial shock size but by the rebalancing generated by the leverage targeting rule. These
results also indicate that any study on the magnitude of fire sales should include a rigorous
sensitivity analysis with respect to the market depth parameters.

Figure 12: The fire-sales losses as a function of the initial shock and the market depth
(scaled via the liquidation horizon) for the threshold model. We can clearly distinguish
three regions: (i) no fire sales; (ii) price-mediated contagion with losses between 10 -
15% of total bank equity, (iii) region of high systemic risk: all banks default (i.e. absent
regulatory intervention, large scale contagion is to be expected). This shows that the
market depth has a highly significant impact on the estimated losses and the extent of
contagion.

Distribution of fire-sales losses across banks. We now turn to a more detailed
examination of losses induced by fire sales, at the level of individual institutions.

Figure 14 compares bank-level fire-sales losses with losses under the leverage targeting
model, using the same market depth estimates. fire-sales losses are observed to be much
larger for some banks in the leverage targeting model in comparison with the threshold
model; note the logarithmic scale in this plot. This figure shows that fire-sales losses are
not only larger on a system-wide level in the leverage targeting model (as seen in 13), but
are also higher at the individual bank level. Moreover, our model distinguishes the three
scenarios by severity, while fire-sales losses are very similar in the three scenarios for the
leverage targeting model.

Impact of heterogeneity in market depth. Greenwood et al. (2015) assume the
same market depth parameter for all asset classes, whereas our estimation, shown in
Figure 5, yields a heterogeneous distribution of market depth across asset classes. To
investigate the influence of this heterogeneity, we compare bank-level losses with losses in
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Figure 13: The fire-sales losses as a function of the initial shock and the market depth,
scaled via the liquidation horizon, for the leverage targeting model. The leverage targeting
model predicts large-scale losses for all combinations of shock sizes and market depths.

Figure 14: Bank-level fire-sales losses, compared with losses under the leverage targeting
model, using the same market depth estimates (logarithmic scale). Loss estimates are
higher in the leverage targeting model by several orders of magnitude.

a model with uniform market depth D computed as a holdings-weighted average:∑
i,µ

Πi,µ

D
=
∑
i,µ

Πi,µ

Dµ

. (31)

The result, displayed in Figure 15, clearly shows a huge impact of heterogeneity in market
depth when estimating fire-sales losses: clearly, institutions are differentiated according

29



Figure 15: Bank-level fire-sales losses computed using heterogeneous market depth pa-
rameters vs uniform market depth. The use of a uniform market depth for all assets
increases fire-sales loss estimates considerably.

to the liquidity of their holdings, sometimes by three orders of magnitude. This clearly
shows that bank stress tests with fire sales require a careful estimation of market impact/
market depth parameters for each asset class.

Figure 16 shows that the same experiment in the leverage targeting model leads to
quite different results: heterogeneity of market depth does not seem to have much impact
in this case. The reason is that the leverage targeting model overestimates fire-sales losses,
which are so large that they trigger the insolvency of many large leveraged institutions
in the first rounds of deleveraging. These defaulted institutions then cease to further
contribute to the loss estimates, which then do not have any further dependence on
market depth parameters.

For completeness, we also compare in Figure 17 our results with the ones obtained in
the leverage targeting model using a uniform market impact parameter D for all assets,
as in Greenwood et al. (2015). The models agree in the ‘meltdown’ region where all banks
default, but for intermediate stress levels the difference between loss estimates in the two
models is substantial, up to several orders of magnitude (note the logarithmic scales in
Figure 17). As discussed above, the main difference in the loss estimates arises from the
deleveraging rule (leverage targeting vs one-sided leverage constraint) but the difference
in market depth parameters accentuates the difference.

Bank failures: illiquidity and insolvency. Most theoretical models of financial con-
tagion have focused exclusively either on insolvency or on illiquidity as the cause of bank
failure, while bank stress tests have traditionally focused exclusively bank solvency. As
discussed in Section 2.5, our model allows for both possibilities: a bank may become in-
solvent due to asset losses, or become illiquid when all marketable assets have been sold.
The model thus allows to examine which is the principal mode of failure in the stress test.

Note that this distinction is not available in Greenwood et al. (2015); Duarte and
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Figure 16: Impact of heterogeneity in market depth in the leverage targeting model.

Eisenbach (2013): their assumption that all assets are available for liquidation entails
that the only situation where an institution becomes illiquid is when there are no more
assets available for liquidation, which implies that it is also insolvent. Our implementation
of the leverage targeting model distinguishes between marketable and illiquid assets, to
allow a meaningful comparison with our model.

