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Abstract

We derive a microfounded, nonhomothetic generalization of all known superlative price
indices, including the Fisher, the Törnqvist, and the Sato-Vartia indices. The index largely
avoids the need for estimation, aggregates consistently across heterogeneous households,
and admits different index weights across the expenditure distribution. The latter property
rationalizes the methods used in most previous measurements of inflation inequality. In an
empirical application to the United States using CEX-CPI data for the period 1995–2020,
we find: (i) poor and rich households experience on average the same inflation rate; but (ii)
inflation for the poorest decile is more than 2.5 times as volatile as that of the richest decile;
and (iii) this higher volatility primarily stems from a larger exposure to price changes in
food, gas and utilities. In these findings, substitution between goods as prices change plays
only a second-order role. Instead, almost all differences come from mechanical changes in the
cost of different base-period reference baskets.
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1 Introduction
Does inflation vary with income? Conventional price indices that are used for the measurement
of inflation cannot answer this question because these rely fully on the assumption of homothetic
preferences. That is, consumers are assumed to make identical consumption allocations, regardless
of income level. Yet, one of the oldest empirical economic facts, dating back to at least Engel
(1857), is that consumption patterns differ systematically between rich and poor consumers.
In other words, preferences are not homothetic. Differences in consumption bundles raises the
possibility for inflation inequality, with implications for any area where inflation matters, not
least monetary policy and the measurement of real incomes. By now there exists an abundance
of empirical research investigating this issue by computing standard (homothetic) price indices
for separate income groups. The question of how to consistently incorporate nonhomothetic
preferences into conventional price index formulas, however, remains unsolved.

The goal of this paper is to tackle this problem head-on. In doing so, we make three main
contributions. First, we derive a cost-of-living index that is consistent with nonhomothetic
consumer demand theory. In its most general form, this index nests all known superlative price
indices as special cases, including the Fisher (1922), the Törnqvist (1936), and the Sato (1976)
and Vartia (1976) indices. Second, we outline a feasible strategy to compute these price indices
without being at the mercy of estimating entire demand systems. Instead, under a relatively mild
assumption, estimation reduces to two parameters which are identified from a single equation.
Third, we implement this approach using consumption and CPI data to investigate US inflation
heterogeneity over the last quarter century.

Our framework allows for a characterization of the cost of living for the full expenditure
distribution as well as at the aggregate level. We achieve this by deriving cost-of-living indices
from a specification of Muellbauer’s (1975, 1976) “price independent generalized linearity”
(PIGL) preferences that has recently gained popularity in the structural change literature.1
These preferences are nonhomothetic but maintain tractable aggregation properties that allow us
to account for consumer heterogeneity. Like many conventional price indices, we show that the
PIGL preferences induce cost-of-living indices that are weighted geometric means of individual
price changes. Unlike their homothetic counterparts, however, the weights on these price changes
vary systematically across the expenditure distribution. Specifically, richer households allocate
higher weights to price changes of luxury goods. Changes in the cost of living are consequently
allowed to differ with the expenditure level.

Due to the nonhomothetic nature of the underlying PIGL preferences, the cost-of-living index
in its most general form is not directly computable without estimating a complete consumer
demand system. We overcome this hurdle by imposing a key assumption: that preferences are
weakly separable into necessities and luxuries. Under the weak separability assumption, the cost-
of-living index reduces to observed price changes and expenditure shares and only two unknown
parameters, which are readily estimated by linear as well as nonlinear regression methods. As in
for instance Wachter and Yogo (2010) and Orchard (2021), classification of individual goods as
“necessity” or “luxury” is straightforwardly done by investigating Engel curves. The cost-of-living
index still nests homothetic price indices as special cases, so the assumption of weakly separable

1 See for instance Boppart (2014), Alder, Boppart and Müller (2022), and Cravino, Levchenko and Rojas
(forthcoming).
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preferences is not a hard restriction when compared to conventional price indices. In our empirical
application, we also show that it is well justified in the data.

We illustrate this implementation method by an empirical analysis of US inflation heterogeneity
over the years 1995 to 2020. In this exercise, we consider twenty-one consumption good categories
from the Consumer Expenditure Survey (CEX) that we match with corresponding CPI sub-
indices. We obtain three main empirical results. First, households in the first expenditure decile
(“the poor”) experienced similar inflation as households in the tenth expenditure decile (“the
rich”) between 1995 and 2020, although substantial differences arise in the period around the
Great Recession. In particular, poor households faced on average a 0.37 percentage points higher
annual inflation rate between 2004 and 2015. Second, while the average inflation rate is relatively
similar between the poor and the rich, inflation volatility is more than 2.5 times higher for the
poor. Third, we find that this higher volatility primarily stems from a larger exposure for the
poor to price changes in food, gas and utilities.

Decomposing the price index, we find that the overall development is almost entirely driven
by mechanical price changes on the base-period consumption basket. Substitution behavior,
as relative prices change, plays only a minor role. Yet, both differential base-period reference
baskets and differential substitution are significant drivers in explaining the differences between
groups, as poor households substitute away from expensive goods to a larger degree than the
rich.

Furthermore, we exploit the fact that the price index can be used to retrieve inflation for a
sequence of varying real expenditures and document the average inflation experienced over the
life-cycle. The results from this analysis indicate that the inflation volatility of the young and
poor is somewhat dampened by their life-cycle path of expenditures, while this is not the case
for the old and poor. Overall, aging effects do not substantially change the fact that households
who are initially poor experience a 2.5 times higher expected volatility of inflation compared to
households who are initially rich.

This paper falls within an old literature on the economic approach to price index theory following
Konüs (1939), Samuelson and Swamy (1974), Diewert (1976, 1978), Feenstra (1994), Redding
and Weinstein (2020), and many others, whereby cost-of-living indices are derived from consumer
theory via the expenditure function.2 Central to this line of research is Diewert’s notion of a
superlative price index, which includes indices that are exact for some homothetic expenditure
function and can approximate other homothetic indices to the second order. The Fisher, the
Törnqvist and the Sato-Vartia indices are all known to satisfy this property (see Diewert, 1976, for
the former two and Barnett and Choi, 2008, for the latter). Our paper provides a nonhomothetic
generalization of these and all other currently known indices within this class.

Nonhomothetic preferences have generally received little attention in the price index literature.
Feenstra and Reinsdorf (2000) derive an index for Deaton and Muellbauer’s (1980) almost ideal
demand system (AIDS) and Oulton (2012) proposes a numerical algorithm to calculate indices
of Banks, Blundell and Lewbel’s (1997) generalization of the AIDS. The AIDS is a special case
of the PIGLOG class of preferences, which is itself a limit case of the PIGL preferences used
here. Unlike the PIGL class, the AIDS does not provide a straightforward generalization of

2 Diewert (1993) surveys the early stages of this literature, which is far too large for us to do justice to here.
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conventional price indices. Redding and Weinstein (2020) also derive a theoretical price index
for the nonhomothetic CES specification of Hanoch (1975) and Sato (1975). In contrast to our
index, however, the nonhomothetic CES specification does not consistently aggregate across
heterogeneous consumers and (to the best of our knowledge) provides no easy implementation
empirically without being forced to estimate all parameters in the utility function.

We also add to an empirical strand of literature concerned with inflation inequality which dates
back at least to the 1950s (see for instance Muellbauer, 1974, and references therein), with recent
advances surveyed by Jaravel (2021). The bulk of this literature approximates nonhomothetic
cost-of-living indices by computing conventional homothetic price indices separately for different
income groups.3 This “group-specific” approach posits that differences in inflation are driven
by differences in ex ante tastes and rests on a theoretical foundation where deep preference
parameters jump discontinuously between groups.4 These discrete jumps set aside straightforward
comparisons between groups as well as to an aggregate inflation rate, the latter being completely
lost. By contrast, inflation heterogeneity here stems endogenously from differences in expenditures.
This allows us to characterize the full inflation distribution as well as aggregate inflation, with
clear-cut comparisons between subgroups. Nevertheless, the group-specific approach provides
an easy way to obtain index weights that vary with income, a feature that lies at the core
of our framework. We therefore do not necessarily see these approaches as direct substitutes.
Instead, our framework rationalizes previous empirical methodologies within a consistent theory
for nonhomothetic consumer demand.

The paper proceeds as follows. Section 2 covers the theoretical framework, derives the non-
homothetic price index and shows how all superlative price indices can be generalized to a
nonhomothetic setting. Section 3 outlines the strategy of our empirical implementation and
discusses the assumption we make to render the demand system estimation feasible. Section 4 ex-
plains the data we employ, classifies the twenty-one goods into necessities and luxuries and reports
estimates from the tractable demand system estimation. Section 5 reports the main empirical
results, while Section 6 decomposes the price index and inflation further. Section 7 compares
the main results to traditional demand system estimation and Section 8 concludes.

2 Theoretical Framework
The framework we consider is one where consumers maximize utility over a set of goods J
with a corresponding price vector p and where we wish to investigate the change in the cost
of living between a period t and some base period s. In what follows, we drop time subscripts
whenever possible to simplify notation, as long as this causes no confusion. The minimum
expenditure e required to obtain some utility level u when faced by the price vector p is given by
the expenditure function e = c(u,p). Following Konüs (1939), we define a cost-of-living index in
period t relative to base period s to be the ratio of minimum expenditures required to maintain

3 Recent papers employing this approach include Hobijn and Lagakos (2005), McGranahan and Paulson (2005),
Broda and Romalis (2009), Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Orchard (2020, 2021), Argente
and Lee (2021), and Lauper and Mangiante (2021).

4 The implication being, for instance, that poor consumers allocate a larger share of expenditures to, say,
rented housing due to some innate preference for rental homes obtained at birth.
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a constant utility level:
P (u,pt,ps) ≡

c(u,pt)
c(u,ps)

. (1)

Hereinafter we typically leave the arguments of the cost-of-living index implicit and simply write
Pt = c(u,pt)/c(u,ps).

