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Robust Real Rate Rules 
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Abstract: Central banks wish to avoid self-fulfilling fluctuations. This requires 

“determinacy”. Monetary rules with a unit response to real rates produce determinate 

inflation under the weakest possible assumptions about the behaviour of households 

and firms. They are robust to household heterogeneity, hand to mouth consumers, 

non-rational household/firm expectations, active fiscal policy, missing transversality 

conditions and to any form of intertemporal link (Euler equation) or nominal-real link 

(Phillips curve). These rules: allow the implementation of arbitrary inflation dynamics, 

including optimal policy; are easy to implement in practice, with bonds of any 

maturity; and can attain high welfare. The performance of these rules suggests a 

reversed interpretation of the Phillips equation, explaining its poor forecasting 

performance, and provides insights into monetary transmission—the Fisher equation 

is key. 
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Today you start work as president of the Fictian Central Bank (FCB). As FCB president, 

you have a clear mandate to stabilize inflation, even if that results in unemployment 

or output losses. How should you act? You have studied New Keynesian macro, so 

you are inclined to follow some variant of the Taylor rule. You recall the prescription 

of the Taylor principle: the response of nominal rates to inflation should be greater 

than one to ensure determinacy and rule out self-fulfilling fluctuations in inflation. 

But you also remember reading other papers which talked of the Taylor principle 

being insufficient if there are hand-to-mouth households (Gali, Lopez-Salido & Valles 

2004), firm-specific capital (Sveen & Weinke 2005), high government spending (Natvik 

2009), or if the inflation target is positive (Ascari & Ropele 2009), particularly in the 

presence of trend growth and sticky wages (Khan, Phaneuf & Victor 2019). Indeed, 

you recollect that the Taylor principle inverts if there are sufficiently many hand-to-

mouth households (Bilbiie 2008), certain financial frictions (Manea 2019), or non-

rational expectations (Branch & McGough 2010; 2018). You also recall that if real 

government surpluses do not respond to government debt levels, then following the 

Taylor principle can lead to explosive inflation (Leeper & Leith 2016; Cochrane 2022). 

Is there a way you could act to ensure determinacy and stable inflation, even if one or 

more of these circumstances is true? This paper provides a family of “robust real rate 

rules” that manage to do this. We then reassess classic questions of monetary 

economics through the lens of these rules. 

To illustrate the idea behind these rules, suppose that both nominal and real bonds are 

traded in an economy. If a unit of the former is purchased at 𝑡𝑡, it returns the principal 

plus a nominal yield of 𝑖𝑖𝑡𝑡 in period 𝑡𝑡 + 1. If a unit of the latter is purchased at 𝑡𝑡, it 

returns the principal plus a nominal yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 in period 𝑡𝑡 + 1, where 𝜋𝜋𝑡𝑡+1 is 

realized inflation between 𝑡𝑡 and 𝑡𝑡 + 1. Abstracting for the moment from inflation risk 

premia, term premia and liquidity premia, arbitrage between these two markets 

implies that the Fisher equation must hold, i.e.: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, (1) 
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where 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 is the full information rational expectation of period 𝑡𝑡 + 1’s inflation rate, 

given period 𝑡𝑡’s information. Suppose further than the central bank observes both the 

nominal and real bond markets, and that it can intervene in the former. Then the 

central bank can choose to set nominal interest rates according to the simple rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, (2) 

where 𝜙𝜙 > 1.2 Combining these two equations gives that: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, 

which has a unique non-explosive solution of 𝜋𝜋𝑡𝑡 = 0.3 Determinate inflation! 

Why is this robust? Firstly, the rule does not require the aggregate Euler equation to 

hold, even approximately. For the Fisher equation (1) to hold (still ignoring 

risk/term/liquidity premia for now), there only need to be two deep pocketed, fully 

informed, rational agents. Arbitrage takes care of the rest. Even full information is not 

necessary. Since large markets aggregate information (Hellwig 1980; Lou et al. 2019), 

the Fisher equation can come to hold even when information about future inflation is 

dispersed amongst market participants. 

Given that the rule does not require the aggregate Euler equation to hold, it is 

automatically robust to heterogeneity, hand-to-mouth agents and non-rational 

consumer expectations. The only expectations that matter are the expectations of 

participants in the markets for nominal and real bonds. It is much more reasonable to 

assume that financial market outcomes lead to rational expectations than to assume 

rationality of households more generally. 

 
2 We ignore the zero lower bound for now. We provide rules that retain their good properties in the presence of the 

ZLB in TODO. 
3 Here we sidestep the issues raised by Cochrane (2011) and follow the standard New Keynesian literature in 

assuming agents will always select non-explosive paths for inflation. The escape clause rules of Christiano & 

Takahashi (2018) are one way by which central banks could ensure coordination on the expectations consistent 

with non-explosive inflation. We give an alternative solution in TODO. 
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Secondly, the rule does not require the aggregate Phillips equation to hold. The slope 

of the Phillips curve will have no impact on the dynamics of inflation. If the FCB 

president is unconcerned with output, they do not need to know if the Phillips curve 

holds, let alone its slope. Nor does it matter how firms form inflation expectations. 

Inflation is pinned down by the Fisher and monetary rules, so while non-rational firm 

expectations could affect output fluctuations, they will not alter the dynamics of 

inflation. 

This may be surprising. How could price setters fail to determine inflation? The short 

answer is “Walras’s law”. To see how this plays out, suppose that today all firms decide 

to double their price. Financial market participants still expect zero inflation next 

period, because that is the only outcome consistent with non-explosive inflation in 

future. Thus, financial market participants always value nominal bonds the same as 

real bonds. But the central bank’s monetary rule instructs it to attempt to produce 

nominal rates which are much higher than real rates, as today’s inflation is high. So, 

the central bank wants to sell nominal bonds, i.e., to borrow money from financial 

market participants. 

However, no amount of nominal bond selling will induce market participants to lower 

their valuation of nominal bonds below that of real bonds, though both valuations 

may fall together (i.e., both nominal and real rates rise). Thus, the central bank will 

end up reducing the money supply to zero. With households having zero cash, not all 

final goods will be sold.4 Thus, the final goods market will not clear. To obtain market 

clearing in final goods, at least some price setters must reduce their price until inflation 

is zero, so ensuring that the central bank sets nominal rates equal to real rates. 

The possibility of decoupling inflation from the rest of the economy has wide ranging 

implications. For example, there is a tradition in monetary economics of examining 

 
4 For example, if there are cash goods and credit goods, only credit goods will be sold. 
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model features producing amplification or dampening of monetary shocks. Under a 

real rate rule, assuming the Fisher equation holds, then no change to the model can 

ever produce amplification or dampening. Thus, such amplification/dampening 

results were always highly dependent on the particular monetary rule being used. 

With a greater than unit response to real rates, amplification can be flipped to 

dampening, and vice versa. Likewise, a persistent question in monetary economics has 

been “which shocks drive inflation?”. Here too, the answer must be crucially sensitive 

to the monetary rule being used. Under a real rate rule, only monetary policy shocks 

or shocks to the Fisher equation can possibly move inflation. 

The rest of this paper further examines such “real rate rules”, along with the classic 

questions of monetary economics they help answer. The next section generalizes the 

simple rule of equation (2) along various dimensions, including examining rules that 

respond to other endogenous variables. We also show that the non-linear version of 

equation (2) is always consistent with zero inflation. Section 1 goes on to show that 

there are similar rules that determinately implement an arbitrary path for inflation, 

robustly across models. It concludes with an examination of when, if ever, real rate 

rules can produce explosive inflation, with particular reference to active fiscal policy 

and the fiscal theory of the price level. We show that with long maturity debt, a 

solution with stable inflation and stable real variables always exists, independent of 

whether fiscal policy is active or passive. Thus, the fiscal theory of the price level fails 

to determine a unique outcome. 

Section 2 discusses how a real rate rule could be implemented in practice. We show 

that it is easy to adapt real rate rules to work with longer bonds. Finally, Section 3 looks 

at the consequences of the zero lower bound for the performance of these rules. 

Literature. Rules like equation (2) have appeared in Adão, Correia & Teles (2011), 

Lubik, Matthes & Mertens (2019) and Holden (2021) amongst other places. However, 

in the prior literature they have chiefly been introduced for analytic convenience, 
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rather than as serious proposals. One exception is the work of Cochrane (2017; 2022) 

who briefly discusses rules of this form within the context of a wider discussion of 

rules that hold 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant (i.e. rules with 𝜙𝜙 = 0). Cochrane (2018) further explores 

rules holding 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant. 

The “indexed payment on reserve” rules of Hall & Reis (2016) also rely on observable 

real rates, but use a different mechanism to achieve determinacy. They propose that 

the CB issues an asset (“reserves”) with nominal return from $1 of $(1 + 𝑟𝑟𝑡𝑡)
𝑝𝑝𝑡𝑡+1
𝑝𝑝𝑡𝑡

∗  or 

$(1 + 𝑖𝑖𝑡𝑡)
𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡

∗. Additionally, in older work, Hetzel (1990) proposes using the spread 

between nominal and real bonds to guide monetary policy, and Dowd (1994) proposes 

targeting the price of futures contracts on the price level, which has a similar flavour 

to our rules, since our rules effectively use expected inflation as the instrument of 

monetary policy. 

There is also an established literature looking at rules tracking the efficient (“natural”) 

real interest rate, see e.g. Cúrdia et al. (2015). This is a very different idea. 

1 Generalizations and generality 

This section establishes the robustness of real rate rules, and considers assorted 

generalizations. We look at real rate rules 1) in non-linear models, 2) in the presence 

of monetary policy shocks, 3) in the three equation NK model, 4) with responses to 

other endogenous variables, 5) with time varying inflation targets, and 6) under active 

fiscal policy. 

1.1 Non-linear models 

Our introductory example was in a linearized model. Do real rate rules still work in 

fully non-linear ones? 

Suppose that Ξ𝑡𝑡 is the real stochastic discount factor (SDF) between period 𝑡𝑡 and 

period 𝑡𝑡 + 1, and that 𝐼𝐼𝑡𝑡 is the gross nominal interest rate (so 𝑖𝑖𝑡𝑡 = log 𝐼𝐼𝑡𝑡) and that 𝑅𝑅𝑡𝑡 is 
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the gross real interest rate (so 𝑟𝑟𝑡𝑡 = log 𝑅𝑅𝑡𝑡). Then the pricing equations for one-period 

nominal and real bonds imply: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

The natural nonlinear version of equation (2) is the following rule: 

𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π �
Π𝑡𝑡
Π �

𝜙𝜙
. 

Combining this rule with the bond pricing equations implies that: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

=
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π �
Π
Π𝑡𝑡

�
𝜙𝜙

, 

so: 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π
Π𝑡𝑡+1

= �
Π
Π𝑡𝑡

�
𝜙𝜙

. 

It is easy to see that Π𝑡𝑡 = Π is always one solution of this equation, as 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
= 1. 

Thus, robust real rate rules are always consistent with stable inflation, even in fully 

non-linear models. 

Furthermore, under mild assumptions, there exists a constant 𝑍𝑍 ≥ 1 such that for all 

sufficiently high 𝜙𝜙, 1 ≤ Π
Π𝑡𝑡

≤ 𝑍𝑍
1

𝜙𝜙−1. This upper bound tends to 1 as 𝜙𝜙 goes to ∞, thus for 

large 𝜙𝜙, any solution must have Π𝑡𝑡 ≈ Π. This holds even if the SDF, Ξ𝑡𝑡, is a complicated 

function of inflation and its history. Under slightly stronger assumptions on the SDF, 

we can even guarantee that Π𝑡𝑡 = Π is the unique solution for all sufficiently large 𝜙𝜙. 

These results are proven in Appendix A. For the sake of tractability, we return to the 

linearized world for the bulk of the rest of this paper. 

1.2 Monetary policy shocks 

While the simple rule (2) always produces zero inflation, slight extensions of the rule 

allow inflation to move. For example, we may add a monetary policy shock, 𝜁𝜁𝑡𝑡 to the 

rule, giving: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. (3) 
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Monetary policy shocks may perhaps reflect the central bank’s limited information. If 

the central bank does not perfectly observe current inflation, and sets interest rates to 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋̃𝜋𝑡𝑡, where 𝜋̃𝜋𝑡𝑡 is its signal about inflation, then it will end up setting a slightly 

different level for nominal rates than that dictated by the rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, effectively 

generating monetary policy shocks.5 

The central bank might also deliberately decide to introduce monetary policy shocks 

correlated with the economy’s structural shocks. For example, by lowering 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 

following a positive mark-up or cost-push shock, the central bank can lessen the 

movement in the output gap.6 This has no effect on the determinacy region as 

structural shocks are exogenous. For now though, we assume that 𝜁𝜁𝑡𝑡 is independent 

of other structural shocks. 

From combining (3) with the Fisher equation (1) we have: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

which (with 𝜙𝜙 > 1) has the unique solution 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡, if 𝜁𝜁𝑡𝑡 follows an AR(1) 

process with persistence 𝜌𝜌𝜁𝜁 . 

A contractionary (positive) monetary policy shock results in a fall in inflation, as 

expected. If the central bank is more aggressive, so 𝜙𝜙 is larger, then inflation is less 

volatile. Only monetary policy shocks affect inflation. Of course, if there is a nominal 

rigidity in the model, such as sticky prices or wages, monetary shocks may have an 

impact on real variables. But as long as the central bank follows rules like this, these 

real disruptions have no feedback to inflation. We can understand inflation without 

worrying about the rest of the economy. 