We now proceed to analyse the number of failures respectively due to illiquidity and
insolvency as a function of the initial stress level. The left (resp. right) panel in Figure
18 displays the number of banks which become insolvent (resp. illiquid) after a given
number of rounds of deleveraging, as a function of the initial stress level. We observe that
insolvency is far from being the only mode of failure: depending on stress levels, 10 to 20
banks are expected to default due to illiquidity, yet remain solvent.
Figure 19 shows respectively the number of failures due to insolvency (left) and those
due to illiquidity (right) as a function of the liquidation horizon (market depth scaling
factor) and the initial shock size. We can see that while the number of insolvent banks
increases with the stress level, the number of failures due to illiquidity is non-monotone:
it is maximal in the range of relevant shocks (between 5% and 10%) but then decreases
as the shock level increases and insolvency becomes the main mode of default.

Second and higher round effects. We end this section by discussing the impact of
further rounds of deleveraging. Although in theory deleveraging may continue for many
rounds (and, in the leverage targeting model, for an infinite number of rounds), previous
empirical studies have mostly focused on a single round of deleveraging. (Greenwood
et al., 2015, Appendix B) find that, with their parameter choices, iterating the cascade
leads to all banks defaulting; we confirm this feature of the leverage targeting model in
Figure 13 for more general parameter combinations. Duarte and Eisenbach (2013) do not
find evidence for significant higher round effects for US banks. A possible explanation for
this may be their choice of parameters (large market depth, and/or large initial shock).
We attempt to clarify these findings by exploring systematically the impact of second or
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Figure 17: Bank-level fire-sales losses in the leverage targeting model with uniform market
depth differ by several orders of magnitude from those in the threshold model using
heterogeneous market depths.

Figure 18: Left: Number of insolvent banks as a function of number of rounds of delever-
aging and initial stress level. Right: Number of illiquid banks as a function of number of
rounds of deleveraging and initial stress level.
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Figure 19: Number of bank failures due to insolvency (left) and illiquidity (right), as a
function of the initial stress level and liquidation horizon (market depth).

higher rounds of deleveraging.
First, as noted in Section 3.3, even though the matrix Ω of portfolio overlaps is sparse,

the matrix Ω2 of second-order overlaps is dense, which implies that second round spillovers
can potentially lead to contagion from any institution to any other, quite unlike what
happens at the first round. By comparing the distribution of liquidity-weighted overlaps
in Figure 7 to second-round overlaps in Figure 8, we see that some shocks need at least
two rounds to propagate from one bank to another.

Second, as observed in Figure 18, many bank failures occur only at higher rounds,
especially failures due to illiquidity. Only examining a single round of the feedback loops
thus leads to an underestimation of the number and severity of bank failures. The left
panel in Figure 20 shows the fire-sales loss at each round k on a log scale for the estimated
market depth with τ = 20.

The right panel in Figure 20 shows the ratio of total loss (20 rounds) to the first round
loss, as a function of the initial stress level. The non-monotone feature of this dependence
shows that fire-sales contagion is most important for moderate stress levels, which trigger
deleveraging but are not extreme enough to generate insolvency at the first round. In this
case, second and higher rounds considerably change the outcome in terms of total loss
level and number of bank failures.

The results are even starker for the leverage targeting model: subsequent rounds lead
to an increase by a factor 10 to 40 of estimated fire-sales losses, especially when the initial
shock is small. This makes the “number of rounds” an important implicit parameter in
the leverage targeting model.

4 Indirect exposures

4.1 Notional vs effective exposures

The starting point in portfolio risk analysis is the notion of exposure to an asset class,
usually quantified by the notional volume of holdings, in monetary units, in that asset
class. In absence of contagion, losses in a stress scenario for this asset class will be a linear
function of the percentage shock to the asset value, the proportionality coefficient being
this notional exposure.
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Figure 20: Left: fire-sales losses as a function of the iteration step at the estimated market
depth (τ = 20) for the leverage targeting model (dashed), and the threshold models with
λb = λmax (full) and λb < λmax (circles). Right: Ratio of total loss to first round loss, as
a function of initial stress level.

However, the endogenous risk arising from fire-sales may amplify this initial loss in a
non-linear way, leading to a total loss that is higher than the one given by the notional
exposure, leading to an effective exposure higher than the notional one. Furthermore,
spillover effects from fire-sales may further increase this loss through indirect contagion.
The end result is that the (marginal) ratio of a portfolio’s loss in an asset class to shocks
affecting this asset class may be higher than its notional exposure. We capture this effect
by defining the notion of indirect exposure and quantifying it using our model.

Denoting as above by Θi,κ the holdings of institution i in the (illiquid) asset class κ,
consider a stress scenario in which the asset class κ depreciates by εκ. Then institution i
has a direct loss εκΘ

i,κ and, as long as the shock size is small, no deleveraging occurs and
the latter also represents the total loss, which increases linearly with εκ.