2.1 The Homothetic Case

In general, the Konüs cost-of-living index (1) depends on the reference standard of living u as
well as the prices in the two periods. Samuelson and Swamy (1974) show that independence of u
occurs if and only if we consider the special case of homothetic preferences. Suppose for instance
that consumer preferences are characterized by an indirect utility function of the standard
homothetic CRRA form,

V (e,p) = 1
ε

[(
e

B(p)

)ε
− 1

]
, (2)

where B(p) is a linearly homogenous function of prices and ε is the coefficient of relative
risk aversion. Inverting the utility function to obtain the expenditure function c(u,p) =
(1 + εu)1/εB(p) and using Equation (1), we get

Pt = B(pt)
B(ps)

, (3)

which is evidently independent of the utility level. All conventional price indices that can be
derived from economic theory satisfy this property.

2.2 The Nonhomothetic Case: Preferences

Our framework extends the indirect utility (2) to allow for nonhomothetic behavior. To this end,
we characterize preferences by an indirect utility function as in Boppart (2014),

V (e,p) = 1
ε

[(
e

B(p)

)ε
− 1

]
− ν

γ

[(
D(p)
B(p)

)γ
− 1

]
, (4)

where B(p) and D(p) are linearly homogeneous functions of prices and the parameters satisfy
ε, γ ∈ (0, 1) and ν > 0. This utility function belongs to the class of PIGL preferences defined
by Muellbauer (1975, 1976) and more generally to the class of “intertemporally aggregable”
preferences defined by Alder, Boppart and Müller (2022). Despite being nonhomothetic, these
preferences consistently aggregate across individual-level expenditures. Aggregate expenditure
shares in this case correspond to a representative expenditure level which is independent of prices
and given by the average expenditure level multiplied by a simple inequality measure.

To gain understanding and intuition of Equation (4), it is convenient to think of B(p) and D(p)
as the expenditure functions of some homothetic subutility functions. We refer to these subutility
functions as “goods” or “baskets”. The parameter ε controls the degree of nonhomotheticity
between the D and B baskets: the expenditure elasticity of demand for the D basket is 1− ε,
which is less than 1 under the restrictions on ε. The D basket therefore covers necessity needs
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and B conversely covers luxury needs. In the limit case ε→ 0, the expenditure elasticity is 1 and
we obtain homothetic preferences. Comparing Equations (2) and (4), we also obtain homothetic
preferences for ε 6= 0 whenever B(p) = D(p) or in the limit case ν → 0. The parameter ν
is a scale parameter that controls the level of demand for the D basket and γ controls the
nonconstant elasticity of substitution between the B and D baskets.

In general, there is nothing restricting an individual good j from occurring in both the B and
the D baskets. If there is overlap between the sets of goods within B and D, the allocations
to the B and D goods are not directly observable and we obtain what Blundell and Robin
(2000) call “latent separability”. Latent separability is equivalent to weak separability, but in the
latent goods B and D rather than in purchased goods, with weak separability as the special
case when there is no overlap between B and D. Two-stage budgeting is still valid under latent
separability, meaning that the consumer’s allocation problem can be viewed in two stages where
consumers first allocate expenditures between the B and D baskets and then, conditional on this
first-stage decision, allocate expenditures across individual goods within B and D. Applying
Roy’s identity, the expenditure shares wD and wB allocated to the D and B baskets in the first
stage are therefore given by

wD = ν

(
B(p)
e

)ε (D(p)
B(p)

)γ
(5)

and

wB = 1− ν
(
B(p)
e

)ε (D(p)
B(p)

)γ
. (6)

Similarly, the shares wDj and wBj of total D and B expenditures allocated to individual good j
are given by

wDj = pj
Dj(p)
D(p) and wBj = pj

Bj(p)
B(p) , (7)

where Dj and Bj denote, respectively, the partial derivatives of D and B with respect to pj .
Equations (5) to (7) imply an expenditure share wj of good j in total expenditures of the
form

wj = pj

[
Bj(p)
B(p) +

(
Dj(p)
D(p) −

Bj(p)
B(p)

)
ν

(
B(p)
e

)ε (D(p)
B(p)

)γ ]
. (8)

Therefore, nonhomotheticity between B and D also creates nonhomothetic behavior across
individual goods, with a good j being a necessity if Dj/D > Bj/B and a luxury vice versa.
Aggregating over any N number of consumers indexed by h, the aggregate expenditure share wj
of good j across these consumers is

wj = pj

[
Bj(p)
B(p) +

(
Dj(p)
D(p) −

Bj(p)
B(p)

)
ν

(
B(p)
e

)ε (D(p)
B(p)

)γ
κ

]
, (9)

where e ≡ 1
N

∑N
h=1 eh is the average expenditure level and κ is an inequality measure defined

by

κ ≡ 1
N

N∑
h=1

(
eh
e

)1−ε
. (10)
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Aggregate shares wB and wD of the B and D baskets are defined similarly. See Alder, Boppart
and Müller (2022, Proposition 2) for a derivation of Equations (9) and (10). The representative
agent in Muellbauer’s (1975, 1976) sense (henceforth the PIGL RA) is the expenditure level eRA
that induces the aggregate expenditure share. By Equation (9), this expenditure level is given
by eRA ≡ eκ−1/ε.

2.3 The Nonhomothetic Case: Price Index

The indirect utility function (4) allows us to extend the homothetic cost-of-living index (3). Unlike
the homothetic case, the index now depends on a base-period standard of living, represented by
the utility level u in the Konüs definition (1). Because preferences are nonhomothetic over the
B and D baskets, with an expenditure elasticity of demand for the D basket always less than 1,
this utility level is fully captured by wDs, the base-period expenditure share of the D good. For
the remainder of the paper, let

L(x, y) =


x− y

ln x− ln y if x 6= y,

x if x = y,

denote the logarithmic mean (Carlson, 1972). Moreover, recalling from Equation (3) that the
cost-of-living index of homothetic preferences between some period t and base period s is the
ratio of the corresponding expenditure functions over the same periods, we denote the price
indices of the B and D baskets by PBt ≡ B(pt)/B(ps) and PDt ≡ D(pt)/D(ps). The following
result then shows that the cost-of-living index corresponding to Equation (4) is a function of
wDs, PBt and PDt and the two parameters ε and γ.

Proposition 1 (PIGL cost-of-living index). If preferences are of the PIGL form (4) and the
base-period expenditure share wDs allocated to the D basket is given, the Konüs cost-of-living
index is

PPIGL
t = P

γφt
ε

Dt P
1− γφt

ε
Bt with φt ≡

L(ψDt, ψDs)
L(ψDt, ψDs) + L(ψBt, ψBs)

, (11)

where

ψBt ≡
(

1− εwDs
γ

)(
PBt

P̃t

)γ
and ψDt ≡

εwDs
γ

(
PDt

P̃t

)γ
(12)

are shares of a CES-type aggregator P̃t defined by

P̃t ≡
[(

1− εwDs
γ

)
P γBt + εwDs

γ
P γDt

] 1
γ

. (13)

The aggregate cost-of-living index over any N number of consumers is given identically using
their average expenditure share wDs in φt.
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Sketch proof (full proof in Appendix A.1). Set the reference utility to that of the base period
expenditure level, u ≡ V (es,ps). It is then possible to write the period-t expenditure function
corresponding to Equation (4) as c(u,pt) = c(u,ps)P̃

γ
ε
t P

1− γ
ε

Bt . Since P̃t is of a CES form, it can
be rewritten as a Sato-Vartia index with weights 1 − φt and φt on PBt and PDt, respectively.
The result then follows from the Konüs definition (1).

Proposition 1 shows that the PIGL cost-of-living index can be written as something akin to a
Sato-Vartia index over the B and D baskets. Unlike the homothetic case, however, the φt in
the weights of the two subindices varies across the expenditure distribution. Richer consumers
spend a smaller share wD on the D basket, which reduces the weights ψDt and, subsequently,
φt. In other words, because richer consumers allocate a smaller share to the D basket, the
corresponding price index PDt is weighted less heavily when determining the overall change in
the cost of living. The weights ψDt and ψBt are not directly observable but are readily computed
given price indices PBt and PDt, an expenditure share wDs, and parameter values for ε and γ. In
Appendix A.1, we show that wDs(PDt / P̃t)γ is the expenditure share of the D basket at period-t
prices that prevails at the same utility level as wDs. Therefore, the weights ψDt and ψBt ensure
that the consumer remains on the same indifference curve as in the base period.

Two potential caveats to Proposition 1 are that the underlying preferences are identical across
consumers with the same expenditure level and that expenditure shares change monotonically
in the level of expenditure. Redding and Weinstein (2020) emphasize accounting for taste
heterogeneity in cost-of-living indices while Banks, Blundell and Lewbel (1997) highlight the
importance of allowing for hump-shaped expenditure shares to match microeconomic data. In
Appendix A.4 we show that it is straightforward to incorporate time- and household-specific
tastes between the B and D baskets into the indirect utility function (4) and that this leaves
Proposition 1 unaffected. In Appendix A.5 we discuss a generalization that allows for hump-
shaped expenditure shares. This generalization works well for household-level indices but requires
more stringent conditions for aggregate price indices to have the same form.

2.4 Generalized Superlative Indices

With Proposition 1 at hand, it is straightforward to generalize standard homothetic indices to the
nonhomothetic PIGL case: just plug in two homothetic indices for PBt and PDt in Equation (11).
To emphasize the importance of Proposition 1, we present generalizations of two classes of indices:
Diewert’s (1976) quadratic-mean-of-order-r class, which consists of all indices of the form

Pt =

√√√√√{∑
j∈J

wjs

(
pjt
pjs

) r
2
} 2
r
{∑
j∈J

wjt

(
pjt
pjs

)− r2 }− 2
r

, r > 0, (14)

and Barnett and Choi’s (2008) Theil-Sato class, which is defined as

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, δjt ≡

m(wjt, wjs)∑
i∈J m(wit, wis)

, (15)

where m(x, y) is a symmetric mean of two variables, a function class that includes all linearly
homogenous functions satisfying min{x, y} ≤ m(x, y) = m(y, x) ≤ max{x, y}. These index
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classes include several of the most well-known price index formulas. Equation (14) incorporates
Fisher’s (1922) ideal index (r = 2), the arithmetic Walsh (1901) index (r = 1) and, as a limit case,
the Törnqvist (1936) index (r → 0). Equation (15) nests the Törnqvist index (arithmetic mean,
m(x, y) = (x+ y)/2), the geometric Walsh (1901) index (geometric mean, m(x, y) = √xy), the
Sato (1976)-Vartia (1976) index (logarithmic mean, m(x, y) = (x−y)/(ln x− ln y)), and the Theil
(1973) index (m(x, y) = 3

√
xy(x+ y)/2). While we could choose any underlying homothetic price

indices PDt and PBt, these two classes consists of all currently known superlative price indices
(Diewert, 1976). That is, they are exact cost-of-living indices for some homothetic expenditure
functions and are second-order approximations of any other homothetic price index.5 Therefore,
even if the indices corresponding to the true expenditure functions B(p) andD(p) have some other
forms than those in Equations (14) and (15), we should still be able to reasonably approximate
their corresponding price indices under this specific parameterization. The nonhomothetic
generalization of these indices under Proposition 1 is presented below.