 
5 Lubik, Matthes & Mertens (2019) look at the determinacy consequences of a central bank that filters inflation 

signals in order to retrieve the optimal estimate. The determinacy problems they highlight all disappear if the 

central bank directly responds to its signal. 
6 Ireland (2007) presents evidence that the US Federal Reserve has reacted to mark-up shocks.  
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In line with this, an extensive body of empirical evidence finds no role for the Phillips 

curve in forecasting inflation (see e.g. Atkeson & Ohanian 2001; Ang, Bekaert & Wei 

2007; Stock & Watson 2009; Dotsey, Fujita & Stark 2018). In a recent contribution, 

Dotsey, Fujita & Stark (2018) find that in the post-1984 period, Phillips curve based 

forecasts perform worse than those of a simple IMA(1,1) model, both unconditionally 

and conditional on various measures of the state of the economy. This provides strong 

support for models in which the causation in the Phillips curve runs in only one 

direction: from inflation to the output gap.7 

Additionally, Miranda-Agrippino & Ricco (2021) find that a contractionary monetary 

policy shock causes an immediate fall in the price level, while impacts on 

unemployment materialise much more slowly. Again, this suggests that causation in 

the Phillips curve runs from inflation to unemployment, not the other way round. 

1.3 Robust real rate rules in the three equation NK world 

To understand how our robust rule in equation (3) can explain causation running from 

inflation to the output gap in the Phillips curve, suppose the rest of the model 

comprises the Phillips curve:8 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (4) 

and the discounted/compounded Euler equation: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), (5) 

where 𝑥𝑥𝑡𝑡 is the output gap, 𝜔𝜔𝑡𝑡 is a mark-up/cost-push shock, and 𝑛𝑛𝑡𝑡 is the exogenous 

natural real rate of interest. This form of discounted/compounded Euler equation 

appears in Bilbiie (2019) and (under discounting) in McKay, Nakamura & Steinsson 

 
7 McLeay & Tenreyro (2019) provide an alternative explanation based on the fact that optimal policy prescribes a 

negative correlation between inflation and output, making difficult empirical identification of the Phillips curve. 
8 Throughout this paper, we multiply the mark-up shock by 𝜅𝜅 as the ratio of the response to 𝑥𝑥𝑡𝑡 and the response to 

𝜔𝜔𝑡𝑡 is not a function of either the (Calvo) price adjustment probability or the (Rotemberg) price adjustment cost. See 

Khan (2005) for derivations. 
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(2017). The latter paper shows it provides a good approximation to a heterogeneous 

agent model with incomplete markets. The standard Euler equation is recovered if 𝛿𝛿 =

1 and 𝜍𝜍 is the elasticity of intertemporal substitution. This specification also nests the 

limited asset market participation or “TANK” model of Bilbiie (2008) when 𝛿𝛿 = 1, but 

𝜍𝜍 is allowed to be negative. 

Since 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡, and 𝜁𝜁𝑡𝑡 is AR(1) with persistence 𝜌𝜌𝜁𝜁 , the Phillips curve (4) implies 

that 𝑥𝑥𝑡𝑡 = − 1
𝜅𝜅

1−𝛽𝛽𝜌𝜌𝜁𝜁
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡 − 𝜔𝜔𝑡𝑡. The Phillips curve is determining the output gap, given the 

already determined level of inflation. Does 𝑥𝑥𝑡𝑡 help forecast 𝜋𝜋𝑡𝑡 here? Clearly no. 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝔼𝔼𝑡𝑡𝜁𝜁𝑡𝑡+1 = − 𝜌𝜌𝜁𝜁
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡. Once you know 𝜋𝜋𝑡𝑡, you already have all the 

information you need to form the optimal forecast of 𝜋𝜋𝑡𝑡+1. The correlation in 𝜋𝜋𝑡𝑡 and 

𝑥𝑥𝑡𝑡 provides no extra information.9 

This model also enables us to show the robustness of our rule’s determinacy in 

practice. Note that with 𝑥𝑥𝑡𝑡 expressed as a linear combination of exogenous variables, 

there is no need to solve the Euler equation (5) forward, so the degree of discounting 

(𝛿𝛿) can have no effect on determinacy. Not needing to solve the Euler equation forward 

also gives robustness to a missing transversality constraint on household assets. For 

example, if 𝜔𝜔𝑡𝑡 is independent across time, then the Euler equation implies 𝑟𝑟𝑡𝑡 = 𝑛𝑛𝑡𝑡 +
1
𝜍𝜍 �1

𝜅𝜅
�1−𝛽𝛽𝜌𝜌𝜁𝜁 ��1−𝛿𝛿𝜌𝜌𝜁𝜁 �

𝜙𝜙−𝜌𝜌𝜁𝜁
𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡�. This contrasts with the results of Bilbiie (2019) who finds 

that when 𝜍𝜍 > 0 and 𝛽𝛽 ≤ 1, the Taylor principle (𝜙𝜙 > 1) is only sufficient for 

determinacy in the discounting case (𝛿𝛿 ≤ 1),10 and with Bilbiie (2008) who finds that 

when 𝛿𝛿 = 1 and 𝜍𝜍 < 0, the Taylor principle (𝜙𝜙 > 1) is neither necessary nor sufficient 

for determinacy.11 Under our rule (3), the Taylor principle is necessary and sufficient 

 
9 This result is robust to generalizing to an ARMA(1,1) process for 𝜁𝜁𝑡𝑡. See Appendix D.1. 
10 See equation (40) of Appendix C.1 of Bilbiie (2019). 
11 See Proposition 7 of Appendix B.1 of Bilbiie (2008). 
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for determinacy whether there is discounting or compounding, and whether 𝜍𝜍 is 

positive or negative (given 𝜙𝜙 ≥ 0).12 

The rule is also robust to the presence of lags in the Euler or Phillips curve. For 

example, suppose the Phillips curve and Euler equation are instead given by: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (6) 

𝑥𝑥𝑡𝑡 = 𝛿𝛿�̃1 − 𝜚𝜚𝑥𝑥�𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 + 𝛿𝛿𝜚̃𝜚𝑥𝑥𝑥𝑥𝑡𝑡−1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

where 𝛽𝛽 ̃and 𝛿𝛿 ̃may not have the same structural interpretation as 𝛽𝛽 and 𝛿𝛿 (depending 

on the precise micro-foundation). These equations have no impact on the solution for 

inflation, which remains 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡. Instead, the lag in the Euler equation changes 

the dynamics of real interest rate, with no impact on inflation or output gaps, while 

the lag in the Phillips curve affects both output gap and real rate dynamics, with no 

impact on inflation. For example, if 𝜁𝜁𝑡𝑡’s law of motion is given by 𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡, 

where 𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, then: 

𝑥𝑥𝑡𝑡 =
1
𝜅𝜅

1
𝜙𝜙 − 𝜌𝜌𝜁𝜁

��𝛽𝛽𝜚̃𝜚𝜋𝜋 − 𝜌𝜌𝜁𝜁 �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 ��𝜁𝜁𝑡𝑡−1 − �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 �𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

As before, the output gap has a closed form solution in terms of the monetary policy 

and cost push shocks. Despite appearances, inflation is not a true endogenous state, 

as it must always equal − 1
𝜙𝜙−𝜌𝜌𝜁𝜁

𝜁𝜁𝑡𝑡. Monetary policy shocks are still always 

contractionary, but they only have a short-lived impact on the output gap if 𝜚𝜚𝜋𝜋 is 

around 𝜌𝜌𝜁𝜁 �1−𝛽𝛽𝜌𝜌𝜁𝜁 �

𝛽𝛽�1−𝜌𝜌𝜁𝜁
2�

. 

1.4 Responding to other endogenous variables 

The original Taylor rule contained a response to output. Even with a unit coefficient 

on the real interest rate, responding to output will change the determinacy conditions, 

though it still preserves some robustness. To see this, consider the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥𝑥𝑥𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

 
12 In Appendix D.2 we prove that this is robust to monetary responses to the real rate which are not exactly equal 

to 1. This is also a corollary of the more general result proven in Appendix D.4. 
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Assuming the lag-augmented NK Phillips curve (6) continues to hold, this monetary 

rule is equivalent to the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1� − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

(This is produced by using the Phillips curve to substitute out the output gap.) 

Combined with the Fisher equation, we have that: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1� − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

This has a determinate solution if the quadratic: 

�1 + 𝜅𝜅−1𝜙𝜙𝑥𝑥𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴2 − �𝜙𝜙𝜋𝜋 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�𝐴𝐴 + 𝜅𝜅−1𝜙𝜙𝑥𝑥𝛽𝛽𝜚̃𝜚𝜋𝜋 = 0 

has a unique solution for 𝐴𝐴 inside the unit circle. It is sufficient that the quadratic is 

positive at 𝐴𝐴 = −1 but negative at 𝐴𝐴 = 1, which holds if and only if: 

1 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃ + 𝜙𝜙𝜋𝜋 > 0, 

1 − 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 − 𝛽𝛽�̃ − 𝜙𝜙𝜋𝜋 < 0. 

So, if 𝜅𝜅 > 0, 𝜙𝜙𝑥𝑥 ≥ 0 and 𝛽𝛽̃ ∈ [0,1] as expected, then it is sufficient that 𝜙𝜙𝜋𝜋 > 1 as 

before.13 This is still considerable robustness. Providing there is something like a 

Phillips curve linking inflation and the output gap, the standard 𝜙𝜙𝜋𝜋 > 1 condition will 

be sufficient for determinacy. This would not hold with a more standard monetary 

rule without a response to real rates: in that case determinacy depends on 𝛿𝛿 ̃and 𝜍𝜍, as 

shown by the Bilbiie (2008; 2019) results discussed in the last subsection. 

Responding to real rates provides additional robustness even with a response to 

output as it disconnects the Euler equation from the rest of the model. The only 

remaining role of the Euler equation is to give a path for real rates, given the already 

determined paths of output and inflation. The Fisher equation, not the Euler equation 

is central to monetary policy transmission under real rate rules. 

 
13 This is stronger than necessary. The second condition states that 𝜙𝜙𝜋𝜋 + 𝜅𝜅−1𝜙𝜙𝑥𝑥�1 − 𝛽𝛽�̃ > 1 so a response to the 

output gap can substitute for a response to inflation. This condition is identical to that for the standard (purely 

forward looking) three equation NK model with Taylor type rule found in Woodford (2001). 
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For greater robustness, the central bank can replace the response to the output gap 

with a response to the cost push shock 𝜔𝜔𝑡𝑡. With an appropriate response to 𝜔𝜔𝑡𝑡, this is 

observationally equivalent to responding to the output gap, but ensures determinacy 

under the standard Taylor principle. 

However, it may be hard for the central bank to observe the cost push shock. To get 

round this, suppose that the central bank knows that a Phillips curve in the form of 

equation (6) holds. (Our results would generalize to other links between real and 

nominal variables.) For now, suppose the central bank also knows the coefficients in 

equation (6). Then the central bank could use a rule of the form: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡. 

By equation (6), this implies that: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 − 𝜙𝜙𝑥𝑥𝜔𝜔𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

as desired. Of course, the central bank is also unlikely to know the exact coefficients in 

the Phillips curve. However, we show in Appendix D.3 that the central bank may learn 

these coefficients in real time, without changing the determinacy conditions, at least 

under reasonable parameter restrictions.14 

If the central bank wishes to respond to other endogenous variables, a similar 

approach should be possible if they are aware of the broad form of the model’s 

structural equations. However, the central bank may legitimately worry about having 

fundamental misconceptions about how the economy works. They can be reassured 

though that the Taylor principle will be enough for determinacy if the response to 

other endogenous variables is small enough, no matter the form of the model’s other 

equations. We prove this in Appendix D.4. This also implies that a precise unit 

response to real rates is not needed for determinacy. Real rates are just another 

 
14 It is sufficient (but not necessary) that 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ∈ [0,1], 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and 𝜙𝜙𝜋𝜋 >

max � 1
𝛽𝛽�̃1−𝜚𝜚𝜋𝜋�

, 2�1 − 𝜚𝜚𝜋𝜋�, 𝜙𝜙𝑥𝑥�1+𝛽𝛽�̃
𝜅𝜅 �. 
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endogenous variable, so determinacy only requires a response that is sufficiently close 

to one. 

Classic results on determinacy in monetary models can be reinterpreted through this 

lens. Even if the central bank is not responding to real interest rates, it is still likely to 

be responding to variables that are highly correlated with them. For example, many 

models contain an Euler equation of the form: 

1 = 𝛽𝛽�exp 𝑟𝑟𝑡𝑡�𝔼𝔼𝑡𝑡 �
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡+1
�

1
𝜍𝜍
, 

where 𝐶𝐶𝑡𝑡 is real consumption per capita and 𝜍𝜍 is the elasticity of intertemporal 

substitution. Additionally, in many models, in equilibrium, consumption growth 

roughly follows an ARMA(1,1) process: 

𝑔𝑔𝑡𝑡 ≔ log �
𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡−1
� = �1 − 𝜌𝜌𝑔𝑔�𝑔𝑔 + 𝜌𝜌𝑔𝑔𝑔𝑔𝑡𝑡−1 + 𝜀𝜀𝑔𝑔,𝑡𝑡 + 𝜃𝜃𝑔𝑔𝜀𝜀𝑔𝑔,𝑡𝑡−1, 𝜀𝜀𝑔𝑔,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝑔𝑔

2�. 