However, as stress levels increase, feedback effects and price-mediated contagion may
amplify the initial losses and result in a loss Loss(i, εκ) = εκΘ

i,κ + FLoss(i, ε) > εκΘ
i,κ.

The effective exposure to the asset class κ accounts for these additional losses and is
defined as

Ei,κ(εκ) :=
Loss(i, εκ)

εκ
= Θi,κ︸︷︷︸

Notional exposure

+
FLoss(i, εκ)

εκ︸ ︷︷ ︸
Indirect exposure

. (32)

Unlike the notional exposure, the indirect exposure depends on the shock size εκ and,
more importantly, on the configuration – size, leverage – of other financial institutions
with common asset holdings. Clearly, unlike the first term in (32), the second term cannot
be computed by examining the portfolio of i alone and depends on the entire network of
overlapping portfolios which contribute to fire-sales losses. Given the discussion in the
previous section, this should not come as a surprise, but it clearly departs from the
common assumption that notional exposures of a portfolio are sufficient to quantify its
risk. Here, the risk of a portfolio cannot be quantified in isolation, but depends on the
network of overlapping portfolios and the constraints that these portfolios face.

Interestingly, a financial institution may even have a non-zero (indirect) exposure to
an asset class which it does not hold in its portfolio, i.e. the second term in (32) may be
non-zero even if the first term is zero. Consider for example a bank A which does not hold
any subprime asset-backed securities, but has common holdings with a bank B with large
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holdings in subprime ABS. A loss in subprime ABS entails no direct loss to A but, if large
enough, may force B to deleverage by selling its marketable assets, also held by A, leading
to mark-to-market losses for A. This means that A will have an indirect exposure to large
losses in subprime ABS, an asset it does not hold! In this example, deleveraging by B
only occurs if subprime losses are significant, so A has no exposure to a small depreciation
in subprime ABS: the indirect exposure of A is clearly scenario-dependent. However, the
threshold beyond which spillover from B to A occurs depends on the leverage, size and
composition of B’s portfolio, which is unknown to A. This example, far from being a
curiosity, is in fact illustrative of the mechanism which led to amplification and contagion
of losses from the subprime asset class to the entire global financial system in 2007-2008
Longstaff (2010).

4.2 Indirect exposures: empirical evidence

To assess how large such indirect exposures may be in the European banking system, we
use the results of the previous section to examine the magnitude of indirect exposures
of European banks to residential and commercial mortgages. A first observation is that
most European banks tend to have very few mortgage loans outside of their own country,
so direct exposure to foreign residential and commercial mortgage is zero in most cases,
except for a few multinational banks. Given the large volume of mortgages on bank
portfolios, it is generally assumed that domestic house prices are the main risk factor for
commercial bank portfolios. However, as we shall see now, European banks also have
substantial indirect exposures to residential and commercial real estate asset classes in
other European countries where they do not issue mortgages.

Figure 21 displays the (total) loss for two banks in our sample, HSBC and Santander,
in the scenario where stress is applied to the Spanish real estate sector (Scenario 1).
Santander, a major Spanish bank, holds a lot of Spanish mortgages on its portfolio,
representing a notional exposure of EUR 82.7 bn, which corresponds to the slope of the
loss for shocks less than 3%, where no deleveraging occurs. HSBC, on the other hand,
holds very few Spanish mortgages (less than EUR 0.5 bn) so its notional exposure to this
asset class is much lower.

As losses on Spanish real estate exposures exceed 3.5%, some Spanish banks start
deleveraging and indirect losses lead to a sharp increase in the loss level. For a 5% shock
level, the total loss for Santander sharply increases to around EUR 25 bn, of which around
EUR 22 bn are indirect fire-sales losses and 3bn are direct losses. This corresponds to
an indirect exposure exceeding EUR 440 bn, which is significantly larger than its actual
direct exposure! In this regime, the indirect exposure is an important source of losses.
This deleveraging by Spanish banks then affects HSBC through price-mediated contagion:
as the shock level exceeds 5%, the fire-sales loss for HSBC starts to become important.
For a 5.5% shock level, HSBC’s losses through price-mediated contagion are equal to 2.73
bn EUR, which corresponds to an indirect exposure to Spanish real estate close to EUR
44 bn. Note that in the case of HSBC, the indirect loss corresponds to 100 times its
notional exposure to this asset class! This example suggests that in stress scenarios which
are sufficiently severe to trigger fire sales, actual losses can be much higher than what is
suggested by notional exposures. The difference corresponds to indirect exposures.