Corollary 1 (Generalized superlative indices). If preferences are of the PIGL form (4), the
base-period expenditure share wDs allocated to the D basket is given, and B(p) and D(p) are
expenditure functions with price indices of the form (14) or (15), the Konüs cost-of-living
index is

PG-S
t =

∏
j∈J

(
pjt
pjs

)χjt
, (16)

where
χjt ≡

γφt
ε

δDjt +
(

1− γφt
ε

)
δBjt, (17)

with φt as in Proposition 1. The weights δCjt, j ∈ J , C ∈ {B,D}, are given by

δCjt = 1
2

[
w̃CLjt∑
i w̃

C
Lit

+
w̃CPjt∑
i w̃

C
Pit

]
or δCjt =

m(wCjt, wCjs)∑
im(wCit , wCis)

(18)

if PCt is as in Equation (14) or (15), respectively. In the former case,

w̃CLjt ≡ wCjs L
((

pjt
pjs

) r
2
,
(
PCLt

) r
2
)

and w̃CPjt ≡ wCjt L
((

pjt
pjs

)− r2
,
(
PCPt

)− r2 )
,

where PCLt =
[∑

j w
C
js

(
pjt
pjs

) r
2
] 2
r and PCPt =

[∑
j w

C
jt

(
pjt
pjs

)− r2 ]− 2
r . The aggregate cost-

of-living index over any N number of consumers is given identically using their average
expenditure shares in χjt.

Proof. In Appendix A.2.

5 This definition differs from Diewert’s original definition but is shown by Barnett and Choi (2008, Theorem 1)
to be equivalent.
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In Corollary 1, we have rewritten the quardratic-mean-of-order-r class on a geometric-mean
form following Balk (2004) to highlight the intuitive generalization of the homothetic superlative
indices that we obtain. In doing so, we denote the weights by L and P to capture the fact that
these reduce to standard Laspeyres and Paasche weights when r = 2. The resulting cost-of-living
index is a weighted geometric average of individual price changes with the index weights (17) of
the following structure:

Weight
on j = Weight

on D × Weight
on j

within D

+ Weight
on B × Weight

on j
within B

.

The weights on j within B and D, given by Equation (18), are standard homothetic weights
and affect all consumers similarly. The weights on D and B are the same as in Proposition 1.
Therefore, the overall weights χjt vary across the base-period expenditure distribution in a similar
way as before. If B(p) = D(p), we get that δBjt = δDjt for all j and the generalized superlative
indices immediately collapse to the homothetic indices in Equations (14) and (15).

Another feature of Corollary 1 is that it rationalizes the methodology used in much of the
literature concerned with inflation inequality, whereby homothetic price indices are computed for
different income groups separately. In particular, papers like Broda and Romalis (2009), Jaravel
(2019), and Argente and Lee (2021) construct homothetic price indices of the geometric-mean
form lnPt =

∑
j δjt ln(pjt/pjs), where δjt are weights computed separately for each income

group considered. This generates heterogeneous weights across the income distribution. The
method therefore mimics an overall geometric-mean price index with income specific weights,
which is exactly what we also have in Corollary 1. In contrast to the group-specific approach,
however, Corollary 1 allows for a full characterization of the inflation distribution rather than a
discontinuous, discrete distribution.

3 Empirical Implementation
To compute the generalized superlative indices in practice, we need total expenditure shares
between the B and D baskets and the expenditure shares within each basket. Yet, if individual
goods occur in both the B and the D baskets, these across and within expenditure shares are
unobserved in the data. The only feasible approach then is to parameterize B(p) and D(p),
estimate the demand system associated with the expenditure share equations (8) via GMM, and
infer these shares from the estimated model. This methodology, however, suffers from the usual
drawbacks of nonlinear demand system estimation. In particular, for standard parameterizations
the number of parameters to estimate quickly grows out of proportion as we increase the number
of goods considered.6 The nonlinear nature of the demand system also implies that there is
no guarantee that the GMM estimator converges to the actual global minimum of the GMM
objective function. The latter could in principle be solved by a grid search, but this only
exacerbates the curse of dimensionality further. Estimating more than a few goods is therefore
generally infeasible. These issues, however, are fully circumvented within our framework when a
simple assumption on the structure of the demand system is met.

6 As an illustration, suppose we have n goods and parameterize B(p) and D(p) by the linearly homogeneous
translog expenditure function of Christensen, Jorgenson and Lau (1975), for which the Törnqvist index is an exact
cost-of-living index (Diewert, 1976). The PIGL demand system considered here then requires the estimation of
n(n+ 1) + 3 independent parameters.
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Assumption 1. Preferences are weakly separable into the B and D baskets. /

Under Assumption 1, an individual good occurs in either the B basket or the D basket, but not
in both. Since the D basket captures necessity needs and B basket luxury needs, it follows that
preferences are also weakly separable into necessities and luxuries. The assumption is therefore
easily implemented empirically by allocating luxuries to B and necessities to D.

The immediate consequence of Assumption 1 is that across and within expenditure shares become
observable in the data. Summing the total expenditure shares wj (which are always observable)
over goods in D gives the across share wD. Within shares are then obtained as wDj = wj/wD.
The same applies for the B basket. This knowledge is enough to compute price indices PBt
and PDt for the B and D baskets using Equation (14) or (15). The only additional information
needed to compute the generalized superlative indices are, per Proposition 1, the two parameters
ε and γ. Using Equations (3) and (5), we may write the period-t expenditure share on the D
good as

wDt = ν̃

(
PBt
et

)ε (PDt
PBt

)γ
, (19)

where ν̃ ≡ νB(ps)ε−γD(ps)γ is a scale parameter. Since wDt, et, PBt and PDt are all known,
estimating ε and γ from (19) is easily carried out using either linear (by taking logs of (19))
or nonlinear estimation methods. We summarize this empirical approach by the following
proposition:

Proposition 2 (Tractable demand system estimation). Under Assumption 1, across and
within group expenditure shares are observable in the data and computing the generalized
superlative indices (16) only requires estimation of two parameters, ε and γ, from the single
expenditure share equation (19).

At first sight, Assumption 1 may seem to be at odds with the nonhomothetic generalization of
the superlative indices: Corollary 1 reduces to the standard homothetic case when B(p) = D(p),
which Assumption 1 excludes by construction. However, the weak separability assumption still
nests homothetic preferences. In particular, as ε → 0 and γ → 0, we obtain Cobb-Douglas
preferences with V (e,p) = ln

[
e

B(p)1−νD(p)ν
]
and a corresponding price index Pt = P 1−ν

Bt P νDt,
where ν = wD is the homothetic and time-invariant expenditure share on D. Thus, if preferences
truly are homothetic, we still expect Proposition 2 to yield a homothetic price index. This index
is approximately equal to the corresponding superlative index when B(p) = D(p), by virtue
of superlative indices being second-order approximations of any other homothetic index. This
highlights that using the generalized superlative indices under Assumption 1 should at least
(approximately) be weakly better than using the standard homothetic indices. Since nonhomoth-
etic preferences is the empirically relevant case, we do not expect the “approximately” part to
matter much, and the empirical application below confirms this. For cases where it nevertheless
might be of importance, it turns out that a special case exists where Assumption 1 exactly nests
the corresponding homothetic index when B(p) = D(p): the Törnqvist index.
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Proposition 3 (Homothetic Törnqvist index under weak separability). Suppose that prefer-
ences are of the homothetic Cobb-Douglas form, V (e,p) = ln

[
e

B(p)1−νD(p)ν
]
, and that B(p)

and D(p) are such that their corresponding price indices PBt and PDt are Törnqvist indices.
The cost-of-living index under Assumption 1 is then the standard Törnqvist index:

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, where δjt = wjs + wjt

2 .

Proof. In Appendix A.3.

4 Data and Estimation
We implement the tractable demand system estimation described in the previous section using
consumption and price data from two sources. Household consumption is taken from the interview
component of the Consumer Expenditure Survey (CEX) and price data are taken from the
product-level Consumer Price Index (CPI) series for all urban consumers. Both are provided
by the US Bureau of Labor Statistics (BLS). The CEX interview survey is a quarterly rotating
panel of households who are representative of the US population. New households are sampled
every month and each household is tracked for up to four consecutive quarters. The survey
covers around 95 percent of total household consumption and contains additional information on
annual income, socioeconomic characteristics and other background characteristics like ownership
of a car. The survey has been continuously conducted since 1980, though we focus on the
years 1995 to 2020 to ensure consistency across waves and to match the availability of the CPI
subindices.

As is standard in the literature, we select a sample of respondents between the ages of 25 and 65
who report strictly positive income. To avoid issues with seasonality, we aggregate expenditures
to annual levels and, consequently, drop households that do not respond to all four quarterly
interviews. To account for differences in household size, we also divide household income and
expenditures by the number of adult equivalents in the household using the equivalence scale of
the US Census Bureau (see Fox and Burns, 2021). The final dataset on expenditures consists of
approximately 3,000 households per year.

We aggregate nondurable consumption expenditures into a rather coarse set of consumption
goods categories as this allows us to compare the empirical approach in Proposition 2 with a full
demand system estimation. All in all, we consider twenty-one expenditure categories using the
hierarchical groupings defined by the BLS. We broadly follow Hobijn and Lagakos (2005) and
construct prices for these categories by matching them with individual CPI series. Table B.1 in
Appendix B lists the CEX categories and shows their mapping to the CPI item codes.