(This is a good approximation to US post-war data.15) Combining these two equations 

gives that: 

𝑟𝑟𝑡𝑡 = − log 𝛽𝛽 +
1 − 𝜌𝜌𝑔𝑔

𝜍𝜍 𝑔𝑔 −
1
2 �

𝜎𝜎𝑔𝑔

𝜍𝜍 �
2

+
𝜌𝜌𝑔𝑔

𝜍𝜍 𝑔𝑔𝑡𝑡 +
𝜃𝜃𝑔𝑔

𝜍𝜍 𝜀𝜀𝑔𝑔,𝑡𝑡, 

implying that a (roughly) 
𝜌𝜌𝑔𝑔
𝜍𝜍  response to consumption growth can substitute for a 

(roughly) unit response to real rates. Of course, output (growth, level or gap) is in turn 

highly correlated with consumption growth, so output (growth, level or gap) may also 

substitute for real rates. For example, in the Smets & Wouters (2007) model of the US 

economy, the monetary rule is of the form 𝑖𝑖𝑡𝑡 = 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝑧𝑧𝑡𝑡 + 𝜁𝜁𝑡𝑡, where 𝑧𝑧𝑡𝑡 is a linear 

combination of other endogenous variables and 𝜁𝜁𝑡𝑡 is the monetary shock. At the 

estimated posterior mode, the correlation between 𝑧𝑧𝑡𝑡 and the real interest rate is 0.63, 

with both variables having standard deviation of 0.46%. Thus, the Smets & Wouters 

(2007) estimates imply that the Fed is already about two thirds of the way to using a 

simple robust real rate rule. 

 
15 Estimating on US data from 1947Q1 to 2021Q4 (BEA series: A794RX) with T-distributed shocks gives 𝜌𝜌𝑔𝑔 = 0.69, 

𝜃𝜃𝑔𝑔 = −0.50 (p-values both below 10−5). Using Gaussian shocks on less volatile sub-periods gives similar results. 
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1.5 Implementing arbitrary inflation dynamics 

Real rate rules can determinately implement any path for inflation, no matter the rest 

of the model. This implies they can also implement optimal policy, and so attain high 

welfare. It also implies that any observed inflation and interest rate dynamics are 

consistent with a real rate rule. 

Let 𝜋𝜋𝑡𝑡
∗ be an exogenous stochastic process, perhaps a function of the economy’s other 

shocks,16 and consider the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). (7) 

From the Fisher equation (1), this implies: 

𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1
∗ � = 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 

Again with 𝜙𝜙 > 1, there is a unique solution, now with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗. I.e., at all periods of 

time, and in all states of the world, realised inflation is equal to 𝜋𝜋𝑡𝑡
∗. Effectively, the 

central bank is able to choose an arbitrary path for inflation as the unique, determinate 

equilibrium outcome. 

The only constraint is that the targeted path for inflation cannot be a function of 

endogenous variables. However, this is not much of a limitation, since in stationary 

equilibrium, endogenous variables must have a representation as a function of the 

infinite history of the economy’s shocks. This means that by choosing 𝜋𝜋𝑡𝑡
∗ 

appropriately, rules in the form of (7) can mimic the outcomes of any other monetary 

policy regime.17 

For example, suppose that the central bank were to set interest rates in a different 

(though time invariant) way, for example by using another rule, or by adopting 

 
16 Ireland (2007) also allows the central bank’s inflation target to respond to other structural shocks. 
17 Other papers have examined the implementation of optimal policy in specific models using instrument rate rules 

(see e.g. Svensson & Woodford 2003; Dotsey & Hornstein 2006; Evans & Honkapohja 2006; Evans & McGough 

2010). However, the various prior proposals do not enable the implementation of a certain inflation path robustly 

across models. 
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optimal policy under either commitment or discretion, given some objective. For 

simplicity, suppose further that the economy’s equilibrium conditions are linear, e.g., 

because we are working under a first order approximation. Let �𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡�𝑡𝑡∈ℤ be the 

set of structural shocks in the economy,18 all of which are assumed mean zero and 

independent both of each other, and over time. Finally, assume that the central bank’s 

behaviour produces stationary inflation, 𝜋̃𝜋𝑡𝑡, with the � denoting that this is inflation 

under the alternative monetary regime. Then, by linearity and stationarity, there must 

exist a constant 𝜋̃𝜋∗ and coefficients �𝜃𝜃1,𝑘𝑘, … , 𝜃𝜃𝑁𝑁,𝑘𝑘�𝑘𝑘∈ℕ such that: 

𝜋̃𝜋𝑡𝑡 = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

with ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘
2∞

𝑘𝑘=0 < ∞ for 𝑛𝑛 = 1, … , 𝑁𝑁. So, if the central bank sets: 

𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋∗ + � � 𝜃𝜃𝑛𝑛,𝑘𝑘𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

(exogenous!) and uses the rule (7), then for all 𝑡𝑡 and in all states of the world, 𝜋𝜋𝑡𝑡 =

𝜋𝜋𝑡𝑡
∗ = 𝜋̃𝜋𝑡𝑡. Moreover, this implies in turn that all the endogenous variables in the two 

economies must be identical in all periods and in all states of the world.19 

This has two important implications. Firstly, it means that appropriately designed real 

rate rules can implement (timeless/unconditional/etc.) optimal policy, and thus attain 

the highest possible level of welfare. In Appendix C we look at welfare in New 

Keynesian models when the central bank is constrained to follow a real rate rule that 

produces simple inflation dynamics. We show that even with such a constraint, real 

rate rules can still come close to fully optimal policy. 

Secondly, it means that it is impossibly to test empirically if a central bank is using a 

general real rate rule. Any dynamics of inflation and interest rates are consistent with 

a real rate rule like (7), for an appropriately chosen 𝜋𝜋𝑡𝑡
∗. Thus, real rate rules are 

observationally equivalent to any other specification for central bank behaviour. While 

 
18 This may include sunspot shocks if they are added following Farmer, Khramov & Nicolò (2015). 
19 Proven in Appendix D.5. 
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in the last subsection we found that the Fed was not exactly using a simple real rate 

rule, we now see that a slightly more sophisticated real rate rule could fully explain 

Fed behaviour. 

The only slight difficulty with setting 𝜋𝜋𝑡𝑡
∗ as a function of structural shocks is that the 

central bank may struggle to observe these shocks. The central bank can certainly 

observe linear combinations of structural shocks, via estimating a VAR with 

sufficiently many lags. For variables that are plausibly contemporaneously exogenous, 

such as commodity prices for a small(ish) economy, this is already sufficient to recover 

the corresponding structural shock. To infer other shocks, the central bank needs to 

know more about the structure of the economy. However, we do not need to assume 

any more than is standard in rational expectations models. Forming rational 

expectations requires you to know the structure of the economy; if you know this 

structure, then you know the mapping from the reduced form shocks estimated by a 

VAR to the model’s structural shocks.20 Additionally, it is common to assume that the 

central bank responds to an output gap constructed by comparing outcomes to an 

economy without price rigidity. This already requires the central bank to know the 

values of all parameters and structural shocks. 

1.6 Avoiding over determinacy and explosive inflation 

As long as the Fisher equation holds, robust real rate rules can never fail to rule out 

sunspots. However, in an economy in which the price level is determinate independent 

of monetary policy, they may produce explosive inflation.21 This is true of any 

 
20 This mapping may not be unique valued if there are more shocks than observables. However, since we expect a 

relatively small number of shocks to explain the bulk of business cycle variance, this is unlikely to be problematic 

in practice. 
21 Note: it is certainly not the case though that in any model in which an interest rate peg is determinate, a real rate 

rule would produce explosive inflation. For example, in the New Keynesian model with a discounted Euler 

equation, from Subsection 1.3, if 𝛿𝛿 ∈ �− 1+𝛽𝛽+𝜅𝜅𝜅𝜅
1+𝛽𝛽 , 1−𝛽𝛽−𝜅𝜅𝜅𝜅

1−𝛽𝛽 � then an interest rate peg is determinate. We saw that the 

real rate rule is also determinate (and non-explosive) in this model. 



Page 18 of 28 

 

monetary rule respecting the Taylor principle, not just the real rate rules we examine 

in this paper. Inflation becomes “over determined”, and an explosive solution is all 

that remains. 

For example, suppose that government debt is all one period and nominal, and that 

real government surpluses are not responsive to government debt levels, meaning 

fiscal policy is “active”. Then the price level is pinned down by the government debt 

valuation equation (see e.g. Cochrane (2022)), in line with the fiscal theory of the price 

level. In particular, to a first order approximation with flexible prices and constant real 

interest rates:22 

𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = −𝜀𝜀𝑠𝑠,𝑡𝑡, (8) 

where 𝜀𝜀𝑠𝑠,𝑡𝑡 is an exogenous shock to the present value of real government surpluses, 

scaled by the value of outstanding real government debt, with 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑠𝑠,𝑡𝑡 = 0. Suppose 

in this world that the central bank did follow the basic real rate rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 +

𝜀𝜀𝜁𝜁,𝑡𝑡, where 𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0. Then, from the Fisher equation, 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1, 

implying from (8) that: 

𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝜀𝜀𝑠𝑠,𝑡𝑡. 

With 𝜙𝜙 > 1, this is an explosive process. 

How big a threat is this to the robustness of real rate rules? We need to understand 

under what conditions following the Taylor principle leads to explosive inflation. 

Suppose as before then that the central bank follows the simple real rate rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 +

𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡. We also assume the Fisher equation holds, but we make zero assumptions 

on the form of the rest of the model. First define the expectational error, 𝜂𝜂𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 −

𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡. By construction, 𝔼𝔼𝑡𝑡−1𝜂𝜂𝑡𝑡 = 0. In a linearized model, in equilibrium 𝜂𝜂𝑡𝑡 must be a 

linear combination of the model’s structural shocks. So, we can always decompose 𝜂𝜂𝑡𝑡 

as 𝜂𝜂𝑡𝑡 = 𝛼𝛼𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜈𝜈𝑡𝑡, where 𝔼𝔼𝑡𝑡−1𝜈𝜈𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 = 0 and 𝔼𝔼𝑡𝑡−1𝜈𝜈𝑡𝑡 = 0. Thus, from the monetary rule: 

𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝛼𝛼�𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 − 𝜙𝜙𝜋𝜋𝑡𝑡� + 𝜈𝜈𝑡𝑡. 

 
22 See Cochrane (2022), Subsection 2.5 and following. 
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Combining this with the Fisher equation then implies that: 

�1 + 𝛼𝛼𝛼𝛼�𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝛼𝛼𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡. 

Then from taking expectations conditional on 𝑡𝑡 − 1 information we have: 

𝛼𝛼𝛼𝛼𝑒𝑒𝑡𝑡−1 = 𝛼𝛼𝔼𝔼𝑡𝑡−1𝑒𝑒𝑡𝑡, 

where 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

There are now two cases. If 𝛼𝛼 ≠ 0, meaning that monetary policy shocks cause either 

unexpected inflation or disinflation, then 𝜙𝜙𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑒𝑒𝑡𝑡+1. With 𝜙𝜙 > 1, this has the unique 

non-explosive solution 𝑒𝑒𝑡𝑡 = 0, implying that 𝜂𝜂𝑡𝑡 = 𝜋𝜋𝑡𝑡 = 𝛼𝛼𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜈𝜈𝑡𝑡. This is stable, 

determinate inflation. 

However, if 𝛼𝛼 = 0, then: 

𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 + 𝜂𝜂𝑡𝑡 = 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1 + 𝜈𝜈𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜈𝜈𝑡𝑡, 

from (in turn) the definition of 𝜂𝜂𝑡𝑡, the Fisher equation, the decomposition of 𝜂𝜂𝑡𝑡 and the 

monetary rule. If 𝜙𝜙 > 1, this is explosive “over determined” inflation. Note that as in 

our one period debt, fiscal theory of the price level example, monetary policy shocks 

do not have any contemporaneous effect on inflation. 

This establishes that the only situation in which a real rate rule is inconsistent with 

stable inflation is if monetary policy shocks have no contemporaneous impact on 

inflation. This is important for two reasons. 

Firstly, it suggests that only in an unlikely, knife edge, case will following the Taylor 

principle guarantee explosive inflation. A minor change in price/wage stickiness, debt 

maturity structure, or the introduction of a small cost channel of monetary policy will 

likely introduce at least some correlation between monetary policy shocks and current 

inflation, restoring the existence of an equilibrium with stable inflation. Of course, 

there may also still be other equilibria with explosive inflation, but if we continue to 

assume that agents always pick an equilibrium with stable inflation if one exists, then 

that will be the result. 
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For example, suppose that the government issues multi-period (geometric coupon) 

debt, and that both monetary and fiscal policy are active (i.e., real government 

surpluses do not respond to debt, and the monetary rule satisfies the Taylor principle). 

Based on results with one period debt, researchers have tended to assume that this 

“active-active” combination will inevitably produce explosive inflation. This is 

incorrect. In Appendix B.1 we examine the equilibria of a non-linear model with multi-

period debt under flexible prices. We show that under active fiscal policy, there is a 

valid equilibrium in which real variables and inflation are stable and independent of 

surpluses, whether or not monetary policy is active. These equilibria feature a growing 

bubble in the price of government debt which is balanced by declining debt quantities. 

The initial debt price jumps to ensure the transversality condition is still satisfied, 

giving a “Fiscal Theory of the Debt Price”. Under passive monetary policy, this implies 

multiple equilibria, contrary to the usual claim that active fiscal policy ensures unique 

outcomes (which is again only true with one period debt). In Appendix B.2 we show 

that these results also hold in a linearised model with sticky prices. 

Secondly, our previous result gives central banks a simple test of whether they live in 

a world in which following the Taylor principle always produces explosive inflation. 

The central bank can adopt a real rate rule, with 𝜙𝜙 not much larger than 1, and can 

deliberately introduce small monetary policy shocks. It then just needs to statistically 

test whether the correlation between its monetary shock and current inflation is zero. 

With 𝜙𝜙 sufficiently close to 1, the sample size for the test will be large enough to have 

high power before 𝜋𝜋𝑡𝑡 is excessively high. If the correlation is non-zero, then following 

the Taylor principle will not produce explosive inflation, and the central bank can then 

adopt a larger 𝜙𝜙 should it desire. If the correlation is estimated at zero, then the central 

bank should adopt 𝜙𝜙 < 1 as it must be in an economy like that under the fiscal theory 

of the price level with one period debt. Miranda-Agrippino & Ricco (2021) find 

unambiguous evidence of a negative contemporaneous impact of US monetary shocks 

on inflation. Thus, if the Fed is currently using a real rate rule—something we cannot 
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rule out, due to observational equivalence—it can be confident that setting 𝜙𝜙 > 1 is 

consistent with stable inflation. 