The right-hand graph in Figure 21 displays the magnitude of indirect exposures cor-
responding to these losses. We see that the indirect exposure of Santander, which mainly
stems from its own deleveraging and deleveraging by other Spanish banks with similar as-
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sets, sharply increases when the shock size reaches the threshold of 3%, then peaks around
4%: as the stress level increases beyond a certain level, some banks become insolvent and
cease to contribute to fire-sales spillovers.

As illustrated in the right panel in Figure 21, these indirect exposures clearly depend on
the severity of the stress scenario considered, the bank’s initial exposures, and the exposure
and constraints of other portfolios holding similar marketable assets. An implication is
that one cannot mimic the impact of indirect contagion by simply applying a higher stress
level for all banks, as is implicitly done in current supervisory stress tests.

Table 7 reports indirect exposures to Spanish real estate for several other European
banks. Comparing with their notional exposures, we observe that non-Spanish banks have
a substantial indirect exposure to Spanish real estate, which is not revealed by inspecting
their notional exposures to this asset class, which are between ten and a hundred times
smaller. This indirect exposure is due to the overlap in marketable assets with banks that
are directly exposed to the Spanish housing market.

These observations are not particular to the Spanish real estate sector. Other exam-
ples, which we do not report here for the sake of brevity, show that in the European
banking system a stress scenario affecting the commercial or residential real estate sec-
tor of a given country may generate significant losses arising from indirect exposures for
foreign banks.

Figure 21: Left: Losses arising from a depreciation in Spanish real estate, for HSBC and
Santander, as a function of the depreciation level (horizontal axis). Right: The indirect
exposures corresponding to these losses.

The concept of indirect exposures may also be defined at the country level. Figure 22
shows the indirect exposures of European banks (aggregated by country) to the Spanish
housing market. Shocks below 1% do not appear to trigger fire sales, and do not generate
indirect exposures.

As the stress level is increased, fire sales are triggered and spillover losses materialise;
when the initial shock size exceeds 3%, contagion increases fire-sales losses by two to
three orders of magnitude. What is striking is that these thresholds – 1%, 3% – are not
large, suggesting that indirect exposures and losses arising from price-mediated contagion
cannot be ignored in stress tests. The left panel of Figure 22 reveals that, after Spanish
banks, Portuguese and British banks have the largest indirect exposure to the Spanish
housing market. The right panel of 22 shows these indirect exposures. Table 8 reports fire
sales losses and estimated indirect exposures for different stress levels for the countries
highlighted in Figure 22.
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Bank Bank equity
(EUR bn)

Fire-sales loss
(EUR bn)

Fire-sales loss
(EUR bn)

Fire-sales loss
(EUR bn)

Stress level 1% Stress level 5.5% Stress level 10%

Santander 42.0 0.826 22.0 22.2
BBVA 24.9 0.771 18.8 20.0
Deutsche Bank 37.6 0.045 3.00 3.07
HSBC 86.90 0.024 2.73 2.76
RBS 59.0 0.069 4.36 4.42
Nordea 19.1 0 0.17 0.19

Bank Direct exposure
(EUR bn)

Indirect ex-
posure (EUR
bn)

Indirect ex-
posure (EUR
bn)

Indirect ex-
posure (EUR
bn)

Stress level 1% Stress level 5.5% Stress level 10%

Santander 82.7 30.0 354 202
BBVA 82.5 28.0 302 177
Deutsche Bank 8.88 1.63 48.4 27.8
HSBC 0.452 0.86 43.9 25.0
RBS 2.68 2.50 70.2 40.1
Nordea 0.003 0.05 2.76 1.69

Table 7: Capital, direct exposures and fire-sales losses and indirect exposures for three
selected shock sizes. When price-mediated contagion occurs, fire-sales losses erode a
considerable fraction of the equity. This corresponds to indirect exposures that often
exceed the direct exposures.

Overall, the direct exposure of European banks to the Spanish residential and com-
mercial real estate sector is EUR 740 bn. When averaged both across all banks and all
shock sizes (between 0 and 20%), the indirect exposures amount in this example to 160%
of the direct exposures, which is non-negligible. To be clear, in the event of a meltdown
of the Spanish housing sector, non-Spanish European banks will, on average, be affected
for up to 160% of their actual holdings in Spanish mortgages.

This clearly means that housing prices in one European country can strongly affect
banks of other European countries, an issue which can only be tackled by macroprudential
policies applied at a Europe-wide level.12

These indirect exposure figures, as all other results obtained in the stress tests, are
sensitive to assumptions on market depth, or, alternatively, on the liquidation horizon.
Figure 23 shows the fire sales losses of the UK banking system to the Spanish housing
market. Reading the graph from front to back, we see that a contraction of market
liquidity can greatly exacerbate fire-sales losses: there is a tipping point at which losses
increase from EUR 10 bn to EUR 100 bn. Figure 24 shows the estimated indirect exposure
of the UK banking system to the Spanish housing market as a function of the stress level
and the liquidation horizon (or market depth scaling factor). In the case of the UK,
the main asset classes contributing to this indirect exposure to Spanish residential and
commercial mortgages are via portfolio overlaps in Spanish, UK, US, and Asian corporate
bonds as well as Spanish, Asian, non-emerging EEA, and US government bonds.