4.1 Classification of Goods Into Luxuries and Necessities

In order to utilize the tractable demand system estimation in Proposition 2, we impose As-
sumption 1 by allocating luxuries to B and necessities to D. The classification into B and D
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is implemented by investigating slopes of the budget-share Engel curves: if the Engel curve of
a good decreases as expenditures increase, it is a necessity. Conversely, a good is a luxury if
its Engel curve increases with increasing expenditures. We split households into expenditure
deciles and, for each good j, run a household-level regression of the expenditure share wjh on
the expenditure decile dh of household h:

wjh = αj + βjdh + εjh.

If βj > 0, we allocate the good to the B basket, otherwise to the D basket. Figure 1 shows the
Engel curves by expenditure decile together with the resulting classification from the regressions
and Table B.2 in Appendix B lists the βj coefficient estimates. The resulting classification is
intuitive and all estimates are significantly different from zero. For comparable product groups,
our necessity/luxury split is highly similar to those constructed in similar analyses using CEX
data (see for instance Wachter and Yogo, 2010, and Orchard, 2021), thus suggesting that this
simple classification regression works well on our coarse set of goods.
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Figure 1. Empirical and model implied Engel curves.

Notes. The figure shows the empirical and model implied expenditure shares by expenditure group and expenditure
decile averaged over all years. The model implied expenditure shares correspond to those under the assumption
of weak separability and the Sato-Vartia specification. They are calculated by first taking the model implied
expenditure shares on the B and D goods and then use the empirical expenditures shares of all households to
obtain shares within these groups.
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4.2 Tractable Demand System Estimation

We estimate the preference parameters ε and γ from Equation (19) using a nonlinear GMM
estimator on household-level data. In doing so, we make explicit corrections for two potential
issues.

First, it is well known that infrequently bought items, like clothing and transportation, create a
measurement error in the observed level of expenditures. Although we alleviate much of this
concern by excluding durable goods and by aggregating expenditures to an annual level, we follow
the literature (Blundell, Pashardes and Weber, 1993; Banks, Blundell and Lewbel, 1997) and
control for this endogeneity bias by instrumenting expenditures with household income.

Second, an indirect utility specification like the PIGL requires additional attention with respect
to the regularity conditions for utility maximization. Specifically, we need to certify that the
parameter estimates yield a symmetric and negative semidefinite Slutsky matrix. Under the
indirect utility function (4) and Assumption 1, it follows from Boppart (2014, Lemma 1) that a
necessary and sufficient condition for household h to satisfy the Slutsky restrictions in period
t is ν̃

(
PBt
eht

)ε (PDt
PBt

)γ
≤ (1 − γ)/(1 − ε). We enforce this constraint by augmenting the GMM

estimation with a classic penalty method. Consequently, the reported parameter estimates below
satisfy the Slutsky restrictions for all observations in the sample.

To gauge the sensitivity to different choices of underlying superlative price indices, we estimate
ε and γ for six different choices of PBt and PDt. These choices correspond to the indices listed
in Section 2.4: the Sato-Vartia, the Törnqvist, the Walsh (geometric and arithmetic), the Theil,
and the Fisher. This robustness check is instructive since there is generally no guarantee that
superlative indices are numerically similar, despite being second-order approximations of each
other (see for instance Hill, 2006). For the estimation exercise, we compute these indices on
a monthly frequency using aggregate expenditure shares of all households in the CEX. Since
individual household’s expenditures are aggregated to a twelve-month period, we also aggregate
the price levels they face by taking the expenditure weighted average over the months each
household is in the sample.

The estimated parameters for the six cases are reported in Table 1. All parameters are statistically
different from zero at conventional significance levels and the fact that ε > 0 and ν̃ > 0 directly
rejects homotheticity. Reassuringly, the choice of price indices for the B and D baskets turns out
to be completely inconsequential as all specifications yield close to identical estimates.7 Moreover,
Alder, Boppart and Müller (2022, Proposition 3) show that a sufficient condition for expenditure
shares to remain globally nonnegative is 0 < γ ≤ ε < 1. This condition is also met in our
estimation, though we do not impose the constraint explicitly. Other preference specifications,
like the almost ideal demand system, typically violate expenditure share nonnegativity for
sufficiently large expenditures levels.

To get an idea of how well the estimated model matches the data, we compute budget-share
Engel curves using the parameter estimates for the Sato-Vartia specification and plot these
against their empirical counterparts in Figure 1. We construct the model expenditure shares
as the product of model-implied across- and within-expenditure shares wC and wCj for goods

7 Further note that the parameter estimates are also robust to not using the CEX household sampling weights.
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in C ∈ {B,D}. The former is computed from Equation (19) at the representative level of
expenditures within each expenditure decile. Since B(p) and D(p) are homothetic, the latter is
given empirically by the average within-shares wBj , wDj across all households. Figure 1 shows
that the model fits the data quite well. In particular, the model does a much better job at
matching the empirical Engel curves than the constant Engel curves resulting from homothetic
preferences would. This underscores that the assumption of weak separability between the B
and D baskets is not a strong restriction in our sample.

Table 1. GMM estimates under weak separability.

Sato-Vartia Törnqvist Geom. Walsh Theil Fisher Arith. Walsh

ε 0.677 0.677 0.677 0.677 0.677 0.677
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

γ 0.211 0.211 0.211 0.211 0.211 0.211
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023)

ν̃ 327.271 327.437 327.173 327.273 324.273 324.600
(13.358) (13.365) (13.354) (13.358) (13.217) (13.233)

N 74,372 74,372 74,372 74,372 74,372 74,372
RMSE 0.1487 0.1486 0.1487 0.1487 0.1486 0.1486

Notes. Robust standard errors in parentheses. “RMSE” refers to the root mean squared error of the
expenditure share on the D good:

√∑
h
(wDh − ŵDh)2 /N . Each household-level observation is

weighted by the CEX sampling weight.

5 Results
The estimation in the previous section suggests that the results are insensitive to the choice
of generalized superlative index.8 For the remainder of the paper, we therefore focus on the
nonhomothetic generalization of the Sato-Vartia index (henceforth G-SV). Since the Sato-Vartia
index is the corresponding Konüs index to the canonical CES expenditure function (see Sato,
1976), this choice implies that we are investigating a generalization of homothetic CES preferences.
The prominence of CES preferences within macroeconomics and international trade therefore
makes this a case of particular interest. The main reason for selecting the G-SV, however, is
that a parameterization of B(p) and D(p) as CES aggregates contains many fewer parameters
than the parameterizations that induce, for instance, the Fisher or the Törnqvist indices. This
allows us to compare the G-SV index to a relatively parsimonious estimation of the full PIGL
demand system.

5.1 Cost-of-living and inflation inequality

Figure 2 shows the evolution of the G-SV price index from 1995 to 2020. We set the base period
to 1995 and, in contrast to Section 4.2, use annual indices for PBt and PDt.9 Even though
the generalized superlative price indices allow for characterizations of the entire distribution
of indices, here we focus on expenditure deciles for ease of exposition. Figures B.3 and B.4 in
Appendix B show the full price index and inflation distributions.

8 Figures B.7 and B.8 in Appendix B show the main results in this section for all choices considered in
Section 4.2, which confirms that this is indeed the case.

9 Figure B.1 in Appendix B shows that the choice of base period does not affect our results.
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Figure 2 corroborates two findings from the literature: inflation rates vary across households
and poorer households experienced a larger increase in the cost of living than richer households
over the last quarter century. It is noteworthy, though, that the cumulative differences are small.
Table 2 makes this point clear: the mean annual inflation rate of the poorest ten percent is
only 0.06 percentage points higher than that of the richest ten percent over the full sample
period. The changes in the cost of living over the 26 years under study therefore do not diverge
dramatically between groups.
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Figure 2. G-SV price index under weak separability by expenditure decile.

Notes. The price index for each expenditure decile is calculated as the price index of the PIGL representative
agent over households within each respective decile. “PIGL RA” stands for the PIGL representative agent over all
households.

The small differences in the cost of living by 2020 is striking given the substantial heterogeneity
observed in subperiods of the sample. For instance, if we zoom in on the years 2004 to 2015, the
annual change in the cost of living for the poorest ten percent are on average 0.37 percentage
points higher than the change for the richest ten percent. Jaravel (2019) and Argente and
Lee (2021) focus on the same years, the former using a CEX-CPI dataset similar to ours and
the latter using scanner data for the retail sector, and both find results close to ours. To put
this difference in perspective, the Boskin Commission Report estimated the total bias in the
aggregate US CPI to be 1.1 percentage points (Boskin et al., 1996). Of these, substitution biases
alone account for 0.4 percentage points. The difference we find here is therefore substantial when
compared to previously estimated biases in aggregate price indices.

That the differences in the change in the cost of living varies across subperiods is also visible
from the implied annual inflation rates. Figure 3 plots these rates, which highlights that there
are periods where poorer households experience substantially higher or lower inflation. In several
years, the range of the inflation rate exceeds 2 percentage points. There is another key finding
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Table 2. Inflation heterogeneity in numbers.

2004 - 2015 1996 - 2020
Exp. dec. mean ∆mean std. rel. std. mean ∆mean std. rel. std.

1 2.57 0.37 2.71 2.38 2.28 0.06 2.14 2.51
2 2.46 0.26 2.25 1.98 2.26 0.04 1.76 2.06
3 2.41 0.21 2.05 1.79 2.25 0.03 1.59 1.86
4 2.38 0.18 1.89 1.66 2.24 0.03 1.46 1.71
5 2.35 0.15 1.78 1.56 2.24 0.02 1.36 1.60
6 2.33 0.13 1.67 1.46 2.24 0.02 1.28 1.50
7 2.30 0.10 1.57 1.38 2.23 0.02 1.20 1.40
8 2.28 0.08 1.47 1.29 2.23 0.01 1.12 1.31
9 2.25 0.05 1.35 1.18 2.22 0.01 1.02 1.20
10 2.20 0.00 1.14 1.00 2.22 0.00 0.85 1.00

Notes. Arithmetic mean and standard deviation of annual inflation over the respective years. “∆
mean” denotes the difference in the mean annual inflation to the tenth expenditure decile. Rel.
std. denotes the relative standard deviation to the standard deviation of the tenth expenditure
decile.

that stands out from Figure 3 however: the inflation rate of the poor is much more volatile than
that of the rich. More precisely, Table 2 shows that the standard deviation of inflation has been
2.14 and 0.85 for the poorest and richest, respectively, and the poor have thus experienced a 2.5
times more volatile inflation rate than the rich.