2 Practical implementation of real rate rules 

Until recently, central banks concentrated their monetary interventions in overnight 

debt markets. However, with the rise of quantitative easing, many central banks have 

been purchasing substantial quantities of longer maturity sovereign debt. There is no 

reason then that central banks could not conduct open market operations to fix the 

interest rate on longer maturity bonds. This is convenient as in most countries, 

inflation protected securities are only issued a few times per year, and at long 

maturities, e.g., five years. As a result, markets in shorter maturity inflation protected 

securities may be illiquid or even unavailable, and it can be difficult to reconstruct the 

short end of the real yield curve. Inflation indexation lags further complicate the use 

of short maturity inflation protected securities (see e.g. Gürkaynak, Sack & Wright 

(2010)). For example, 3-month maturity US treasury inflation protected securities 

(TIPS) have a period 𝑡𝑡 realized yield of 𝑟𝑟𝑡𝑡−1 + 𝜋𝜋𝑡𝑡−1, not 𝑟𝑟𝑡𝑡−1 + 𝜋𝜋𝑡𝑡 as one would hope, 

where time is measured in quarters. 

In practice, the central bank’s trading desk would be tasked with maintaining a 

particular level of the gap between nominal and real rates according to the market for 

bonds of a certain maturity. For the rest of this section, we shall assume five-year bonds 

are used, since five-year TIPS are the shortest maturity issued in the US. 

So, let 𝑖𝑖𝑡𝑡 be the nominal yield per-period on a five-year sovereign bond at 𝑡𝑡, and 𝑟𝑟𝑡𝑡 be 

the real yield per-period on a five-year inflation protected bond from the same issuer. 

As ever, 𝑡𝑡 indexes time. The units of time do not need to coincide with the maturity of 

the bond. In particular, 𝑡𝑡 may be measured in months, quarters or years, in which case 

𝑖𝑖𝑡𝑡 is the nominal yield per-month, per-quarter or per-year, respectively. Let 𝑇𝑇 be the 

number of periods in five years. For example, 𝑇𝑇 may be 60 if periods are months. 
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We also allow for the possibility that inflation is not observed contemporaneously. For 

example, US CPI is observed with a one-month lag. To capture this, while keeping to 

the convention that 𝔼𝔼𝑡𝑡𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡 for all 𝑡𝑡-dated endogenous variables 𝑣𝑣𝑡𝑡, we assume that 

market participants and the central bank use the 𝑡𝑡 − 𝐿𝐿 information set in period 𝑡𝑡 (i.e. 

they know the values of all 𝑡𝑡 − 𝐿𝐿, 𝑡𝑡 − 𝐿𝐿 − 1, … dated variables), for some 𝐿𝐿 ≥ 0. Thus, 

since the central bank does not know 𝜋𝜋𝑡𝑡 at 𝑡𝑡, we instead assume that they respond to 

deviations of 𝜋𝜋𝑡𝑡−𝐿𝐿 from target, rather than 𝜋𝜋𝑡𝑡. 

We allow for a shock in the Fisher equation to capture inflation risk premia, liquidity 

premia, asymmetric term premia and even further departures from full information 

rational expectations amongst market participants. Since only 𝑡𝑡 − 𝐿𝐿 dated variables are 

known in period 𝑡𝑡, we denote the period 𝑡𝑡 value of this shock by 𝜈𝜈𝑡𝑡−𝐿𝐿. I.e., risk premia 

(etc.) will be determined 𝐿𝐿 periods in advance, though market participants and the 

central bank will not act on this, since they use 𝐿𝐿 period old data. Given this, the Fisher 

equation coming from arbitrage between nominal and real bonds then states that: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜈𝜈𝑡𝑡−𝐿𝐿 + 𝔼𝔼𝑡𝑡−𝐿𝐿
1
𝑇𝑇 � 𝜋𝜋𝑡𝑡+𝑘𝑘

𝑇𝑇

𝑘𝑘=1
, 

where 𝜈𝜈𝑡𝑡−𝐿𝐿 is the aforementioned shock to risk premia (etc.). We only require that 𝜈𝜈𝑡𝑡 is 

a stationary process. 

TODO Allow for indexation lags in TIPS 

Slightly generalizing our previous rule (6), we suppose that the central bank 

intervenes in five-year nominal bond markets to ensure that it is always the case that: 

𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝜈𝜈𝑡̅𝑡−𝐿𝐿 + 𝔼𝔼𝑡𝑡−𝐿𝐿
1
𝑇𝑇 � 𝜋𝜋𝑡𝑡+𝑘𝑘

∗
𝑇𝑇

𝑘𝑘=1
+ 𝜙𝜙�𝜋𝜋𝑡𝑡−𝐿𝐿 − 𝜋𝜋𝑡𝑡−𝐿𝐿

∗ �, 

where 𝜈𝜈𝑡̅𝑡−𝐿𝐿 is the central bank’s period 𝑡𝑡 belief about the level of 𝜈𝜈𝑡𝑡−𝐿𝐿. 

We have deliberately not added any interest rate smoothing. While such smoothing is 

often believed to be a relevant feature of real-world central bank behaviour, in our 
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context it adds nothing. Smooth paths for interest rates may be produced from a 

smooth target path for 𝜋𝜋𝑡𝑡
∗.23 

Also note that while under conventional monetary policy, targeted nominal interest 

rates are (approximately) constant between monetary policy committee meetings, this 

may not be the case here. The rule effectively specifies a period 𝑡𝑡 level for 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, not 

for 𝑖𝑖𝑡𝑡. The level of 𝑟𝑟𝑡𝑡 may fluctuate (perhaps in part due to unexpected changes in 𝑖𝑖𝑡𝑡), 

so the central bank’s trading desk could have to continuously tweak the level of 𝑖𝑖𝑡𝑡 to 

hold 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 at its desired level. While this represents a departure from previous 

operating procedure, there is no reason why holding 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 approximately constant 

should be any harder than holding 𝑖𝑖𝑡𝑡 approximately constant. This is thanks to real-

time observability of 𝑟𝑟𝑡𝑡 via inflation protected bonds. The central bank could also 

directly control 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 by promising to freely exchange $1 face value of real debt for 

$(1 + 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡) face value of nominal debt, as suggested by Cochrane (2017; 2018). 

Alternatively, the central bank could buy or sell a long-short portfolio containing $1 

face value of nominal debt, and −$1 face value of real debt to hold the portfolio’s price 

fixed at $(𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡).24 

Thus, the monetary rule implies that the dynamics of inflation are governed by the 

single equation: 

𝔼𝔼𝑡𝑡−𝐿𝐿
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇

𝑘𝑘=1
= (𝜈𝜈𝑡̅𝑡−𝐿𝐿 − 𝜈𝜈𝑡𝑡−𝐿𝐿) + 𝜙𝜙�𝜋𝜋𝑡𝑡−𝐿𝐿 − 𝜋𝜋𝑡𝑡−𝐿𝐿

∗ �, 

i.e.: 

𝔼𝔼𝑡𝑡
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘+𝐿𝐿 − 𝜋𝜋𝑡𝑡+𝑘𝑘+𝐿𝐿

∗ �
𝑇𝑇

𝑘𝑘=1
= (𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡𝑡) + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). 

 
23 In situations in which the dynamics of 𝜋𝜋𝑡𝑡

∗ are constrained, then adding smoothing may help match real-world 

dynamics. In this case, the independence of inflation from the rest of the economy can be preserved if rather than 

𝑖𝑖𝑡𝑡−1 appearing on the right hand side of the monetary rule, instead there is 𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1. 
24 The author thanks Peter Ireland for this suggestion. 
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As ever, with 𝜙𝜙 > 1, there is a unique solution.25 In the special case in which the central 

bank observes 𝜈𝜈𝑡𝑡 (i.e. risk premia etc.) so 𝜈𝜈𝑡𝑡 = 𝜈𝜈𝑡̅𝑡, then 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗, as before. In the general 

case, as long as 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡𝑡 is stationary, the solution takes the form: 26 

𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ + 𝔼𝔼𝑡𝑡 � 𝐴𝐴𝑗𝑗�𝜈𝜈𝑡̅𝑡+𝑗𝑗 − 𝜈𝜈𝑡𝑡+𝑗𝑗�

∞

𝑗𝑗=0
, 

where 𝐴𝐴0 ≔ − 1
𝜙𝜙, 𝐴𝐴𝑗𝑗 ≔ 0 for 𝑗𝑗 ∈ {1, … , 𝐿𝐿}, and 𝐴𝐴𝑗𝑗 ≔ 1

𝜙𝜙𝜙𝜙 ∑ 𝐴𝐴𝑘𝑘
𝑗𝑗−𝐿𝐿−1
𝑘𝑘=max�0,𝑗𝑗−𝐿𝐿−𝑇𝑇�  for all 𝑗𝑗 > 𝐿𝐿, 

implying 𝐴𝐴𝐿𝐿+1 = − 1
𝑇𝑇𝜙𝜙2 and 𝐴𝐴𝑗𝑗 = Ο �𝜙𝜙− 𝑗𝑗

𝑇𝑇+𝐿𝐿� as 𝑗𝑗 → ∞.27 Thus, with 𝜙𝜙 large, even if the 

central bank imperfectly tracks the risk (etc.) premium 𝜈𝜈𝑡𝑡, it will still be the case that 

𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡
∗ in all periods. I.e., even in the presence of unobservable risk premia, the 

central bank can still determinately implement an arbitrary path for inflation. The 

presence of information lags makes no fundamental difference to this. While 

information lags may slow down the convergence of 𝐴𝐴𝑗𝑗 to 0 as 𝑗𝑗 → ∞, increasing the 

variance of 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗, still for a large enough 𝜙𝜙, inflation will be very close to its target. 

TODO Irregular meetings. 

TODO Geometric bonds and perpetuities. 

TODO Inflation swaps (more liquid, no deflation protection so simpler pricing) 

3 The zero lower bound 

TODO Rules based on first differences of 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 

TODO Rules based on the price level 

 
25 For the intuition, suppose there is no uncertainty, so 𝜈𝜈𝑡̅𝑡 = 𝜈𝜈𝑡𝑡, and suppose 𝜋𝜋0 − 𝜋𝜋0

∗ = 1. Then max
𝑡𝑡=1,…,𝑇𝑇

�𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗� ≥

𝜙𝜙. Let 𝑡𝑡1
∗ be the value of 𝑡𝑡 attaining this maximum. Then repeating this process we can find 𝑡𝑡2

∗ such that 𝜋𝜋𝑡𝑡2
∗ − 𝜋𝜋𝑡𝑡2

∗
∗ ≥

𝜙𝜙2. Continuing, this gives an explosive sub-sequence. We do not have the indeterminacy issues for rules setting 

long-rates that were noted by McGough, Rudebusch & Williams (2005), due to the presence of the real rate in our 

rule. 
26 Ireland (2015) finds a role for risk premia in explaining US inflation fluctuations, so risk premia appearing in the 

solution for inflation should not be too surprising. 
27 Guess 𝐴𝐴𝑗𝑗 ∝ 𝐵𝐵𝑗𝑗. Then (for large 𝑗𝑗): 𝐵𝐵𝑗𝑗 = 1

𝜙𝜙𝜙𝜙 ∑ 𝐵𝐵𝑘𝑘𝑗𝑗−𝐿𝐿−1
𝑘𝑘=𝑗𝑗−𝐿𝐿−𝑇𝑇 = 1

𝜙𝜙𝜙𝜙
𝐵𝐵𝑗𝑗−𝐿𝐿−𝑇𝑇−𝐵𝐵𝑗𝑗−𝐿𝐿

1−𝐵𝐵 , so 𝜙𝜙𝜙𝜙𝐵𝐵𝑇𝑇+𝐿𝐿 = 1−𝐵𝐵𝑇𝑇

1−𝐵𝐵 ∈ [1, 𝑇𝑇], implying 0 ≤

𝐵𝐵 ≤ 𝜙𝜙− 1
𝑇𝑇+𝐿𝐿. 
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TODO Using perpetuities 

4 Conclusion 

TODO 
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Online Appendix to: 
“Robust Real Rate Rules” 
Tom D. Holden, Deutsche Bundesbank28 13/05/2022 

Appendix A Non-linear expectational difference equations 

We are interested in the non-linear expectational difference equation: 

�
Π
Π𝑡𝑡

�
𝜙𝜙

= 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π
Π𝑡𝑡+1

. 

If we define 𝑋𝑋𝑡𝑡 ≔ Π
Π𝑡𝑡

 and 𝑍𝑍𝑡𝑡 ≔ Ξ𝑡𝑡+1
𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

 then this difference equation is a particular 

example of the more general equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1. 

We show in Appendix A.1 that if 𝑍𝑍𝑡𝑡 = 1 for all 𝑡𝑡, then this has a unique solution for 

𝜙𝜙 > 1, and we show in Appendix A.2 that it still has a unique solution for arbitrary 𝑍𝑍𝑡𝑡 

under a few additional conditions, and that the solution is approximately unique 

under even milder conditions. 

For the results of Appendix A.2 to apply, we need that Π𝑡𝑡 is bounded above, and that 

𝔼𝔼𝑡𝑡�∏ 𝑍𝑍𝑡𝑡+𝑗𝑗
𝑘𝑘
𝑗𝑗=1 � = 1 for all 𝑘𝑘 > 0. 