Indirect exposures and the losses arising from them provide a more palpable explana-
tion of how an initial loss of about USD 500 bn in the US subprime sector was able to

12On this point, we note that Brexit does not act as a barrier for price-mediated contagion.
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balloon into trillions of dollars of losses across multiple asset classes during the financial
crisis.

Figure 22: Indirect exposures of European banks, aggregated by country, to the Spanish
housing market.

Country Total bank eq-
uity (EUR bn)

Fire-sales loss
(EUR bn)

Fire-sales loss
(EUR bn)

Fire-sales loss
(EUR bn)

Stress level: 1% Stress level: 2% Stress level:
3.5%

ES 22.8 0 2.14 71.6
GB 7.9 0 0.08 12.6
FR 15.9 0 0.09 9.88
DE 2.4 0 0.07 8.23
PT 697.0 0 0.03 14.5

Country Direct exposure
(EUR bn)

Indirect ex-
posure (EUR
bn)

Indirect ex-
posure (EUR
bn)

Indirect ex-
posure (EUR
bn)

Stress level: 1% Stress level: 2% Stress level:
3.5%

ES 22.8 0 0.6 7
GB 7.9 0 0.02 0.51
FR 15.9 0 0.03 0.43
DE 2.4 0 0.02 0.37
PT 697.0 0 0.01 0.13

Table 8: Fire-sales losses and indirect exposures at country level for the most heavily
exposed countries.

4.3 Relevance of indirect contagion for bank stress tests

Given the magnitude of indirect contagion, it is not surprising that accounting for indirect
losses can modify the outcome of bank stress tests. To show this more clearly, we compare
the outcomes of a bank-level stress test, where the (direct) loss resulting from initial stress
is compared to its capital, with that of a systemic stress test, where we also account for
fire-sales spillover which may follow from the initial loss.
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Figure 23: The fire-sales loss (in EUR) of the UK banking system to the Spanish residential
and commercial mortgage market as a function of the stress level and liquidation horizon
(market depth). Even with optimistic market depth estimates, when the initial shock is
above 3.5%, indirect losses are non-negligible.

Figure 24: The indirect exposure (in EUR) of the UK banking system to the Spanish res-
idential and commercial mortgage market as a function of the stress level and liquidation
horizon (market depth).

Figure 25 plots, as a function of the shock size, the number of banks (out of 90 banks)
in the sample which have enough capital to sustain the initial losses but become insolvent
after a single round of fire-sales (for the standard horizon τ = 20). For moderate stress
levels (5-10%) we identify up to 10 banks (in scenario 1), reported in Table 9, which pass
the bank-level stress test but fail the systemic stress test.

Figure 26 shows the number of banks that pass the bank-level stress test but fail the
systemic stress test as a function of the initial stress level and the liquidation horizon.
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We see that the discrepancy between the outcomes of the systemic and single-bank stress
test is precisely in the regions corresponding to moderate to high stress levels typically
used in supervisory stress tests.

These results illustrate that the contagious losses from fire sales can be of a sufficiently
large magnitude to change the outcome of bank stress tests.

Figure 25: Number of banks with capital sufficient to withstand the initial stress, but fail-
ing to withstand the losses due to indirect contagion after a single round of deleveraging.

Figure 26: Number of banks with capital sufficient to withstand the initial stress, but
which fail to withstand losses due to indirect contagion as a function of the initial shock.
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Scenario Banks failing systemic stress test
after 2 rounds of fire sales

1 BFA-BANKIA
Caja de ahorros y pensiones de Barcelona
Banco popular Español
Banco de Sabadell
Caixa d’Estivalis de Catalunya, Tarragona i Manresa
Caixa de Aforros de Galicia, Vigo, Ourense e Pontevedra
Groupe BMN
Bankinter
Caja de Ahorros y M.P. de Zaragoza, Aragon y Rioja
Banco Pastor

2 DnB NOR
SEB
Svenska Handelsbanken
Swedbank

Table 9: EU banks that pass the single-bank stress test for a stress level of 10% but fail
the systemic stress test after a single round of fire sales is accounted for.

4.4 Why indirect exposures cannot be reproduced in single-
bank stress tests

An argument sometimes advanced to avoid moving to a systemic stress testing framework
is that while fire-sales effects are important and contribute to amplifying losses, their
effect can be mimicked in bank-level stress tests by applying more severe shocks, without
simulating fire sales in a detailed manner. Let us now examine the validity of this claim
using the above results.