In sum, despite the fact that the overall change in the cost of living has not diverged dramatically
between groups, there is a considerable difference in the volatility of inflation rates. This difference
in volatility of inflation rates warrants that it is important in future work to understand the
economic implications it may have for instance in terms of welfare on individual household levels
and economic policies that aim at stabilizing inflation rates.

5.2 Changes in Living Standards

Most empirical evidence on inflation inequality, including the results above, compare the change
in inflation rates between two or more groups whose real expenditures stay fixed at some base-
period level. In other words, living standards remain constant. Yet, it is a well-known that
households experience substantial changes in expenditures over the life-cycle. It is therefore not
clear whether the evidence on inflation inequality is of much relevance to the inflation experience
of an average household.

Our framework distinguishes itself from previous attempts to study inflation inequality in that it
is straightforward to compute inflation rates for households even when real expenditures change
over time. The group-specific price index approach poses some challenges in allowing for this due
to the discontinuous change underlying preferences across the expenditure distribution. Since
our framework expresses the price index as a continuous function of expenditures we do not face
that challenge.

Consider an individual whose expenditures, et = c(ut,pt), change over time. The change in
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Figure 3. G-SV inflation under weak separability by expenditure decile.

Notes. Inflation for each expenditure decile is calculated as the first difference in the price index of the PIGL
representative agent over households within each respective decile. “PIGL RA” stands for the PIGL representative
agent over all households.

expenditures can arise because prices, pt, change or living standards, ut, change. The relative
change in expenditures between period s and period T may be written as

c(uT ,pT )
c(us,ps)

=
[

T∏
t=s+1

Q(ut−1, ut,pt)
][

T∏
t=s+1

P (ut−1,pt,ps)
P (ut−1,pt−1,ps)

]
, (20)

which is made up of two components: (i) a quantity cost, Q(ui, uk,pt) ≡ c(uk,pt)/c(ui,pt), that
tells how much a household will have to pay to go from living standard ui to uk at prices pt,
and (ii) a per-period price cost, P (ut−1,pt,ps)/P (ut−1,pt−1,ps), that tells how much the cost
of living has changed period by period.10 This latter part is just a chained price index where the
base period is always t− 1.11

From Equation (20), we can also compute the inflation cost from the per-period inflation rate

10 The quantity-cost in Equation (20) measures the cost of obtaining living standard ut relative to maintaining
living standard ut−1 in present-period prices. That is, it measures the relative cost of obtaining living standard ut
compared to ut−1 in prices when the change takes place. A different definition, the quantity-cost in past-period
prices defined as Qt−1(ut−1, ut), gives a similar expression as the one in Equation (20) but is less intuitive.

11 When living standards do not change throughout period s to period T , we have that

c(uT ,pT )
c(us,ps)

=
T∏

t=s+1

P (us,pt,ps)
P (us,pt−1,ps)

= PT (us,pT ,ps)
P (us,ps,ps)

= P (us,pT ,ps),

which is simply the PIGL price index at time T with base period s.
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1 + πt(ut−1) ≡ P (ut−1,pt,ps)/P (ut−1,pt−1,ps). It forms the basis of the following analysis
where we decompose the change in expenditures into quantity and price costs when allowing for
changes in expenditures over time.

5.2.1 Life-Cycle Model

Changes in household expenditures over time is a well-documented empirical fact. Fernández-
Villaverde and Krueger (2007) for example find that US household expenditures follow a
deterministic, hump-shaped pattern over the life-cycle.

Based on our data, we estimate the following deterministic life-cycle model:

ln eit = αi + βt + γ̃it, (21)

where i denotes age, t time period, αi are age-fixed effects, βt year-month-fixed effects, and γ̃it is
the residual. The results of the estimated model in Equation (21) are shown in Figure B.5 of
Appendix B. It shows that expenditures increase on average by 30 % for an individual between
25 and 60 years before they revert to the level of a 25-year-old at the age of 90. This is in line
with what Fernández-Villaverde and Krueger (2007) find.

We use the estimated deterministic life-cycle model to simulate a 26-year nominal expenditure
path for 30 different types. Each type has a distinct age-by-initial-expenditure-level combination,
where the age is such that in 1995 the type is either young (25 years old), middle-aged (45 years
old) or old (65 years old), and the initial expenditure level is equal to the level of one of the
expenditure deciles in the CEX data as in the main results. For each type we then compute the
price index, inflation series and standard deviation of inflation according to Equation (20).

In panel (a) of Figure 4 we show the simulated path of nominal expenditures for six types:
young-poor, young-rich, middle-aged-poor, middle-aged-rich, old-poor and old-rich. For each age
type, poor refers to an individual whose 1995 expenditure level was equal to that of expenditure
decile 1 and rich refers to an individual whose 1995 expenditure level was equal to that of
expenditure decile 10. The figure shows that nominal expenditures varies greatly across age
groups and by initial expenditure levels.

Panel (b) of Figure 4 shows the corresponding inflation for each of the six types whose nominal
expenditure levels are those in panel (a). The figure shows that different deterministic life-cycle
patterns give rise to different inflation levels for individuals who start out with the same initial
standard of living. For example, the young-poor experience a somewhat more dampened volatility
of inflation over time compared to the old-poor. This is because the young experience changes in
expenditures that exceed the change in prices and therefore allows them to increase their living
standards. As our main results shows, households with higher living standards have experienced
a much lower volatility of inflation and the young-poor transit towards this over time. The
broad picture, however, is that the deterministic life-cycle components are far from being able to
mitigate the results from the previous section: columns 3–6 in Table 3 show that the relative
standard deviation of inflation remains 2.41 times higher for the young-poor compared to the
young-rich, 2.46 for the middle-aged-poor and 2.55 times for the old-poor. Although not shown,
the mean and standard deviation of inflation are also largely unchanged.
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Figure 4. Expenditures and inflation in the deterministic life-cycle model.

Notes. Panel (a) shows the nominal expenditure levels for six types simulated from the life-cycle model in
Equation (21). Panel (b) shows the corresponding inflation levels for each type based on Equation (20). Young
refers to an individual who was 25 years in 1995, middle-aged to an individual who was 45 years and old to an
individual who was 65 years. Poor refers to an individual whose 1995 expenditure level was equal to that of
expenditure decile 1 in the CEX data. Rich refers to an individual whose 1995 expenditure level was equal to that
of expenditure decile 10 in the CEX data.

In addition to the deterministic evolution in the life-cycle expenditures, other empirical studies
such as Blundell, Pistaferri and Preston (2008) also find that US households experience significant
stochastic shocks to expenditures.

The stochastic component comes from the unexplained change in log expenditures between two
ages which is given by

γit ≡ ∆γ̃it = ln eit − ln ei−1,t−1 − (αi − αi−1)− (βt − βt−1), (22)

and as in Blundell, Pistaferri and Preston (2008), we assume that γ is independently and normally
distributed and we use their estimated variance of γ. In order to preserve the expected life-cycle
expenditures from the estimated model, we impose the restriction that exp{γ} has a mean of
one.

We once again consider the same 30 types as in the deterministic life-cycle model. For each type,
we draw 26 γ-shocks and simulate a nominal expenditure path according to the stochastic life-
cycle model. We repeat the simulation 10,000 times for each type and for each expenditure path
we compute the corresponding price index, inflation series and standard deviation of inflation.
We then average the 10,000 simulations to get the expected inflation for each type.
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Table 3. Relative standard deviation.

Constant utility Life-cycle Stochastic life-cycle
Exp. dec. young middle-aged old young middle-aged old

1 2.51 2.41 2.46 2.55 2.50 2.55 2.63
2 2.06 1.97 2.01 2.08 2.05 2.08 2.13
3 1.86 1.78 1.81 1.87 1.84 1.88 1.91
4 1.71 1.64 1.67 1.72 1.70 1.72 1.76
5 1.60 1.54 1.56 1.60 1.59 1.61 1.64
6 1.50 1.44 1.46 1.50 1.47 1.50 1.53
7 1.40 1.36 1.37 1.40 1.39 1.40 1.43
8 1.31 1.27 1.29 1.31 1.30 1.31 1.33
9 1.20 1.17 1.18 1.19 1.19 1.19 1.21

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes. The table reports the relative arithmetic standard deviations of inflation from 1995 to 2020 between
each type whose 1995 expenditure level was equal to expenditure decile d ∈ {1, . . . , 10} and that of those
whose 1995 expenditure level was equal to expenditure decile 10 in the CEX. “Constant utility” refers to
the baseline results also presented in Table 2 where real expenditures are fixed. “Life-cycle” refers to the
deterministic life-cycle model in Equation (21) where the determinsitic component is shut off (i.e. equal
to 0). “Stochastic life-cycle” refers to the life cycle model in Equation (21) with the stochastic component
activated. Young refers to an individual who was 25 years in 1995, middle-aged to an individual who was 45
years and old to an individual who was 65 years.

Columns 6–8 in Table 3 show the relative standard deviation of expected inflation for each
type in the stochastic life-cycle model. We see that the stochastic component makes the poorer
types worse off in terms of expected inflation volatility. The relative inflation volatility of
the young-poor compared to the young-rich, for example, goes from 2.41 in the deterministic
life-cycle model to 2.5 in the stochastic model. The broad picture, however, still remains: even
when controlling for deterministic and stochastic changes in expenditures, the expected inflation
volatility is around 2.5 times larger for the poorest ten percent compared to the richest ten
percent.

These findings show that, although households’ real expenditures change over time, the average
change over a time period of 26 years from ageing and chance is not enough to alter the
conclusions drawn in regards to inflation inequality between households whose real expenditures
stay fixed.12 Instead, this suggests that initial expenditure levels are an important determinant
for households’ expected inflation rates.

6 What Drives the Inflation Differences?

The generalized superlative price index (16) lends itself to a simple decomposition of inflation
into its components. Taking first differences of the log of the price index allows us to compute
the contribution of inflation coming from each expenditure category j. Figure 5 plots this
decomposition for the rich and poor’s inflation. The figure shows the primary expenditure

12 The results do not reject that other factors such as education could induce changes in expenditures that are
strong enough to make a difference.
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categories that have driven inflation since 1996.