Π𝑡𝑡 is bounded above in any model with monopolistic competition in which at least 

some small fraction of firms do not adjust their price each period. This does not seem 

an unrealistic assumption, at least if the model’s time periods are sufficiently short. 

Even under hyper-inflation, it is still unlikely that firms adjust prices several times per 

day. 
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Π𝑡𝑡 is bounded above in such a model because the price level remains finite even if 

adjusting firms set an infinite price, as all demand switches to non-adjusting firms. For 

example, Fernández-Villaverde et al. (2015) contains the equation 1 = 𝜃𝜃Π𝑡𝑡
𝜀𝜀−1 +

(1 − 𝜃𝜃)Π𝑡𝑡
∗1−𝜀𝜀, where Π𝑡𝑡

∗ is the relative price of adjusting firms and 𝜀𝜀 > 1. This equation 

comes from the definition of the aggregate price. As Π𝑡𝑡
∗ → ∞, Π𝑡𝑡 → 𝜃𝜃− 1

𝜀𝜀−1 < ∞, thus 

inflation is always bounded above, as required. 

To see why the second equation should hold, first suppose that a household decides 

to hold a real bond from period 𝑡𝑡 to period 𝑡𝑡 + 2. Then in period 𝑡𝑡 + 2 they receive 

𝑅𝑅𝑡𝑡𝑅𝑅𝑡𝑡+1, which they discount by Ξ𝑡𝑡+1Ξ𝑡𝑡+2 from the perspective of period 𝑡𝑡. Thus, it must 

also be the case that: 

1 = 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡𝑅𝑅𝑡𝑡+1Ξ𝑡𝑡+1Ξ𝑡𝑡+2 = 𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Ξ𝑡𝑡+2
𝔼𝔼𝑡𝑡+1Ξ𝑡𝑡+2

. 

Similarly, household indifference about holding bonds for 𝑘𝑘 periods means that: 

𝔼𝔼𝑡𝑡
⎣
⎢⎡�

Ξ𝑡𝑡+𝑗𝑗

𝔼𝔼𝑡𝑡+𝑗𝑗−1Ξ𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ = 1, 

as required. 

A.1 Uniqueness of the solution of a simple non-linear expectational 
difference equation 

Let 𝜙𝜙 > 1. We seek to prove that the non-linear expectational difference equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1, 

has a unique solution that is: 

a) positive (i.e., 𝑋𝑋𝑡𝑡 > 0 for all 𝑡𝑡 ∈ ℤ), 

b) strictly stationary (so for example 𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑠𝑠 for all 𝑡𝑡, 𝑠𝑠, ∈ ℤ), 

c) and has bounded unconditional mean and log mean (i.e., 𝔼𝔼𝑋𝑋𝑡𝑡 < ∞ and 

�𝔼𝔼 log 𝑋𝑋𝑡𝑡� < ∞ for all 𝑡𝑡 ∈ ℤ). 

Clearly 𝑋𝑋𝑡𝑡 = 1 is one such solution. 
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Let 𝑋𝑋𝑡𝑡 be a solution to 𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1 satisfying (a), (b) and (c) above. Let 𝑥𝑥𝑡𝑡 ≔ log 𝑋𝑋𝑡𝑡. 

Then from taking logs, we have: 

𝜙𝜙𝑥𝑥𝑡𝑡 = log 𝔼𝔼𝑡𝑡 exp 𝑥𝑥𝑡𝑡+1 ≥ log exp 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1, 

by Jensen’s inequality. Therefore, by the law of iterated expectations, for any 𝑘𝑘 ∈ ℕ: 

𝜙𝜙𝑘𝑘𝑥𝑥𝑡𝑡 ≥ 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+𝑘𝑘 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+𝑘𝑘. 

As 𝑘𝑘 → ∞, the left-hand side tends to either plus infinity (if 𝑥𝑥𝑡𝑡 > 0), zero (if 𝑥𝑥𝑡𝑡 = 0), or 

minus infinity (if 𝑥𝑥𝑡𝑡 < 0). On the other hand, as 𝑘𝑘 → ∞, the right-hand side tends to 

𝔼𝔼𝑥𝑥𝑡𝑡 > −∞, by stationarity. Thus, we must have that 𝑥𝑥𝑡𝑡 ≥ 0 for all 𝑡𝑡 ∈ ℤ, else this 

equation would be violated. Hence, 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ. 

Now note that by stationarity, the law of iterated expectations and Jensen’s inequality: 

𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑡𝑡+1 = 𝔼𝔼𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1 = 𝔼𝔼𝑋𝑋𝑡𝑡
𝜙𝜙 ≥ (𝔼𝔼𝑋𝑋𝑡𝑡)𝜙𝜙, 

so 1 ≥ (𝔼𝔼𝑋𝑋𝑡𝑡)𝜙𝜙−1, meaning 𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1. However, since 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ, the only way 

we can have that 𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1 is if in fact 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈ ℤ. 

Therefore, 𝑋𝑋𝑡𝑡 ≡ 1 is the unique solution to the original expectational difference 

equation satisfying (a), (b) and (c) above. 

A.2 Uniqueness of the solution of a more general non-linear difference 
equation 

Let 𝜙𝜙 ≥ 1 and let (𝑍𝑍𝑡𝑡)𝑡𝑡∈ℤ be a stochastic process satisfying the following conditions: 

i) 𝑍𝑍𝑡𝑡 > 0, for all 𝑡𝑡 ∈ ℤ, 

ii) 𝔼𝔼𝑡𝑡�∏ 𝑍𝑍𝑡𝑡+𝑗𝑗
𝑘𝑘
𝑗𝑗=1 � = 1, for all 𝑡𝑡 ∈ ℤ and all 𝑘𝑘 ∈ ℕ, 

iii) (𝑍𝑍𝑡𝑡)𝑡𝑡∈ℤ is strictly stationary, 

iv) there exists 𝑍𝑍 ≥ 1, independent of the stochastic process (𝑋𝑋𝑡𝑡)𝑡𝑡∈ℤ (to be 

introduced), such that for all 𝜙𝜙 > 𝜙𝜙, and for all 𝑡𝑡 ∈ ℤ and all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0, 

𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑘𝑘

𝜙𝜙
𝜙𝜙−1 ≤ 𝑍𝑍

𝜙𝜙
𝜙𝜙−1. 

The larger is 𝜙𝜙, the weaker is the moment boundedness assumptions (iv). For example, 

if 𝜙𝜙 = 2, then this just requires bounded second moments. 
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Let 𝑋𝑋 ∈ (0,1) and let 𝜙𝜙 > 𝜙𝜙. We seek to prove that the non-linear expectational 

difference equation: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1, 

has a unique solution that is: 

a) bounded below by 𝑋𝑋 (so 𝑋𝑋𝑡𝑡 > 𝑋𝑋 > 0 for all 𝑡𝑡 ∈ ℤ), 

b) strictly stationary (so for example 𝔼𝔼𝑋𝑋𝑡𝑡 = 𝔼𝔼𝑋𝑋𝑠𝑠 for all 𝑡𝑡, 𝑠𝑠, ∈ ℤ), 

c) and has bounded unconditional mean, 𝜙𝜙th mean and log mean (i.e., 𝔼𝔼𝑋𝑋𝑡𝑡 < ∞, 

𝔼𝔼𝑋𝑋𝑡𝑡
𝜙𝜙 < ∞ and �𝔼𝔼 log 𝑋𝑋𝑡𝑡� < ∞ for all 𝑡𝑡 ∈ ℤ). 

Clearly 𝑋𝑋𝑡𝑡 = 1 is one such solution. Note that 𝑍𝑍𝑡𝑡 may be a function of 𝑋𝑋𝑡𝑡 and its history, 

so 𝑍𝑍𝑡𝑡 and 𝑋𝑋𝑡𝑡 are not guaranteed to be independent. The previous appendix subsection 

covers the case with 𝑍𝑍𝑡𝑡 ≡ 1 in which slightly weaker assumptions are needed. 

Let 𝑥𝑥𝑡𝑡 ≔ log 𝑋𝑋𝑡𝑡 and 𝑥𝑥 ≔ log 𝑋𝑋. Then from taking logs, we have: 

𝜙𝜙𝑥𝑥𝑡𝑡 = log 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 exp 𝑥𝑥𝑡𝑡+1 ≥ log exp 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑥𝑥𝑡𝑡+1 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑥𝑥𝑡𝑡+1, 

by Jensen’s inequality, as 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1(⋅) defines a measure since 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1 = 1. Therefore, by 

the law of iterated expectations, for any 𝑘𝑘 ∈ ℕ: 

𝜙𝜙𝑘𝑘𝑥𝑥𝑡𝑡 ≥ 𝔼𝔼𝑡𝑡
⎣
⎢⎡� 𝑍𝑍𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑥𝑥𝑡𝑡+𝑘𝑘 ≥ 𝔼𝔼𝑡𝑡

⎣
⎢⎡� 𝑍𝑍𝑡𝑡+𝑗𝑗

𝑘𝑘

𝑗𝑗=1 ⎦
⎥⎤ 𝑥𝑥 = 𝑥𝑥 > −∞, 

by assumption (ii) on (𝑍𝑍𝑡𝑡)𝑡𝑡∈ℤ. As 𝑘𝑘 → ∞, the left-hand side tends to either plus infinity 

(if 𝑥𝑥𝑡𝑡 > 0), zero (if 𝑥𝑥𝑡𝑡 = 0), or minus infinity (if 𝑥𝑥𝑡𝑡 < 0). Thus, we must have that 𝑥𝑥𝑡𝑡 ≥ 0 

for all 𝑡𝑡 ∈ ℤ, else this equation would be violated. Hence, 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ. 

Now, define 𝑧𝑧 ≔ log 𝑍𝑍, and for all 𝑡𝑡 ∈ ℤ and all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0 define: 

𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑘𝑘 ≔ log
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑘𝑘

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

< 𝑧𝑧, 

by our assumptions (iv). Then by repeatedly applying Hölder’s inequality: 

𝑋𝑋𝑡𝑡
𝜙𝜙 = 𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 ≤

⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+1
𝜙𝜙 �

1
𝜙𝜙 



Page 5 of 39 

 

≤
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

⎣
⎢⎢
⎢⎢
⎡

𝔼𝔼𝑡𝑡

⎣
⎢⎢
⎢
⎡

⎣
⎢⎡𝔼𝔼𝑡𝑡+1𝑍𝑍𝑡𝑡+2

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

�𝔼𝔼𝑡𝑡+1𝑋𝑋𝑡𝑡+2
𝜙𝜙 �

1
𝜙𝜙

⎦
⎥⎥
⎥
⎤

⎦
⎥⎥
⎥⎥
⎤

1
𝜙𝜙

 

≤
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙

⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+2

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙2

�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+2
𝜙𝜙 �

1
𝜙𝜙2 

≤ ⋯ 

≤ �
⎣
⎢⎡𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+𝑗𝑗

𝜙𝜙
𝜙𝜙−1

⎦
⎥⎤

𝜙𝜙−1
𝜙𝜙𝑗𝑗𝑘𝑘

𝑗𝑗=1
�𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘

𝜙𝜙 �
1

𝜙𝜙𝑘𝑘, 

for all 𝑘𝑘 ∈ ℕ with 𝑘𝑘 > 0. Thus, from taking logs and limits: 

𝑥𝑥𝑡𝑡 ≤ � 𝜙𝜙−𝑗𝑗𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
+

1
𝜙𝜙 lim

𝑘𝑘→∞
�𝜙𝜙−𝑘𝑘 log 𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘

𝜙𝜙 � = � 𝜙𝜙−𝑗𝑗𝑧𝑧𝑡̃𝑡,𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
≤

𝑧𝑧
𝜙𝜙 − 1, 

where the equality follows from the fact that by stationarity, lim
𝑘𝑘→∞

𝔼𝔼𝑡𝑡𝑋𝑋𝑡𝑡+𝑘𝑘
𝜙𝜙 = 𝔼𝔼𝑋𝑋𝑡𝑡

𝜙𝜙 < ∞. 

Thus, 𝑋𝑋𝑡𝑡 ≤ 𝑍𝑍
1

𝜙𝜙−1 for all 𝑡𝑡 ∈ ℤ. By assumption 𝑍𝑍 is not a function of 𝜙𝜙, so as 𝜙𝜙 → ∞, this 

upper bound on 𝑋𝑋𝑡𝑡 tends to 1. Hence, for large 𝜙𝜙, 𝑋𝑋𝑡𝑡 ≈ 1, giving approximate 

uniqueness. 

We can derive even stronger results in the case in which 𝜙𝜙 = 1 (in our assumptions) 

and one additional assumption holds. First note that with 𝜙𝜙 = 1, from taking limits as 

𝜙𝜙 → 1 in assumption (iv), we must have that 𝑍𝑍𝑡𝑡 ≤ 𝑍𝑍 with probability one (for all 𝑡𝑡 ∈

ℤ). 

Let 𝑍𝑍𝑡𝑡
∗ be the value that would be taken by 𝑍𝑍𝑡𝑡 if it were the case that 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈

ℤ. So, it is also the cast that 𝑍𝑍𝑡𝑡
∗ ≤ 𝑍𝑍 with probability one (for all 𝑡𝑡 ∈ ℤ), by our 

assumption (iv). Suppose further that there exists 𝜅𝜅 ≥ 0 such that: 

𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡
∗� ≤ 𝜅𝜅𝔼𝔼(𝑋𝑋𝑡𝑡 − 1). 

This is reasonable, since if 𝑋𝑋𝑡𝑡 → 1 (almost surely), we expect that 𝑍𝑍𝑡𝑡 → 𝑍𝑍𝑡𝑡
∗ (almost 

surely) as well. 