First, we note that the total loss across all banks in the systemic stress test can
be obviously reproduced in a macro stress test without fire sales by simply scaling the
initial shock size by an adequate factor. However, in absence of fire sales, bank losses are
proportional to the banks notional exposure to the asset class subject to stress, whereas
the loss in the systemic stress test is proportional to the effective exposure, so bank-level
losses will not be reproduced correctly under this adjustment.

Figure 27 compares bank-level losses in the systemic stress test with fire sales (vertical
axis) to losses of the same banks in a stress test without fire sales, but with the severity
of the shock chosen so that the total system-wide loss is equal in the two stress tests
(horizontal axis). As is clearly visible from this figure, the distribution of losses across
banks is fundamentally different in these two cases. No amount of scaling at the level of
macro-shocks defining the stress scenario can adjust for the cross-sectional heterogeneity
of indirect exposures. Thus, even if the stress level is adjusted to make the total loss
in the banking system equal in both stress tests, the allocation of losses across banks
is essentially different once fire sales are accounted for. This is a strong argument for
including a proper model of fire sales into any macroprudential stress testing framework.
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Figure 27: Scatter plot of the loss in a stress scenario against the exposure to the illiquid
assets of the stress scenario: It is not possible to account for fire sales in a stress scenario
by using a larger initial macro shock. As the graph shows, even when the shock is scaled
such that the same total loss is generated, the distribution of losses across banks will be
fundamentally different.
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5 Implications for macroprudential stress testing and

regulation

We have presented a stress testing framework for quantifying the endogenous risk exposure
of the banking system to fire sales and feedback effects which may arise from macro-shocks
to the financial system. Our findings provide quantitative evidence for the importance of
endogenous risk Danielsson et al. (2004); Shin (2010); Cont and Wagalath (2016) in the
financial system and have implications for systemic stress testing, macroprudential policy
and risk management in financial institutions:

1. Need for a systemic stress testing framework for capital adequacy

Theoretical studies Danielsson et al. (2004); Shin (2010); Pedersen (2009); Cont and
Wagalath (2013) have repeatedly pointed out the importance of endogenous risk for
financial stability. Fire sales are arguably an extreme example of endogenous risk
and pro-cyclical behavior, yet they are not systematically integrated into bank stress
testing methodologies.

Our quantitative findings join a list of previous studies in pointing out the impor-
tance and magnitude of fire sales and price-mediated contagion as a risk ampli-
fication mechanism for systemic risk. Even under benign assumptions on market
liquidity, the magnitude of exposures arising from this channel is too large to ignore;
losses arising from this channel can dominate other types of risk exposures in cer-
tain risk scenarios. More importantly, we have shown that risk exposures of financial
institutions arising from fire sales cannot be replicated in single-institution stress
tests, even after scaling to extreme stress levels. This pleads against a widespread
approach which consists in simply applying a (constant) discount to asset values
in stress tests to account for liquidation costs: we have argued that this discount
is endogenous and strongly depends on the degree of leverage and concentration of
asset holdings across financial institutions.

These observations, which are based on public data and may be readily replicated
by regulators, plead for a systemic approach to bank stress testing which properly
accounts for price-mediated contagion. We have presented the building blocks of
an operational framework for estimating such endogenous effects and incorporating
them into a macroprudential stress testing framework.

Role of the liquidation horizon: Our analysis shows that the magnitude of fire sales
losses is sensitive to the liquidation horizon. Allowing financial institutions in diffi-
culty a longer horizon to liquidate attenuates the impact of fire sales.

2.3. Indirect exposures as tools for risk management:

As pointed out by Ellul et al. (2014) “forward-looking institutions that rationally
internalize the probability of fire sales are incentivized to adopt a more prudent
investment strategy during normal times, which leads to a safer portfolio entering
the crisis”. One of the obstacles to internalizing the risk of fire sales is that its
proper assessment requires some knowledge of the concentration of asset holdings
across financial institutions, which is typically only available to regulators.

One of the by-products of our stress testing approach is the ability to compute the
indirect exposures of an institution to various asset classes (Section 4). Commu-
nicating to an institution the magnitude of its indirect exposures to various asset
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classes, as evaluated in the systemic stress test, allows the institution to have a
better assessment of its risk and provides incentives to reduce such exposures.

4. The role of mark-to-market accounting rules:

Previous studies Allen and Carletti (2008); Ellul et al. (2014) have focused on mark-
to-market accounting as the channel of transmission of losses in fire-sales contagion.
Allen and Carletti (2008) present arguments against the use of mark-to-market
accounting for determining solvency during crisis periods; indeed, such temporary
suspensions were used in 2009 by US banks. Jotikasthira et al. (2015) use the
example of the insurance sector to caution against this recommendation.