Panel (a) in Figure 5 shows that the two primary expenditure categories that drive inflation for
the poor are “food at home” and “gas and utilities” (energy). In contrast, panel (b) shows that
these categories play a minor role in driving inflation for the rich. Moreover, the key point in
regards to what drives inflation for the rich is that no expenditure category is a major driver. In
panel (b) we plotted the contributions to the rich’s inflation from “food at home” and “gas and
utilities” to illustrate that these play a minor role. Additionally, we also show how the most
important driver for the rich’s inflation, “owned dwellings”, and the fourth most important driver,
“other vehicle expenditures”, contribute. While “owned dwelling” indeed drives a considerable
amount of total inflation of the rich, it is still minor and “other vehicle expenditures” is almost
invisible in some periods. Figure B.6 in Appendix B shows the inflation contribution from all
expenditure categories to the rich and poor’s inflation, respectively.
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Figure 5. Inflation decomposition by expenditure categories.

6.1 Decomposition Into Reference Basket and Product Substitution

In order to shed more light on the inflation heterogeneity between poor and rich households, we
decompose the price index into one component that reflects pure price changes of a base-period
reference basket and another component that reflects product substitution away from this basket
as prices change. The former is simply the Laspeyres price index PLt =

∑
j wjs(pjt/pjs), which

can be written on a weighted geometric-mean form as13

PLt =
∏
j∈J

(
pjt
pjs

)δLjt
, where δLjt ≡

wjs L
(
pjt
pjs
, PLt

)
∑
i∈J

wis L
(
pjt
pjs
, PLt

) . (23)

The latter component can then be backed out as the residual between the computed price index
and the corresponding Laspeyres index. Taking logs of the generalized superlative index (16) and

13 See Appendix A.2 or Balk (2004).
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adding and subtracting the log of the Laspeyres index (23), we obtain the decomposition

lnPt =
∑
j∈J

δLjt ln
(
pjt
pjs

)
︸ ︷︷ ︸

Laspeyres price index

+
∑
j∈J

(
χjt − δLjt

)
ln
(
pjt
pjs

)
︸ ︷︷ ︸

Product substitution

. (24)

Figure 6 shows the decomposition of the G-SV price index for the first and the tenth expenditure
decile. It clearly highlights that the biggest share of the increase in the cost of living is driven
by the price changes of the reference baskets and substitution effects only marginally reduce the
G-SV price index. Interestingly, however, the substitution effect among the households in the
first expenditure decile is considerably bigger than the substitution among the households in the
tenth expenditure decile.
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Figure 6. Decomposition of the G-SV price index into the Laspeyres price index and product substitu-
tion.

Notes. Decomposition is performed as shown in Equation (24). The G-SV price index for each expenditure decile
denotes the price index of the representative agent within each respective decile.

Focusing on the difference between the two deciles in Figure 7 shows that the composition of
their reference baskets plays an important role but that the difference in product substitution
becomes relatively more important.

This section shows that in order to uncover the fundamental drivers of inflation heterogeneity
across households it is primarily necessary to understand inflation heterogeneity across products.
Therefore, we deem it important for future research to investigate this further. In particular,
whether it is a coincidence that the highly volatile product groups are purchased relatively more
by poor households, or if there is a deeper and more structural link. In terms of policy, the
results show that stabilizing prices of selected product groups, and not just an aggregate price
index, are important when inequality is taken into account. Specifically, the results show that
the highly volatile inflation of “food at home” and “gas and utilities” affects poorer households
disproportionately more.
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Figure 7. Difference of the decomposed G-SV price index between the first and tenth expenditure
decile.

Notes. The figure shows the decomposition of the first expenditure decile minus the corresponding numbers for
the tenth expenditure decile in Figure 6.

7 Comparison with Full Demand System Estimation
To assess the validity of the weak separability assumption and the robustness of our results, we
perform a full demand system estimation. Full demand system estimation can be carried out
via GMM by using the expenditure share equations (8) and the parameterization for B(p) and
D(p). The parameterization of the Sato-Vartia specification used in our empirical analysis is
given by

B(p) =

 ∑
j∈J

ωjp
1−σ
j

 1
1−σ

and D(p) =

 ∑
j∈J

θjp
1−ϕ
j

 1
1−ϕ

, (25)

where σ, ϕ > 0 and the taste parameters satisfy
∑
j∈J ωj =

∑
j∈J θj = 1 with ωj , θj ≥ 0 for all

j ∈ J .14

Since the GMM estimation under the full demand system specification might exhibit several
local minima, it generally must not hold that a particular local solution of the GMM estimation
is indeed also the global minimum. Therefore, the following results should be interpreted with
this in mind. However, by choosing an appropriate guess for the preference parameters in the
full demand system that corresponds to the preferences under weak separability, we obtain a
local solution for the full demand system which is in the vicinity of the weakly separable case.

14 This parameterization is also considered in Alder, Boppart and Müller (2022).
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In particular, we set the values for ε, γ and ν to the values in Table 1 and equally distribute ωj
and θj among the goods classified as B and D, respectively.15

Table 4 and Figure 8 show the estimates for the entire set of preference parameters in the full
demand system.16 We can note that ε is practically unchanged, but γ substantially higher. ν is
not important for determining the price index, but still lies fairly close to the estimates under
weak separability. Turning to σ and ϕ, we can note that they both lie below one, which indicates
that goods within the B and D basket are complements. Figure 8 shows the point estimates of
the complete set of taste parameters ωj and θj for the B and the D basket respectively. Each
category has a blue and an orange bar for ωj and θj , but with the minor exception of “tobacco”,
every single good only has one strictly positive taste parameter. Thus, the estimated parameters
from the full demand system and the implied classification into two baskets is almost perfectly in
line with the classification applied in the weakly separable case. In order to gauge the measure
of fit, we computed the root mean squared error (RMSE) of the expenditure share on the D
good. Both measures are close to each other and the full demand system actually has a slightly
higher RMSE. Although it is more flexible in matching the expenditure shares of all individual
expenditure categories, it not necessarily needs to perform better in matching the expenditure
share on the D good.

Table 4. Estimates of the preference parameters in the
full demand system compared to the estimates
under weak separability.

Full demand system Weak separability

ε 0.685 0.677
(0.004) (0.004)

γ 0.505 0.211
(0.018) (0.023)

ν 346.736 327.271
(11.793) (13.358)

σ 0.050
(0.012)

ϕ 0.360
(0.006)

N 74,372 74,372
RMSE 0.1494 0.1487

Notes. Standard errors in parentheses. “RMSE” refers to the
root mean squared error of the expenditure share on theD good:√∑

h
(wDh − ŵDh)2 /N . Each household-level observation is

weighted by the CEX sampling weight.

15 In principle we could perform a grid search over the whole set of feasible parameters. However, depending on
the initial guess, convergence of the GMM estimator is slow and can sometimes take more than 24 hours. Thus,
we deemed a reliable grid search as infeasible.

16 While point estimates are still consistent when some parameters lie on the boundary of the parameter space,
standard errors obtained from the standard covariance matrix are not (see Andrews, 1999, 2002). This should be
kept in mind with the standard errors presented here.
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Figure 8. Point estimates for the taste parameters ωj and θj of the full demand system.

Notes. The figure shows the estimated taste parameters from the full demand system estimation. Results are for
the closest local minimum to the weakly separable case which has been used as initial guess for the parameters.

Figure 9 shows a comparison of the resulting price index from the full demand system (left panel)
with the respective price index under weak separability (right panel). The figure shows that the
price indices for the individual expenditure deciles are less spread out under the full demand
system, but the general difference is relatively minor.
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Figure 9. Comparison of the G-SV price index for the full demand system and under weak separability.

The differences between the full demand system estimation and estimation under weak separability
are even less pronounced when looking at the comparison of inflation rates in Figure 10.

Taking these comparisons at face value indicates that the full demand system estimation does
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Figure 10. Comparison of the G-SV inflation for the full demand system and under weak separability.

not strongly reject the case of weakly separable preferences. Further, the price index along with
inflation from the full demand system and from the weakly separable preferences are remarkably
close and do not change any of our main conclusions.

8 Conclusion
We derive a nonhomothetic cost-of-living index which allows us to describe inflation heterogeneity
along the full expenditure distribution. The cost-of-living index is microfounded with PIGL
preferences and we show that it can be computed without a full demand system estimation
if weak separability of consumption goods into necessary and luxury goods is imposed. The
theoretical rigor and practical simplicity of our index makes it especially appealing compared to
other approaches previously taken in the literature on inflation heterogeneity.

The price index generalizes several classes of homothetic price indices, some of them particularly
interesting for their superlative property. We present results for generalized Sato-Vartia, Törn-
qvist, geometric Walsh, Theil, Fisher and arithmetic Walsh price indices. Homothetic indices
such as the Sato-Vartia and Törnqvist are used in previous empirical studies to approximate
inflation heterogeneity by computing separate price indices for different income groups. We show
that this approach can be rationalized through the lens of our framework but the usual caveats
of the group-specific approach still apply.

Our empirical results show that from 1996 to 2020 there was a substantial heterogeneity in
inflation between poorer and richer households in the US. The particular striking result we find is
that while mean inflation is around 2.25 percent for everyone, the standard deviation of inflation
has been 2.14 for the poor compared to 0.85 for the rich. Thus, inflation volatility is 2.5 times
higher for the poor.
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We find that poorer households are much more exposed to the highly volatile inflation rates of
food, gas and utilities compared to the rich. We furthermore show that substitution behavior
is only of second-order importance. Our findings hence suggest that in order to uncover the
fundamental drivers of inflation inequality it is first and foremost important to understand
why households make the consumption choices they do and what the explanation for inflation
heterogeneity across product groups is.
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Appendix A Proofs and Extensions

A.1 Proof of Proposition 1

Proof. Inverting the indirect utility function (4) gives the expenditure function

c(u,p) =
[
1 + ε

(
u+ ν

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p).