Now note that: 

𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) = 𝔼𝔼 ��𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1�
1
𝜙𝜙 − 1� ≤ 𝔼𝔼 �

1
𝜙𝜙 �𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 − 1�� =

1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 1], 
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(using stationarity and the law of iterated expectations in the final equality). Thus: 

𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) = 𝔼𝔼 ��𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1�
1
𝜙𝜙 − 1� ≤ 𝔼𝔼 �

1
𝜙𝜙 �𝔼𝔼𝑡𝑡𝑍𝑍𝑡𝑡+1𝑋𝑋𝑡𝑡+1 − 1�� =

1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 1] 

=
1
𝜙𝜙 [𝔼𝔼𝑍𝑍𝑡𝑡𝑋𝑋𝑡𝑡 − 𝔼𝔼𝑍𝑍𝑡𝑡

∗] =
1
𝜙𝜙 [𝔼𝔼(𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗)𝑋𝑋𝑡𝑡 + 𝔼𝔼𝑍𝑍𝑡𝑡
∗(𝑋𝑋𝑡𝑡 − 1)] 

≤
1
𝜙𝜙 [𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗�𝑋𝑋𝑡𝑡 + 𝔼𝔼𝑍𝑍𝑡𝑡
∗(𝑋𝑋𝑡𝑡 − 1)] ≤

1
𝜙𝜙 �𝜅𝜅𝔼𝔼(𝑋𝑋𝑡𝑡 − 1)𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍𝔼𝔼(𝑋𝑋𝑡𝑡 − 1)� 

=
1
𝜙𝜙 �𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍� 𝔼𝔼(𝑋𝑋𝑡𝑡 − 1), 

(from, respectively, the convexity of 𝑦𝑦 ↦ 𝑦𝑦
1
𝜙𝜙, stationarity and the law of iterated 

expectations, the fact that 𝔼𝔼𝑍𝑍𝑡𝑡
∗ = 1, algebra, that 𝑦𝑦 ≤ �𝑦𝑦�, our bounds on 𝑋𝑋𝑡𝑡, 𝔼𝔼�𝑍𝑍𝑡𝑡 − 𝑍𝑍𝑡𝑡

∗� 

and 𝑍𝑍𝑡𝑡
∗, and more algebra). As 𝜙𝜙 → ∞, 𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍 → 𝜅𝜅 + 𝑍𝑍 < ∞, so for large 𝜙𝜙 it must 

be the case that 1
𝜙𝜙 �𝜅𝜅𝑍𝑍

1
𝜙𝜙−1 + 𝑍𝑍� < 1. Hence if 𝜙𝜙 is large enough for this to hold, then 

𝔼𝔼(𝑋𝑋𝑡𝑡 − 1) ≤ 0. However, since 𝑋𝑋𝑡𝑡 ≥ 1 for all 𝑡𝑡 ∈ ℤ, the only way we can have that 

𝔼𝔼𝑋𝑋𝑡𝑡 ≤ 1 is if in fact 𝑋𝑋𝑡𝑡 = 1 for all 𝑡𝑡 ∈ ℤ. 

Therefore, for large enough 𝜙𝜙, 𝑋𝑋𝑡𝑡 ≡ 1 is the unique solution to the original 

expectational difference equation satisfying (a), (b) and (c) above. 

Appendix B Fiscal Theory of the Price Level (FTPL) results 

B.1 Exact equilibria under active fiscal policy with geometric coupon 
debt and flexible prices 

Suppose the representative household supplies one unit of labour, inelastically. 

Production is given by: 

𝑦𝑦𝑡𝑡 = 𝑙𝑙𝑡𝑡(= 1). 

In period 0, the representative household maximises: 

𝔼𝔼0 � 𝛽𝛽𝑡𝑡 log 𝑐𝑐𝑡𝑡

∞

𝑡𝑡=0
 

subject to the budget constraint: 

𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐴𝐴𝑡𝑡 + 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑦𝑦𝑡𝑡 + 𝐼𝐼𝑡𝑡−1𝐴𝐴𝑡𝑡−1 + 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡), 

where 𝑐𝑐𝑡𝑡 is consumption, 𝜏𝜏𝑡𝑡 are real lump sum taxes, 𝑃𝑃𝑡𝑡 is the price of the final good, 

𝐴𝐴𝑡𝑡 is the number of one period nominal bonds purchased by the household at 𝑡𝑡, which 
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each return 𝐼𝐼𝑡𝑡 in period 𝑡𝑡 + 1, 𝑄𝑄𝑡𝑡 is the price of a long bond and 𝐵𝐵𝑡𝑡 are the number of 

units of this long bond purchased by the household at 𝑡𝑡. One unit of the period 𝑡𝑡 long 

bond bought at 𝑡𝑡 returns $1 at 𝑡𝑡 + 1, along with 𝜔𝜔 units of the period 𝑡𝑡 + 1 bond. 

The household first order conditions imply: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
, 

𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

𝑃𝑃𝑡𝑡+1𝑐𝑐𝑡𝑡+1
�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The household transversality conditions are that: 

lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡 𝐴𝐴𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

= 0, 

lim
𝑡𝑡→∞

𝛽𝛽𝑡𝑡 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

= 0. 

The government fixes taxes at a constant positive level: 

𝜏𝜏𝑡𝑡 = 𝜏𝜏, 𝜏𝜏 > 0. 

The government issues no one period bonds, so: 

𝐴𝐴𝑡𝑡 = 0. 

The central bank pegs nominal interest rates at: 

𝐼𝐼𝑡𝑡 = 𝛽𝛽−1. 

(We will discuss active monetary policy later.) 

The final goods market clears, so: 

𝑦𝑦𝑡𝑡 = 𝑐𝑐𝑡𝑡 = 1. 

Thus, from the household budget constraint, we have the following government 

budget constraint: 

𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡 + 𝑃𝑃𝑡𝑡𝜏𝜏 = 𝐵𝐵𝑡𝑡−1(1 + 𝜔𝜔𝑄𝑄𝑡𝑡). 

We look for an equilibrium in which 𝑃𝑃𝑡𝑡 = 𝑃𝑃 for all 𝑡𝑡 ≥ 0. However, we do not impose 

a priori that 𝑃𝑃 = 𝑃𝑃−1. 
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With 𝑃𝑃𝑡𝑡 = 𝑃𝑃 for 𝑡𝑡 ≥ 0, the household Euler equations simplify to (respectively): 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡, 

𝑄𝑄𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1�. 

The former equation is consistent with the CB’s peg of 𝐼𝐼𝑡𝑡 = 𝛽𝛽−1. 

We consider the following solution to the latter equation: 

𝑄𝑄𝑡𝑡 =
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽 + �𝑄𝑄0 −
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽� �𝛽𝛽𝛽𝛽�−𝑡𝑡. 

We wish to find 𝑄𝑄0, which is free to jump. There are three cases to consider: 

Case 1: 𝑄𝑄0 < 𝛽𝛽
1−𝛽𝛽𝛽𝛽. Then 𝑄𝑄𝑡𝑡 eventually goes to zero (and then negative), which 

certainly cannot be consistent with a world in which 𝐼𝐼𝑡𝑡 > 0. Thus, this case is ruled out. 

Case 2: 𝑄𝑄0 = 𝛽𝛽
1−𝛽𝛽𝛽𝛽. Then 𝑄𝑄𝑡𝑡 is constant, and the government budget constraint 

becomes: 

𝐵𝐵𝑡𝑡 = 𝛽𝛽−1𝐵𝐵𝑡𝑡−1 − 𝛽𝛽−1�1 − 𝛽𝛽𝛽𝛽�𝑃𝑃𝑃𝑃. 

Thus: 

𝐵𝐵𝑡𝑡 = 𝑃𝑃𝑃𝑃
1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 + �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 𝛽𝛽−𝑡𝑡−1 

So: 

𝛽𝛽𝑡𝑡 𝑄𝑄𝑡𝑡𝐵𝐵𝑡𝑡
𝑃𝑃𝑡𝑡𝑐𝑐𝑡𝑡

=
𝛽𝛽

1 − 𝛽𝛽𝛽𝛽
1
𝑃𝑃 �𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 𝛽𝛽𝑡𝑡 + �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 𝛽𝛽−1�

→
1

1 − 𝛽𝛽𝛽𝛽
1
𝑃𝑃 �𝐵𝐵−1 − 𝑃𝑃𝑃𝑃

1 − 𝛽𝛽𝛽𝛽
1 − 𝛽𝛽 � 

as 𝑡𝑡 → ∞. 

Thus, from the transversality constraint: 

𝑃𝑃 =
𝐵𝐵−1
𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽. 

This is the standard FTPL equilibrium. Equilibrium type 1! 
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Case 3: 𝑄𝑄0 > 𝛽𝛽
1−𝛽𝛽𝛽𝛽. 

Define: 

𝑞𝑞𝑡𝑡 ≔ 𝑄𝑄𝑡𝑡�𝛽𝛽𝛽𝛽�𝑡𝑡, 

𝑏𝑏𝑡𝑡 ≔ 𝐵𝐵𝑡𝑡𝜔𝜔−𝑡𝑡. 

Then the government budget constraint states: 

𝑏𝑏𝑡𝑡 = �1 +
�𝛽𝛽𝛽𝛽�𝑡𝑡

𝜔𝜔𝑞𝑞𝑡𝑡
� 𝑏𝑏𝑡𝑡−1 −

𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃
𝑞𝑞𝑡𝑡

, 

and the transversality constraint states: 
1
𝑃𝑃 lim

𝑡𝑡→∞
𝑞𝑞𝑡𝑡𝑏𝑏𝑡𝑡 = 0. 

By our solution for 𝑞𝑞𝑡𝑡, we know that 𝑞𝑞𝑡𝑡 → 𝑄𝑄0 − 𝛽𝛽
1−𝛽𝛽𝛽𝛽 > 0. Thus, the transversality 

condition requires: 

lim
𝑡𝑡→∞

𝑏𝑏𝑡𝑡 = 0. 

Now define: 

𝑏̂𝑏𝑡𝑡 ≔
𝑏𝑏𝑡𝑡

∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑡𝑡

𝑘𝑘=0

, 

with 𝑏̂𝑏−1 = 𝑏𝑏−1 = 𝜔𝜔𝐵𝐵−1. The denominator in the definition of 𝑏̂𝑏𝑡𝑡 is greater than 1, so if 

𝑏𝑏𝑡𝑡 → 0 as 𝑡𝑡 → ∞, then certainly 𝑏̂𝑏𝑡𝑡 → 0. Likewise, if 𝑏̂𝑏𝑡𝑡 → 0 as 𝑡𝑡 → ∞, then also 𝑏𝑏𝑡𝑡 → 0, 

since: 

� �1 +
�𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�

∞

𝑘𝑘=0
= � �1 +

1 − 𝛽𝛽𝛽𝛽
𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�

∞

𝑘𝑘=0

= exp � log �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
∞

𝑘𝑘=0

≤ exp � log �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
∞

−1
< ∞, 

where the final inequality follows from explicitly calculating the integral (in Maple). 

Calculations are available on request. 

Now, substituting the definition of 𝑏̂𝑏𝑡𝑡 into the law of motion for 𝑏𝑏𝑡𝑡 gives: 

𝑏̂𝑏𝑡𝑡 = 𝑏̂𝑏𝑡𝑡−1 −
𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃

𝑞𝑞𝑡𝑡 ∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑡𝑡

𝑘𝑘=0

, 
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so: 

𝑏̂𝑏𝑡𝑡 = 𝑏̂𝑏−1 − 𝑃𝑃𝑃𝑃 �
𝛽𝛽𝑗𝑗

𝑞𝑞𝑗𝑗 ∏ �1 + �𝛽𝛽𝛽𝛽�𝑘𝑘

𝜔𝜔𝑞𝑞𝑘𝑘
�𝑗𝑗

𝑘𝑘=0

𝑡𝑡

𝑗𝑗=0
 

= 𝑏̂𝑏−1 − 𝑃𝑃𝑃𝑃 �
∏ 𝛽𝛽 �1 + 1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1

𝑗𝑗
𝑘𝑘=0

𝛽𝛽 � 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 �𝛽𝛽𝛽𝛽�𝑗𝑗 + �𝑄𝑄0 − 𝛽𝛽

1 − 𝛽𝛽𝛽𝛽��

𝑡𝑡

𝑗𝑗=0
. 

Note that for 𝑘𝑘 ≥ 0: 

1 < 1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘 ≤ 1 +
1

𝜔𝜔𝑄𝑄0
<

1
𝛽𝛽𝛽𝛽, 

so: 

�𝛽𝛽2𝜔𝜔�𝑗𝑗+1 < � 𝛽𝛽 �1 +
1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1𝑗𝑗

𝑘𝑘=0
< 𝛽𝛽𝑗𝑗+1. 

Thus, since the denominator within the sum is converging to 𝛽𝛽�𝑄𝑄0 − 𝛽𝛽
1−𝛽𝛽𝛽𝛽� the sum is 

finite and has a finite limit as 𝑡𝑡 → ∞. 

Hence, one equilibrium is for 𝑄𝑄0 > 𝛽𝛽
1−𝛽𝛽𝛽𝛽 to be arbitrary and for 𝑃𝑃 to be given by: 

𝑃𝑃 =
𝑏̂𝑏−1

𝜏𝜏 ∑
∏ 𝛽𝛽 �1 + 1 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽 + �𝜔𝜔�1 − 𝛽𝛽𝛽𝛽�𝑄𝑄0 − 𝛽𝛽𝛽𝛽��𝛽𝛽𝛽𝛽�−𝑘𝑘�
−1

𝑗𝑗
𝑘𝑘=0

𝛽𝛽 � 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 �𝛽𝛽𝛽𝛽�𝑗𝑗 + �𝑄𝑄0 − 𝛽𝛽

1 − 𝛽𝛽𝛽𝛽��

∞
𝑗𝑗=0

. 

Equilibrium type 2! 