Our model offers a perspective on this debate: having distinguished between mar-
ketable (‘Level I’) assets and illiquid assets, we note that a suspension of mark-to-
market accounting rules is only likely to affect the latter. Suspension of mark-to-
market accounting for illiquid assets may indeed affect the first step in our iteration,
in which losses to illiquid assets trigger the initial deleveraging. But once delever-
aging by a set of institutions takes place, the subsequent losses are not accounting
losses, but market losses in ‘Level I’ securities whose magnitude is not affected by
accounting conventions. Thus, temporary suspension of market accounting rules
may reduce the perimeter of institutions affected by an initial stress to some illiquid
asset class, but once fire sales affect liquid ‘Level I’ securities, all institutions holding
them will be affected by market losses.

5. Implications for the interaction between banks and non-banks:

Price-mediated contagion is not limited to banks; any institution exposed to fire-
sales risk or redemption risk and having common asset holdings with banks may play
a role in channeling losses to the banking sector. Indeed, there is ample empirical
evidence of fire sales by asset managers Coval and Stafford (2007); Jotikasthira et al.
(2012) and insurance companies Ellul et al. (2011).

Current attempts to monitor the interaction between the banking sector and non-
bank financial institutions mainly focus on direct exposures and liabilities between
banks and non-banks Grillet-Aubert et al. (2016). Given that a large fraction of
financial assets are held by non-banks – large asset managers, pension funds, and
insurance companies – the scope for indirect contagion from ‘non-banks’ to the
banking sector through the fire-sales channel exists and its proper assessment calls
for a system-wide stress test iextended to major non-banks. Extending the present
model to include non-banks would require a careful analysis of the mechanisms which
would lead such institutions to shed assets: redemption risk for asset managers
and asset-liability mismatch for pension funds are plausible avenues to consider
Getmansky et al. (2016); Calimani et al. (2016).

6. Need for transnational coordination on stress testing and macroprudential policy:
Price-mediated contagion defies institutional ring-fencing and national borders. Our
estimated magnitudes for indirect cross-country exposures in Europe, as shown
in Table 7, illustrates this point. Unlike direct exposures, which may be limited
through various capital restrictions, portfolio overlaps and indirect exposures are
difficult to put limits on: any such restrictions would amount to limiting interna-
tional diversification of bank portfolios. Any meaningful systemic stress test should
account for the magnitude of these cross-country indirect exposures, and thus cannot
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be conducted at the level of a single country and calls for transnational coordination
of macroprudential policies.
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A Appendix

A.1 Sources for market data

US treasuries: http://www.sifma.org/uploadedFiles/Research/Statistics/StatisticsFiles/
SF-US-SF-Trading-Volume-SIFMA.xls

US corporate bonds: http://www.sifma.org/uploadedFiles/Research/Statistics/

StatisticsFiles/Corporate-US-Corporate-Trading-Volume-SIFMA.xls

DE treasuries: http://www.deutsche-finanzagentur.de/en/institutional-investors/
secondary-market/

UK treasuries: http://www.dmo.gov.uk/index.aspx?page=Gilts/Turnover
ES treasuries: http://www.tesoro.es/sites/default/files/estadisticas/18.pdf

48

https://doi.org/10.1016/j.finmar.2010.07.005
http://www.jstor.org/stable/1913210
https://doi.org/10.1111/0022-1082.00373
https://doi.org/10.1016/j.jfineco.2010.01.002
https://doi.org/10.1016/j.jfineco.2010.01.002
https://doi.org/10.1016/j.jfineco.2011.05.011
http://ssrn.com/abstract=1178722
http://www.ijcb.org/journal/ijcb09q4a10.pdf
http://www.ijcb.org/journal/ijcb09q4a10.pdf
https://doi.org/10.1257/jep.25.1.29
https://doi.org/10.1257/jep.25.1.29
https://doi.org/10.1111/j.1540-6261.1992.tb04661.x
https://doi.org/10.1111/j.1540-6261.1992.tb04661.x
http://www.sifma.org/uploadedFiles/Research/Statistics/StatisticsFiles/SF-US-SF-Trading-Volume-SIFMA.xls
http://www.sifma.org/uploadedFiles/Research/Statistics/StatisticsFiles/SF-US-SF-Trading-Volume-SIFMA.xls
http://www.sifma.org/uploadedFiles/Research/Statistics/StatisticsFiles/Corporate-US-Corporate-Trading-Volume-SIFMA.xls
http://www.sifma.org/uploadedFiles/Research/Statistics/StatisticsFiles/Corporate-US-Corporate-Trading-Volume-SIFMA.xls
http://www.deutsche-finanzagentur.de/en/institutional-investors/secondary-market/
http://www.deutsche-finanzagentur.de/en/institutional-investors/secondary-market/
http://www.dmo.gov.uk/index.aspx?page=Gilts/Turnover
http://www.tesoro.es/sites/default/files/estadisticas/18.pdf