Suppose that the reference utility u corresponds to the expenditure level in some base period s
such that c(u,ps) = es and u ≡ V (es,ps). Using the indirect utility function (4) to substitute
this into some period-t expenditure function and rearranging terms yields

c(u,pt) = es

[
1 + ε ν

γ

(
B(ps)
es

)ε (D(ps)
B(ps)

)γ {(D(pt)
D(ps)

)γ (B(pt)
B(ps)

)−γ
− 1

}] 1
ε B(pt)
B(ps)

= es

[
1 + εwDs

γ

{(
PDt
PBt

)γ
− 1

}] 1
ε

PBt

= es

[(
1− εwDs

γ

)
P γBt + εwDs

γ
P γDt

] 1
γ
· γ
ε

P
1− γ

ε
Bt ,

where the second equality uses PBt ≡ B(pt)/B(ps), PDt ≡ D(pt)/D(ps) and the expenditure
share (5). By the Konüs definition (1), the cost-of-living index is then

PPIGLt =
[(

1− εwDs
γ

)
P γBt + εwDs

γ
P γDt

] 1
γ
· γ
ε

P
1− γ

ε
Bt = P̃

γ
ε
t P

1− γ
ε

Bt . (A.1)

Since P̃t has a CES form, we may define hypothetical budget shares corresponding to this price
function by

ψBt ≡
(

1− εwDs
γ

)(
PBt

P̃t

)γ
and ψDt ≡

εwDs
γ

(
PDt

P̃t

)γ
, (A.2)

with ψBs = 1− εwDs/γ and ψDs = εwDs/γ. These shares ensure that the price index remains at
the same utility level; wDs(PDt / P̃t)γ is the expenditure share of the D basket at period-t prices
that prevails at the same utility level as wDs. To see this, use the expenditure share (5) to get

wDt = ν

(
B(pt)
et

)ε (D(pt)
B(pt)

)γ
(by (5))

= ν

(
B(ps)
es

)ε (D(ps)
B(ps)

)γ esP γ
ε
DtP

1− γ
ε

Bt

et

ε (by (3))
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= wDs

P γ
ε
DtP

1− γ
ε

Bt

PtQt

ε (by (5) and et/es = PtQt)

= wDs

(
PDt

P̃t

)γ
Q−εt (by (A.1)).

The third equality uses the decomposition et/es = PtQt, where Pt is the Konüs price index and
Qt the corresponding quantity index. Along the same indifference curve as wDs, we necessarily
have Qt = 1 for all t, and the result then immediately follows. Equation (A.2) allows us to write
P̃t as a Sato-Vartia index. The procedure is the same as in the standard case: solve for P̃t from
the shares in Equation (A.2), take logs, multiply by the difference in shares over time, sum over
both B and D and solve for P̃t. For C ∈ {B,D}, the first two steps yields

ln P̃t = lnPCt −
1
γ

ln
(
ψCt
ψCs

)
⇐⇒ −1

γ
= ln P̃t − lnPCt

lnψCt − lnψCs
.

Multiplying both sides by ψCt − ψCs, summing over both C ∈ {B,D}, and rearranging terms
results in

ln P̃t
∑

C∈{B,D}

ψCt − ψCs
lnψCt − lnψCs

=
∑

C∈{B,D}

ψCt − ψCs
lnψCt − lnψCs

lnPCt.

Then solving for P̃t yields

P̃t = P φtDtP
1−φt
Bt , where φt ≡

L(ψDt, ψDs)
L(ψDt, ψDs) + L(ψBt, ψBs)

. (A.3)

Plugging Equation (A.3) into Equation (A.1) gives the household-level price indices.

Because a representative level of expenditures eRA exists over any group of households, group-
level behavior is characterized by the same indirect utility function and expenditure function as
household-level behavior.17 Aggregate-level cost-of-living indices are therefore derived identically
to above, with the only difference that group-level expenditure shares wDs and representative
levels of expenditure eRA are used instead of household-level ones.

A.2 Proof of Corollary 1

Proof. The result is immediate by setting both PDt and PDt to either the quadratic-mean-of-
order-r index (14) or the Theil-Sato index (15) and substituting these into the general PIGL
index (11). We only need to rewrite (14) into a geometric-mean form. Balk (2004) does this
for the Fisher ideal index (r = 2), and the generalization to any r > 0 is analogous. As in
Corollary 1, define

PLt =

 ∑
j∈J

wjs

(
pjt
pjs

) r
2

 2
r

and PPt =

 ∑
j∈J

wjt

(
pjt
pjs

)− r2 − 2
r

,

17 This can be shown by substituting for eRA = eκ− 1
ε in the aggregate expenditure share (9) and integrating

to obtain the group-level indirect utility function.
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such that the quadratic-mean-of-order-r index (14) can be written Pt =
√
PLtPPt. PLt weighs

price changes by base-period expenditure shares while PPt uses current-period expenditure
shares, and the definition nests the Laspeyres and Paasche indices as the special case where
r = 2, thus motivating the L and P notation. By the definition of PLt and the logarithmic mean,
it holds that

0 =
∑
j∈J

wjs

(
pjt
pjs

) r
2

− P
r
2
Lt =

∑
j∈J

wjs

[ (
pjt
pjs

) r
2
− P

r
2
Lt

]

=
∑
j∈J

wjs L

(( pjt
pjs

) r
2 , P

r
2
Lt

)
ln
(
pjt/pjs
PLt

) r
2

= r

2
∑
j∈J

w̃Ljt

[
ln
(
pjt
pjs

)
− lnPLt

]
,

with w̃Ljt defined as in Corollary 1. Solving for lnPLt, we get

lnPLt =
∑
j∈J

w̃Ljt∑
i∈J w̃Lit

ln
(
pjt
pjs

)
.

Identical steps for PPt yields

lnPPt =
∑
j∈J

w̃Pjt∑
i∈J w̃Pit

ln
(
pjt
pjs

)
,

with w̃Pjt defined as in Corollary 1. Substituting these into the overall index Pt yields

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, where δjt ≡

1
2

[
w̃Ljt∑
i w̃Lit

+
w̃Pjt∑
i w̃Pit

]
,

and we are done.

A.3 Proof of Proposition 3

Proof. If preferences are of the Cobb-Douglas form V (e,p) =
[

e
B(p)1−νD(p)ν

]
, then the cost-of-

living index is Pt = P 1−ν
Bt P νDt by Proposition 1. If PBt and PDt are Törnqvist indices, Corollary 1

and Assumption 1 allow us to write this index as

Pt =
∏
j∈JB

(
pjt
pjs

)(1−ν)δBjt ∏
j∈JD

(
pjt
pjs

)νδDjt
, δCjt =

wCjs + wCjt
2 , C ∈ {B,D}, (A.4)

where JB and JD denote the sets of goods in B and D, respectively. (Under the weak separability
assumption, it holds that JB ∪ JD = J and JB ∩ JD = ∅.) Meanwhile, the standard Törnqvist
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index reads

Pt =
∏
j∈J

(
pjt
pjs

)δjt
, δjt = wjs + wjt

2 . (A.5)

Equations (A.4) and (A.5) are equal if (1 − ν)δBjt = δjt for j ∈ JB and νδDjt = δjt for j ∈ JD.
Under Cobb-Douglas preferences, ν = wD is the homothetic and time-invariant expenditure
share on D. Under the weak separability assumption, the total expenditure share on good
j ∈ JC , C ∈ {B,D}, is given by wj = wC w

C
j . Thus,

(1− ν)δBjt = wB
wBjs + wBjt

2 = wjs + wjt
2 = δjt, j ∈ JB,

νδDjt = wD
wDjs + wDjt

2 = wjs + wjt
2 = δjt, j ∈ JD,

and it follows that the Törnqvist index under weak separability (A.4) is the same as the standard
Törnqvist index (A.5).

A.4 Allowing for Heterogeneity in Tastes

Redding and Weinstein (2020) stress the importance of accounting for heterogeneity in tastes for
the cost of living and it is possible to extend the baseline framework to allow for this. Following
Cravino, Levchenko and Rojas (forthcoming), let the preferences of household h be characterized
by an indirect utility function of the form

Vh(eh,p) = 1
ε

[(
eh
B(p)

)ε
− 1

]
− νh

γ

[(
D(p)
B(p)

)γ
− 1

]
, (A.6)

where the only difference to the PIGL specification in Equation (4) is that we allow the taste
parameter νh to vary across households (and time). As before, the expenditure share of the
latent good with price function D(·) is given by Roy’s identity as

wDh = νh

(
B(p)
eh

)ε (D(p)
B(p)

)γ
,

and the corresponding aggregate expenditure share over any N households is now

wD =
(
B(p)
e

)ε (D(p)
B(p)

)γ
κ, where κ ≡ 1

N

N∑
h=1

νh

(
eh
e

)1−ε
.

A representative expenditure level eRA = eκ−
1
ε therefore exists and incorporates any heterogeneity

in tastes. Substituting back into the aggregate expenditure share wD and integrating back yields
aggregate-level behavior characterized by the indirect utility function

V (eRA,p) = 1
ε

[(
eRA

B(p)

)ε
− 1

]
− 1

γ

[(
D(p)
B(p)

)γ
− 1

]
,
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with corresponding expenditure function

c(uRA,p) =
[
1 + ε

(
uRA + 1

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p).

This expenditure function is independent of the taste parameters νh. We can therefore follow the
same steps as in Appendix A.1 to derive an identical price index as in Proposition 1. Again, this
index is only a function of the base-period expenditure share for the D basket, price indices PDt
and PBt, and the parameters ε and γ. Heterogeneity in the taste parameters νh only affect the
price index indirectly to the extent that they affect expenditure shares. Whenever expenditure
shares are observed in the data, we therefore do not need to know these individual tastes to
compute the price index. We obtain the same result for household-level cost-of-living indices as
the special case where N = 1.

Taste heterogeneity also poses no challenge with respect to estimating ε and γ. Since PIGL pref-
erences aggregate consistently, it is possible to estimate these parameters from a aggregate data
without any aggregation bias. Therefore, taking an aggregate time series and estimating

wDt =
(
B(pt)
et

)ε (D(pt)
B(pt)

)γ
κt,

where κt is just a standard time fixed effect, is sufficient and we therefore avoid the need to
estimate all the household-level effects νh.