Alternatively, suppose 𝑃𝑃 is given. When can we solve the previous equation to find 

𝑄𝑄0? As 𝑄𝑄0 → 𝛽𝛽
1−𝛽𝛽𝛽𝛽, the right-hand side of the previous equation tends to: 

𝑏̂𝑏−1
𝜏𝜏𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽 =

𝐵𝐵−1
𝜏𝜏

1 − 𝛽𝛽
1 − 𝛽𝛽𝛽𝛽. 

As 𝑄𝑄0 → ∞, this right-hand side tends to ∞. Thus, by the intermediate value theorem, 

for any 𝑃𝑃 ∈ �𝐵𝐵−1
𝜏𝜏

1−𝛽𝛽
1−𝛽𝛽𝛽𝛽 , ∞�, there is a 𝑄𝑄0 that satisfies the transversality constraint. 

Equilibrium type 3! 

Therefore, the FTPL implies a lower bound on the price level, not an upper bound, and 

so with passive monetary policy, there are multiple equilibria. 
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Now suppose that monetary policy is active, with: 

𝐼𝐼𝑡𝑡 = 𝛽𝛽−1Π𝑡𝑡
𝜙𝜙, 

with 𝜙𝜙 > 1 and Π𝑡𝑡 ≔ 𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

. 𝛽𝛽−1 is the real interest rate in this model, so this is a non-

linear real rate rule. Given that 𝑐𝑐𝑡𝑡 = 1, the Euler equation for one period bonds implies 

the nonlinear Fisher equation: 

1 = 𝛽𝛽𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
, 

so, for 𝑡𝑡 ≥ 0: 

𝔼𝔼𝑡𝑡
1

Π𝑡𝑡+1
= �

1
Π𝑡𝑡

�
𝜙𝜙

. 

Π𝑡𝑡 = 1 is the unique stationary solution to this equation, by the results of Appendix 

A.1 (with 𝑋𝑋𝑡𝑡 ≔ 1
Π𝑡𝑡

). In this candidate equilibrium, 𝐼𝐼𝑡𝑡 = 𝛽𝛽−1, so Π𝑡𝑡 and 𝐼𝐼𝑡𝑡 have the same 

time series as under the passive policy in the special case in which 𝑃𝑃 = 𝑃𝑃−1. 

Consequently, if 𝑃𝑃−1 > 𝐵𝐵−1
𝜏𝜏

1−𝛽𝛽
1−𝛽𝛽𝛽𝛽 then by the above results, there exists a 𝑄𝑄0 under 

which all equilibrium conditions and transversality conditions are satisfied. Thus, 

even with active monetary and active fiscal policy, there is still a stable equilibrium for 

inflation and real variables. 

B.2 Linearised equilibria under active fiscal policy with geometric 
coupon debt and sticky prices 

We just give the linearised equations of the model. These follow equations 5.17 to 5.21 

of Cochrane (2022). All shocks (variables of the form 𝜀𝜀⋅,𝑡𝑡) are assumed to be mean zero 

and independent, both across time and across shocks. 

Euler: 

𝑥𝑥𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜎𝜎𝑟𝑟𝑡𝑡. 

Phillips: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡. 

Fisher: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 



Page 12 of 39 

 

Robust real rate rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡. 

Exogenous real government surplus: 

𝑠𝑠𝑡𝑡 = 𝜀𝜀𝑠𝑠,𝑡𝑡. 

Debt evolution (𝑣𝑣𝑡𝑡 is the value of debt to GDP, 𝑒𝑒𝑡𝑡 is the ex-post nominal return on 

government debt): 

𝜌𝜌𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 − 𝜋𝜋𝑡𝑡 − 𝑠𝑠𝑡𝑡. 

Equal returns: 

𝔼𝔼𝑡𝑡𝑒𝑒𝑡𝑡+1 = 𝑖𝑖𝑡𝑡. 

Bond pricing (𝜔𝜔 controls the maturity structure. 𝜔𝜔 = 0 is one period debt, 𝜔𝜔 = 1 is a 

perpetuity): 

𝑒𝑒𝑡𝑡 = 𝜔𝜔𝑞𝑞𝑡𝑡 − 𝑞𝑞𝑡𝑡−1. 

We assume that 𝜔𝜔 > 0. Then for any 𝜙𝜙 ≠ 0, the following solves these linear 

expectational difference equations: 

𝜋𝜋𝑡𝑡 = −
𝜀𝜀𝑖𝑖,𝑡𝑡
𝜙𝜙 ,   𝑥𝑥𝑡𝑡 = −

𝜀𝜀𝑖𝑖,𝑡𝑡
𝜅𝜅𝜅𝜅, 

𝑟𝑟𝑡𝑡 =
𝜀𝜀𝑖𝑖,𝑡𝑡

𝜎𝜎𝜎𝜎𝜎𝜎 ,   𝑣𝑣𝑡𝑡 = −
𝜀𝜀𝑖𝑖,𝑡𝑡

𝜎𝜎𝜎𝜎𝜎𝜎, 

𝑒𝑒𝑡𝑡 = 𝜀𝜀𝑠𝑠,𝑡𝑡 − �
𝜌𝜌

𝜎𝜎𝜎𝜎𝜎𝜎 +
1
𝜙𝜙� 𝜀𝜀𝑖𝑖,𝑡𝑡 +

𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝜎𝜎𝜎𝜎 , 

𝑞𝑞𝑡𝑡 =
1
𝜔𝜔 �𝑞𝑞𝑡𝑡−1 + 𝜀𝜀s,𝑡𝑡 − �

𝜌𝜌
𝜎𝜎𝜎𝜎𝜎𝜎 +

1
𝜙𝜙� 𝜀𝜀𝑖𝑖,𝑡𝑡 +

𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝜎𝜎𝜎𝜎 �. 

As in the non-linear, flexible price case, the bond price is exploding. However, the real 

value of government debt remains stationary, which is sufficient for the transversality 

constraint to be satisfied. Inflation and all real variables are also stationary. Thus, if 

monetary policy is passive (𝜙𝜙 ∈ (0,1)), then the linearised model has multiple valid 

equilibria, this one, and the standard “FTPL” one in which 𝑞𝑞𝑡𝑡 is stationary (see 

Cochrane (2022)). Conversely, if monetary policy is active (𝜙𝜙 > 1), then the model 

possesses a valid equilibrium with stationary inflation and real variables. 
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Appendix C Welfare in New Keynesian models 

In Subsection 1.5, we established that a rule of our form could exactly mimic any other 

time invariant policy, if responses to structural shocks and their lags are allowed. Thus, 

rules of our form can mimic unconditionally optimal policy, optimal commitment 

policy from a timeless perspective, or optimal discretionary policy. Hence, rules of our 

form can achieve high welfare. 

We begin this section by looking at unconditionally optimal time-invariant policy 

using our rules, in a simple NK model. We then go on to analyse the performance of 

our rules if further restrictions are placed upon them, such as only permitting the 

central bank to respond to current or sufficiently recent shocks. We show that optimal 

policy in estimated models of the US economy comes close to stabilizing inflation, with 

optimal inflation dynamics describable by an ARMA process with few MA terms. 

Any welfare analysis requires us to specify the rest of the model, as welfare is generally 

a function of output’s variability, not just that of inflation. Thus, as a first example 

suppose that inflation and output are linked by the standard Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 is the output gap, and 𝜔𝜔𝑡𝑡 is a mark-up shock, which is assumed IID with 

mean zero. Additionally, suppose that the policy maker wants to minimise the 

unconditional expectation of a quadratic loss function in inflation and the output gap. 

I.e., the period 𝑡𝑡 policy maker minimises: 

�1 − 𝛽𝛽�𝔼𝔼 � 𝛽𝛽𝑘𝑘�𝜋𝜋𝑡𝑡+𝑘𝑘
2 + 𝜆𝜆𝑥𝑥𝑡𝑡+𝑘𝑘

2 �
∞

𝑘𝑘=0
, 

for some 𝜆𝜆 > 0 and 𝛽𝛽 ∈ (0,1). 

We suppose that the policy maker is constrained to choose a time-invariant (i.e., 

stationary) policy, thus the objective simplifies to:29 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2�. 

 
29 See e.g. Damjanovic, Damjanovic & Nolan (2008). 
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As the policy maker only cares about inflation and output gaps, with the former being 

effectively under their control, and the latter only determined by inflation and mark-

up shocks, the optimal policy must have the form: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
, 

for some 𝜃𝜃0, 𝜃𝜃1, … to be determined. We have already shown that such a policy may be 

determinately implemented via a rule of the form of (6). 

Substituting this policy into the Phillips curve then gives: 

� 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
= 𝛽𝛽 � 𝜃𝜃𝑘𝑘+1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+ 𝑥𝑥𝑡𝑡 + 𝜔𝜔𝑡𝑡, 

so: 

𝑥𝑥𝑡𝑡 = ��𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
. 

Hence, the policy maker’s objective is to choose 𝜃𝜃0, 𝜃𝜃1, … to minimise: 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2� = 𝔼𝔼�𝜔𝜔𝑡𝑡
2� ��𝜅𝜅2𝜃𝜃𝑘𝑘

2 + 𝜆𝜆�𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�2�
∞

𝑘𝑘=0
. 

The first order conditions then give:30 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 > 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

Unsurprisingly, this agrees with the unconditionally optimal solution given in the 

prior literature (e.g. Damjanovic, Damjanovic & Nolan (2008)), which satisfies: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 �𝑥𝑥𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡−1� = 0, 

i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ���𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0

− 𝛽𝛽 ��𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘 − 𝟙𝟙[𝑘𝑘 − 1 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
� = 0. 

 
30 See Appendix D.6 for the solution of these conditions. 
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To see the equivalence, note that from matching coefficients, this equation holds if and 

only if the above first order conditions hold. We will present a convenient 

representation of the solution to these equations below. 

Additionally, note that as 𝜆𝜆
𝜅𝜅2 → 0, 𝜃𝜃𝑘𝑘 → 0 for all 𝑘𝑘 ∈ ℕ. In other words, if the central 

bank does not care about the output gap, then they optimally choose to have constant 

inflation, i.e., to follow the rule from equation (2). The central bank also chooses 

constant inflation if the Phillips curve is vertical (i.e., 𝜅𝜅 = ±∞). In this case, neither 

inflation nor mark-up shocks have any impact on the output gap.  

The first order conditions derived above also enable us to easily solve for optimal 

unconditional policy under limited memory. For example, if the central bank does not 

“remember” 𝜔𝜔𝑡𝑡−1, 𝜔𝜔𝑡𝑡−2, …, so uses a rule that is only a function of 𝜔𝜔𝑡𝑡 at 𝑡𝑡, then the 

optimal 𝜃𝜃0 will satisfy the above first order conditions with 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 0. This 

means: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 (𝜃𝜃0 − 1) = 0, 

so 𝜃𝜃0 = 𝜆𝜆
𝜆𝜆+𝜅𝜅2. It turns out that this exactly coincides with the solution under 

discretion.31 

If the central bank can “remember” 𝜔𝜔𝑡𝑡−1, so 𝜋𝜋𝑡𝑡 is an MA(1), then the optimal solution 

will have: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 𝜃𝜃1 − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0. 

The solution has 𝜃𝜃0 ≥ 0 and 𝜃𝜃1 ≤ 0. Thus, the shock increases 𝜋𝜋𝑡𝑡 while reducing 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, thus dampening the required movement in 𝑥𝑥𝑡𝑡, from the Phillips curve. We will 

see that this is already enough to come close to the fully optimal policy. 

 
31 See Appendix D.7. 
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Going one step further, if the central bank can also “remember” 𝜋𝜋𝑡𝑡−1, then they can 

choose interest rates to ensure 𝜋𝜋𝑡𝑡 follows the ARMA(1,1) process: 

𝜋𝜋𝑡𝑡 = 𝜌𝜌𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝜃𝜃0𝜔𝜔𝑡𝑡 + 𝜅𝜅𝜃𝜃1𝜔𝜔𝑡𝑡−1, 

for some 𝜌𝜌, 𝜃𝜃0, 𝜃𝜃1 to be determined.32 Since US inflation appears to be well 

approximated by an ARMA(1,1) (Stock & Watson 2009), this may be a reasonable 

model of Fed behaviour. This ARMA(1,1) process has the MA(∞) representation: 

𝜋𝜋𝑡𝑡 = 𝜅𝜅𝜃𝜃0 � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+ 𝜅𝜅𝜃𝜃1 � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−1−𝑘𝑘

∞

𝑘𝑘=0
= 𝜅𝜅𝜃𝜃0𝜔𝜔𝑡𝑡 + 𝜅𝜅�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
. (9) 

Substituting this policy into the Phillips curve gives: 

𝜃𝜃0𝜔𝜔𝑡𝑡 + �𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
= 𝛽𝛽�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�𝜔𝜔𝑡𝑡 + 𝛽𝛽�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
+ 𝑥𝑥𝑡𝑡 + 𝜔𝜔𝑡𝑡, 

meaning: 

𝑥𝑥𝑡𝑡 = ��1 − 𝛽𝛽𝛽𝛽�𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1�𝜔𝜔𝑡𝑡 + �1 − 𝛽𝛽𝛽𝛽��𝜌𝜌𝜃𝜃0 + 𝜃𝜃1� � 𝜌𝜌𝑘𝑘−1𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
. 

Hence, the policy maker’s objective is to choose 𝜌𝜌, 𝜃𝜃0, 𝜃𝜃1 to minimise: 

𝔼𝔼�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2� = 𝔼𝔼�𝜔𝜔𝑡𝑡
2� �𝜅𝜅2𝜃𝜃0

2 + 𝜆𝜆��1 − 𝛽𝛽𝛽𝛽�𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1�2

+ �𝜅𝜅2�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�2 + 𝜆𝜆�1 − 𝛽𝛽𝛽𝛽�2�𝜌𝜌𝜃𝜃0 + 𝜃𝜃1�2�
1

1 − 𝜌𝜌2�. 