FR treasuries: http://www.aft.gouv.fr/rubriques/trading-volume_109.html
IT treasuries: http://www.dt.tesoro.it/export/sites/sitodt/modules/documenti_
en/debito_pubblico/presentazioni_studi_relazioni/3_3_2000_13_43_The-Italian-Treasury-.

pdf BE treasuries: http://www.debtagency.be/fr_products_olo_volume.htm
SE treasuries: http://www.riksbank.se/Documents/Rapporter/Finansmarknaden/2014/
rap_finansm_140829_eng.pdf

PT treasuries: http://www.igcp.pt/fotos/editor2/2015/Estatisticas/12_Transacies_
medias_diarias_OT_e_BT_Dez15_1.pdf

GR treasuries: http://www.bankofgreece.gr/Pages/en/Markets/HDAT/statistics.

aspx

A.2 EBA: data identifiers and residual exposures

Model variable EBA dataset identifier

Assets
Illiquid assets Θ

Residential mortgage exposures (εκ ≥ 0) 33013
Commercial real estate exposures (εκ ≥ 0) 33018

Retail: Revolving exposures (εκ ≡ 0) 33015
Retail: SME exposures (εκ ≡ 0) 33016
Retail: other exposures (εκ ≡ 0) 33017

Indirect sovereign exp. in the trading book (εκ ≡ 0) 34017
Defaulted exposures (εκ ≡ 0) 33020

Remaining exposures* (εκ ≡ 0) -
Securities Π

Institutional client exposures 33010
Corporate exposures 33011
Sovereign exposures 34013 , 34014 , 34015

Direct sovereign exposures in derivatives 34016

Liabilities
Tier 1 capital 30014

Debt -

Table 10: Mapping of EBA data to model variables.

At the time the data was collected, banks were following Basel II guidelines, which
corresponds to 8% ratio of capital to risk-weighted assets (RWA), and the Basel 3 leverage
constraint was not yet in place. Some banks in the sample have leverage higher than the
Basel III limit of 33. In order to avoid fire sales in absence of a shock, we scale these banks’
capital levels to bring their leverage within the interval of [29.7, 31.35] = 33× [90%, 95%]
as shown in Figure 28.13

Correcting for data inconsistencies. The EBA data provides information on no-
tional exposures of each bank to 148 asset classes.14 Bank BE005 records a zero value

13 Similarly, Greenwood et al. (2015) cap the leverage at 30 in their analysis.
14For more details on the regulatory definition of “exposure” cf. the EBA methodological note:

https://www.eba.europa.eu/documents/10180/15932/EBA-ST-2011-004-Detailed-Methodological-Note_1.pdf as well
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Figure 28: Leverage of banks in the EBA dataset and adjusted leverage used as model
input: By adding capital to the banks with leverage above 33, the leverage of these banks
is brought slightly below 33.

for total exposures despite positive exposures in the individual asset classes. As a proxy
for this bank, we use information from the “Total assets after the effects of mandatory
restructuring plans”15, which is usually quite close to the values of “total exposures”across
the dataset.

Another consistency issue is that the individual exposures in the dataset do not always
sum up to the total exposure figure. Indeed, EBA explains in a footnote to the “total
exposure” data that: “Total exposures is the total EAD according to the CRD definition
based on which the bank computes RWA for credit risk. Total exposures, in addition to
the exposures broken down by regulatory portfolios in this table [corresponding to the
four asset classes in the portfolio Π above] include EAD for securitisation transactions,
counterparty credit risk, sovereigns, guaranteed by sovereigns, public sector entities and
central banks”. Due to this, the sum of balance sheet items deviates from the “total
exposures” information recorded in the dataset. In order to correct for this deviation
we add a “remaining exposures” item to the illiquid assets category. The average size of
the negative correction terms is 5.9% of the corresponding balance sheet sizes. Double
counting is thus a minor issue. The average size of the positive correction terms is 13.4%.
This average is inflated by five small banks that are outliers and have correction terms
above 50%. Excluding these outliers, the average of the correction terms reduces to 9%.
The average size of the correction term over the entire data set is 8.9%. On average, we
thus underestimate the size of the banks’ balance sheets. This may only bias results in
the sense of underestimating the impact of fire sales. We adjust for this with the “other
illiquid assets” category, as they play no role in the fire sale cascade.

as the identifier 33021 in the dataset.
15This information is recorded under identifier 30029 in the EBA dataset.
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