A.5 Allowing for Hump-Shaped Expenditure Shares

Banks, Blundell and Lewbel (1997) stress the importance of allowing for hump-shaped expenditure
shares to match the microeconomic data and it is possible to extend the baseline framework to
allow for this at the household level. Following Alder, Boppart and Müller (2022), let preferences
be characterized by an indirect utility function of the form

V (e,p) = 1
ε

[(
e−A(p)
B(p)

)ε
− 1

]
− ν

γ

[(
D(p)
B(p)

)γ
− 1

]
, (A.7)

where the only difference to the PIGL specification in Equation (4) is the addition of a linearly
homogeneous function A(p) of prices. The expenditure shares of the three latent goods with
price functions A(·), B(·) and D(·) are given by Roy’s identity as

wA = A(p)
e

, (A.8)

wB =
(

1− A(p)
e

)[
1− ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ]
, (A.9)

wD =
(

1− A(p)
e

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ
. (A.10)
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The shares wAj , wBj and wDj of total A, B and D expenditures allocated to an individual good
j are given as before by wCj = pjCj(p)/C(p), C ∈ {A,B,D}. Together with Equations (A.8)
to (A.10), this implies an expenditure share wj of good j in total expenditures of the form

wj = pj

{
A(p)
e

Aj(p)
A(p)

+
(

1− A(p)
e

)[
Bj(p)
B(p) +

(
Dj(p)
D(p) −

Bj(p)
B(p)

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ ]}
. (A.11)

Since the first term on the right-hand side of (A.11) is decreasing in e while the second term can
be either increasing or decreasing in e, this allows for expenditure shares that are non-monotonic
in expenditures. The derivation of the exact price index of (A.7) is virtually identical to the
PIGL case in Appendix A.1. The corresponding expenditure function of (A.7) is

c(u,p) =
[
1 + ε

(
u+ ν

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p) +A(p).

Suppose again that the reference utility u is that corresponding to the expenditure level in some
base period s such that c(u,ps) = es and u ≡ V (es,ps). Using the indirect utility function
(A.7) to substitute this into some period-t expenditure function, rearranging terms, and using
PCt = C(pt)/C(ps) together with Equations (A.8) to (A.10) yields

c(u,pt) = es

{(
1− wAs

)[(
1− ε

γ

wDs
1− wAs

)
P γBt + ε

γ

wDs
1− wAs

P γDt

] 1
γ
· γ
ε

P
1− γ

ε
Bt + wAsPAt

}
,

and it follows that the price index is

P IAt = (1− wAs)P̃
γ
ε
t P

1− γ
ε

Bt + wAsPAt

where

P̃t ≡
[(

1− ε

γ

wDs
1− wAs

)
P γBt + ε

γ

wDs
1− wAs

P γDt

] 1
γ

.

Writing P̃t as a Sato-Vartia index, we finally obtain the household-level cost-of-living index

P IAt = (1− wAs)P
γφt
ε

Dt P
1− γφt

ε
Bt + wAsPAt,

where φt is a Sato-Vartia weight as in Proposition 1 with

ψBt ≡
(

1− ε

γ

wDs
1− wAs

)(
PBt

P̃t

)γ
and ψDt ≡

ε

γ

wDs
1− wAs

(
PDt

P̃t

)γ
.

This index is a direct generalization of Proposition 1 and, as before, is computable given
expenditure shares wAs, wDs, price indices PAt, PBt, PDt and parameter values for ε and γ.
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Similarly to Proposition 2, under Assumption 1 and appropriate choices for PAt, PBt and
PDt, estimation reduces to only the two parameters ε and γ which are readily obtained from
Equations (A.8) and (A.10).

Unlike the baseline framework, however, these preferences do not aggregate as easily. As shown
in Alder, Boppart and Müller (2022, Proposition 2), aggregate expenditure shares over N
households are now

wA = A(p)
e

,

wB =
(

1− A(p)
e

)[
1− ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ]
κ,

wD =
(

1− A(p)
e

)
ν

(
B(p)

e−A(p)

)ε (D(p)
B(p)

)γ
κ.

where

κ ≡ 1
N

N∑
h=1

(
eh −A(p)
e−A(p)

)1−ε
.

Unlike the PIGL case, there is no representative level of expenditure in Muellbauer’s (1975,
1976) sense, even though a representative agent exists.18 Therefore, it is not possible to bake in
the parameter κ into some representative level of expenditure and proceed as for an individual
household. Instead, the expenditure function of the representative agent is now

c(uRA,p) =
[
1 + ε

(
uRA + ν κ

γ

{(
D(p)
B(p)

)γ
− 1

})] 1
ε

B(p) +A(p).

Similar steps as before gives an aggregate price index of the same form as above, P IAt =

(1− wAs)P
γφt
ε

Dt P
1− γφt

ε
Bt + wAsPAt, but with weights given by

ψBt ≡
(

1− ε

γ

κt
κs

wDs
1− wAs

)(
PBt

P̃t

)γ
and ψDt ≡

ε

γ

κt
κs

wDs
1− wAs

(
PDt

P̃t

)γ
.

where

P̃t ≡
[(

1− ε

γ

κt
κs

wDs
1− wAs

)
P γBt + ε

γ

κt
κs

wDs
1− wAs

P γDt

] 1
γ

.

Thus, to compute aggregate price indices, we now either need to know the inequality measures κ
in the time periods considered, or we need to impose the rather strong assumption that these
measures remain constant over time for all groups considered.

18 The expenditure level eRA that induces the average expenditure shares for A and D are given by eRA = e

and
(
1− A(p)

eRA

) (
eRA −A(p)

)−ε =
(
1− A(p)

e

) (
e−A(p)

)−ε
κ, respectively, and these generally differ.
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Appendix B Additional Figures and Tables

Table B.1. CEX-CPI crosswalk.

CEX category CPI name CPI code

1 Food at home Food at home SAF11
2 Food away from home Food away from home SEFV
3 Alcoholic beverages Alcoholic beverages SAF116
4 Rented dwellings Rent of primary residence SEHA
5 Owned dwellingsa Owners’ equivalent rent of primary residence SEHC
6 Other lodging Lodging while out of townb MUUR0000SE2102

Lodging away from homeb SEHB
7 Utilities Household energy SAH21
8 Water Water and sewerage maintenance SEHG01
9 Phone Communication SAE2
10 Household F&Oc Household furnishings and operations SAH3
11 Apparel Apparel SAA
12 Gasoline Motor fuel SETB
13 Other vehicle expenses Motor vehicle maintenance and repair SETD

Motor vehicle insurance SETE
Motor vehicle fees SETF

14 Public transportation Public transportation SETG
15 Health Medical care SAM
16 Entertainment Recreation SAR
17 Personal care Personal care SAG1
18 Reading Recreational reading materials SERG
19 Education Education and communcation SAE
20 Tobacco Tobacco and smoking products SEGA
21 Other expenses Miscellaneous personal services SEGD

Notes. The CEX categories follow the hierachical groupings defined by the BLS. CPI are non-seasonally
adjusted nationwide data for urban consumers. a. Rental equivalence value of owned dwellings as
reported by the households. b. “Lodging away from home” from 1995–1997 and “lodging while out
of town” afterwards. c. Furnishing and operations, includes “household operations”, “housekeeping
supplies” and “household furnishings and equipment”.
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Table B.2. Marginal effect of a change in expenditure decile on expenditure share.

Classification Goods category Marginal SEeffect

Luxuries Owned dwellings 1.757 (0.019)
Household operations and furnishing 0.690 (0.010)
Entertainment 0.386 (0.006)
Other lodging 0.303 (0.005)
Food away from home 0.299 (0.005)
Education 0.280 (0.006)
Health 0.215 (0.007)
Public transport 0.137 (0.003)
Other vehicle expenses 0.124 (0.006)
Other expenses 0.105 (0.002)
Apparel 0.098 (0.004)
Alcoholic beverages 0.044 (0.001)
Personal care 0.031 (0.001)
Reading 0.028 (0.001)

Necessities Food at home −2.031 (0.012)
Rented dwellings −1.496 (0.017)
Utilities −0.362 (0.004)
Gasoline −0.219 (0.004)
Phone −0.186 (0.003)
Tobacco −0.158 (0.003)
Water −0.045 (0.002)

Expenditure category dummies Yes
Observations 1, 562, 211
Adjusted R2 0.579

Notes. The table shows the coefficient estimates (clustered standard errors in parentheses) from
a weighted least square regression of expenditure shares on the expenditure decile interacted with
individual good dummies using the CEX household sampling weights. We include expenditure category
dummies and cluster standard errors on household level.
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Figure B.1. PIGL representative agent G-SV price index for different base years.

Notes. The price index is calculated under weak separability. Each line represents the representative agent price
index for a different base year, but normalized to one in 1995.

1995 2000 2005 2010 2015 2020
Base Year

1.56

1.58

1.60

1.62

1.64

1.66

1.68

Pr
ice

 In
de

x 
in

 2
01

4

Decile
1
2
3
4
5
6
7
8
9
10

Figure B.2. G-SV price index in 2014 by expenditure decile for different base years.

Notes. The price index is calculated under weak separability. The horizontal axis describes the base year of the
price index and the vertical axis the respective value of the price index in 2014. Price indices are all normalized to
one in 1995. The price index for each expenditure decile is calculated as the price index of the PIGL representative
agent over households within each respective decile.
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Figure B.3. Distribution of the G-SV price index under weak separability.

Notes. The gray shaded area shows the kernel density estimate of the distribution of G-SV price indices. The
index is calculated for each household in the sample of 1995. The blue line shows the PIGL RA price index for
the poorest 10 percent. The red line shows the PIGL RA price index for the richest 10 percent.
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Figure B.4. Distribution of the G-SV inflation under weak separability.

Notes. The gray shaded area shows the kernel density estimate of the distribution of inflation rates. The inflation
is calculated for each household in the sample of 1995. The blue line shows the PIGL RA inflation for the poorest
10 percent. The red line shows the PIGL RA inflation for the richest 10 percent.

41



30 40 50 60 70 80 90
Age

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

An
nu

al
 e

xp
en

di
tu

re
s r

el
at

iv
e 

to
 a

ge
 2

5

Figure B.5. Expenditures over the life cycle.

Notes. The blue line shows the estimated life-cycle expenditures, α̂i’s, from the model in Equation (21). The
orange line shows smoothed expenditure levels using a Locally Weighted Scatterplot Smoothing (LOWESS). All
measures are relative to the smoothed expenditure level at age 25.
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Figure B.6. Inflation decomposition by expenditure categories.
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Figure B.7. Comparison of different generalized superlative price indices.
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Figure B.8. Comparison of inflation across different generalized superlative indices.
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