Tedious algebra gives that the first order conditions have solution:33 

𝜌𝜌 =
𝜅𝜅2 + �1 + 𝛽𝛽2�𝜆𝜆 − ��𝜅𝜅2 + �1 − 𝛽𝛽�2𝜆𝜆��𝜅𝜅2 + �1 + 𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 , 𝜃𝜃0 =
𝜌𝜌
𝛽𝛽 , 𝜃𝜃1 = −𝜌𝜌. 

As 𝜆𝜆 → 0, or 𝜅𝜅 → ∞, 𝜌𝜌 → 0. As 𝜆𝜆 → ∞, or 𝜅𝜅 → 0, 𝜌𝜌 → 𝛽𝛽. Since there is no other solution 

for 𝜅𝜅 to the equation 𝜌𝜌 = 𝛽𝛽 than 𝜅𝜅 = 0, we must have 𝜌𝜌 ≤ 𝛽𝛽, so 𝜌𝜌𝜃𝜃0 + 𝜃𝜃1 ≤ 0, meaning 

 
32 The targeted inflation can respond to lagged targeted inflation without changing the determinacy properties of 

realised inflation (always equal to targeted inflation in equilibrium). Targeted inflation cannot respond to other 

endogenous variables without potentially changing these determinacy properties. 

33 There is an additional solution to the first order condition with 𝜌𝜌 =
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 , but this 

is outside of the unit circle as: 
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 >
𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆+��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆�

2𝛽𝛽𝛽𝛽 =
𝜅𝜅2+�1−𝛽𝛽+𝛽𝛽2�𝜆𝜆

𝛽𝛽𝛽𝛽 > 1−𝛽𝛽+𝛽𝛽2

𝛽𝛽 = 1
𝛽𝛽 + 𝛽𝛽 − 1 > 1. However, the given solution is inside the unit circle as 

𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�
2𝛽𝛽𝛽𝛽 >

𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�
2𝛽𝛽𝛽𝛽 = −1, 

𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1+𝛽𝛽�2𝜆𝜆�
2𝛽𝛽𝛽𝛽 <

𝜅𝜅2+�1+𝛽𝛽2�𝜆𝜆−��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆��𝜅𝜅2+�1−𝛽𝛽�2𝜆𝜆�
2𝛽𝛽𝛽𝛽 = 1. 
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that the response of inflation to a positive mark-up shock is again negative after the 

first period. Since we have one extra degree of freedom, this must attain even higher 

welfare than the MA(1) solution. In fact, it attains the unconditionally optimal 

solution. Examination of the unconditionally optimal solution from Appendix D.6 

reveals that it has the same form as equation (10), thus by a revealed preference 

argument, the two solutions must coincide. (For example, the solution for 𝜌𝜌 agrees 

with the geometric decay rate of the MA coefficients at lags beyond the first of the fully 

optimal solution we found in Appendix D.6.) 

Hence, in a world in which the only inefficient shocks are IID cost-push shocks, the 

central bank can attain the unconditionally optimal welfare by ensuring inflation 

follows an appropriate ARMA(1,1) process. This process will have an MA coefficient 

equal to −𝛽𝛽 ≈ −0.99, and as long as the central bank cares about output stabilisation, 

it will have a high degree of persistence. This is very close to the IMA(1,1) processes 

estimated by Dotsey, Fujita & Stark (2018) for the post-1984 period. 

To see the welfare attained by the other policies we have discussed, Figure 1 plots the 

policy frontiers attained by varying 𝜆𝜆 for each of the polices. In all cases, we follow 

Eggertsson & Woodford (2003) in setting 𝛽𝛽 = 0.99 and 𝜅𝜅 = 0.02. The figure makes clear 

that the MA(1) policy (green) is a substantial improvement on the MA(0) 

(discretionary) policy (red). It also shows just how close Woodford’s timeless 

perspective (1999)34 (blue, hidden behind purple) comes to the unconditionally 

optimal policy. 

 

 
34 See Appendix D.8 for the derivation of this solution. 
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Figure 1: Policy frontiers (values attained by varying 𝝀𝝀). 𝜷𝜷 = 𝟎𝟎. 𝟗𝟗𝟗𝟗, 𝜿𝜿 = 𝟎𝟎. 𝟎𝟎𝟎𝟎. 

Purple: Unconditionally optimal policy, equivalent to ARMA(𝟏𝟏, 𝟏𝟏) policy. 

Blue (hidden behind purple): Timeless optimal solution. 

Red: Policy just responding to current shocks, equivalent to discretion. 

Green: Policy that responds to current and once lagged shocks. 

 

 

  

Figure 2: Logarithms of ratios of variance under a given policy to variance under unconditionally optimal 

policy. 𝜷𝜷 = 𝟎𝟎. 𝟗𝟗𝟗𝟗, 𝜿𝜿 = 𝟎𝟎. 𝟎𝟎𝟎𝟎. 

Blue: Timeless optimal solution. 

Red: Policy just responding to current shocks, equivalent to discretion. 

Green: Policy that responds to current and once lagged shocks. 
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Figure 2 shows how these differences across policies are driven by 𝜆𝜆, by plotting the 

logarithm of the ratio of variance under a given policy to the variance under 

unconditionally optimal policy. We allow 𝜆𝜆 to vary from 0.002 (the value obtained by 

a second order approximation to the consumer’s utility with 𝜅𝜅 = 0.02, if the elasticity 

of substitution across goods equals 10) to 1
16 (corresponding to an equal weight on 

annual inflation and the output gap). Both the MA(0) and the MA(1) policy generate 

too much inflation variance and too little variance in output, relative to the 

unconditionally optimal solution. However, if the central bank can feasibly respond to 

𝜔𝜔𝑡𝑡 and 𝜔𝜔𝑡𝑡−1 they can probably also respond to 𝜋𝜋𝑡𝑡−1, which is enough to deliver the 

unconditional optimum. 

Even in larger models, optimal inflation dynamics appear to be well approximated by 

an ARMA process with relatively few MA terms. Figure 3 shows the dynamics of 

observed and optimal inflation in the Justiniano, Primiceri & Tambalotti (2013) model. 

(This is a medium-scale New Keynesian DSGE model broadly similar to the model of 

Smets & Wouters (2007).) While actual inflation is highly persistent, with the same 

shocks hitting the economy, optimal inflation is far less persistent, with the sample 

autocorrelation essentially insignificant at 95% after four lags. 

 
Date 

 
Lag 

Figure 3: Behaviour of realised inflation (blue) and optimal inflation (red) in the Justiniano, Primiceri & 

Tambalotti (2013) model. 

Left panel shows the timeseries. Right panel shows their sample autocorrelation. 
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Note that for any 𝜌𝜌 ∈ (−1,1), the solution for optimal inflation has a multiple shock, 

ARMA(1, ∞) representation of the form: 

𝜋𝜋𝑡𝑡 − 𝜋𝜋 = 𝜌𝜌(𝜋𝜋𝑡𝑡−1 − 𝜋𝜋) + � � 𝜃𝜃𝑛𝑛,𝑘𝑘
�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

∞

𝑘𝑘=0
, 

where 𝜀𝜀1,𝑡𝑡, … , 𝜀𝜀𝑁𝑁,𝑡𝑡 are the model’s structural shocks. We can approximate this process 

by truncating the MA terms at some point, e.g. by considering the multiple shock 

ARMA(1, 𝐾𝐾) process: 

𝜋𝜋𝑡𝑡
(𝐾𝐾) − 𝜋𝜋 = 𝜌𝜌�𝜋𝜋𝑡𝑡−1

(𝐾𝐾) − 𝜋𝜋� + � � 𝜃𝜃𝑛𝑛,𝑘𝑘
�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘

𝑁𝑁

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=0
. 

In Figure 4 we plot the proportion of the variance of optimal inflation that is explained 

by this truncated process for 𝐾𝐾 = 0, … ,16, and 𝜌𝜌 ∈ {0,0.61}.35 A multiple shock 

ARMA(1,1) process already explains over 90% of the variance of optimal inflation, 

while a multiple shock ARMA(1,2) explains over 95%. Thus, optimal inflation in 

plausible models can be well approximated by relatively simple inflation dynamics. 

 
Number of MA lags 

Figure 4: Proportion of the variance of optimal inflation in the Justiniano, Primiceri & Tambalotti (2013) 

model explained by truncating the number of MA lags. Blue: 𝝆𝝆 = 𝟎𝟎. Red: 𝝆𝝆 = 𝟎𝟎. 𝟔𝟔𝟔𝟔. 

 

 
35 𝜌𝜌 = 0.61 is the value of 𝜌𝜌 that minimises the variance of ∑ ∑ 𝜃𝜃𝑛𝑛,𝑘𝑘

�𝜌𝜌�𝜀𝜀𝑛𝑛,𝑡𝑡−𝑘𝑘
𝑁𝑁
𝑛𝑛=1

∞
𝑘𝑘=0 . I.e. it is the value of 𝜌𝜌 that would 

be estimated by OLS using an infinite sample of observations from optimal inflation. 
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Appendix D Further proofs and supplemental results 

D.1 Phillips curve based forecasting with ARMA(1,1) policy shocks 

As before, we have the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡,  

which combined with the Fisher equation gives: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. 

Suppose 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2� 

with 𝜌𝜌𝜁𝜁 , 𝜃𝜃𝜁𝜁 ∈ (−1,1). Then from matching coefficients, with 𝜙𝜙 > 1 we have the unique 

solution: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡�. 

Thus: 

𝜋𝜋𝑡𝑡 − 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡−1 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�1 +

𝜃𝜃𝜁𝜁

𝜙𝜙 � �𝜀𝜀𝜁𝜁,𝑡𝑡 +
𝜙𝜙 − 𝜌𝜌𝜁𝜁

𝜙𝜙 + 𝜃𝜃𝜁𝜁
𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1�, 

so 𝜋𝜋𝑡𝑡 also follows an ARMA(1,1) process. Suppose for now that −𝜌𝜌𝜁𝜁 ≤ 𝜃𝜃𝜁𝜁 , which is 

likely to be satisfied in reality as we expect 𝜌𝜌𝜁𝜁  to be large and positive, while 𝜃𝜃𝜁𝜁  should 

be close to zero. (For example, Dotsey, Fujita & Stark (2018) find that an IMA(1,1) 

model fits inflation well, in which case −𝜌𝜌𝜁𝜁 = −1 < 𝜃𝜃𝜁𝜁  as required.) Then 0 < 𝜙𝜙−𝜌𝜌𝜁𝜁
𝜙𝜙+𝜃𝜃𝜁𝜁

<

1, so �𝜙𝜙−𝜌𝜌𝜁𝜁
𝜙𝜙+𝜃𝜃𝜁𝜁

𝜃𝜃𝜁𝜁 � < 1 meaning the process for inflation is invertible. With inflation 

following an invertible linear process, the full-information optimal forecast of 𝜋𝜋𝑡𝑡+1 is 

a linear combination of 𝜋𝜋𝑡𝑡, 𝜋𝜋𝑡𝑡−1, …. In particular, as before 𝑥𝑥𝑡𝑡 is not useful. 

In the unlikely case in which −𝜌𝜌𝜁𝜁 > 𝜃𝜃𝜁𝜁 , of if the forecaster’s information set ℐ𝑡𝑡 is 

smaller than {𝜋𝜋𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝜋𝜋𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1, … },36 then 𝑥𝑥𝑡𝑡 may contain some useful information. 

Combining the solution for inflation with the Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡,  

 
36 We nonetheless assume that 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 are in ℐ𝑡𝑡. 
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gives: 

𝑥𝑥𝑡𝑡 = −
1
𝜅𝜅 �

1 − 𝛽𝛽𝜌𝜌𝜁𝜁

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝛽𝛽
𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡 

=
1
𝜅𝜅 ��1 − 𝛽𝛽𝜌𝜌𝜁𝜁 �𝜋𝜋𝑡𝑡 + 𝛽𝛽

𝜃𝜃𝜁𝜁

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. 

In this case, it is possible that 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡� ≠ 𝔼𝔼�𝜋𝜋𝑡𝑡+1�ℐ𝑡𝑡−1, 𝜋𝜋𝑡𝑡� as 𝑥𝑥𝑡𝑡 provides an 

independent signal about 𝜀𝜀𝜁𝜁,𝑡𝑡. 

There are two important special cases. If 𝜔𝜔𝑡𝑡 = 0, and the forecaster knows this, then: 

𝜀𝜀𝜁𝜁,𝑡𝑡 =
𝜙𝜙

𝛽𝛽𝜃𝜃𝜁𝜁
�𝜅𝜅𝑥𝑥𝑡𝑡 − �1 − 𝛽𝛽𝜌𝜌𝜁𝜁 �𝜋𝜋𝑡𝑡�, 

so: 

𝜁𝜁𝑡𝑡 = − �𝜙𝜙 −
1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡, 

which enables the forecaster to form the full-information optimal forecast: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡� =

1
𝛽𝛽 (𝜋𝜋𝑡𝑡 − 𝜅𝜅𝑥𝑥𝑡𝑡). 

(This formula also follows immediately from the Phillips curve.) Note that the output 

gap has what Dotsey, Fujita & Stark (2018) call the “wrong” sign, meaning Phillips 

curve based forecasting regressions may have surprising results. However, in the 

general case in which 𝜔𝜔𝑡𝑡 has positive variance, then output’s signal about 𝜀𝜀𝜁𝜁,𝑡𝑡 will be 

polluted by the noise from 𝜔𝜔𝑡𝑡, making it much less informative. Indeed, with 𝜙𝜙 large, 

as we expect, then 𝜃𝜃𝜁𝜁
𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡 will have low variance, making it more likely that it is 

drowned out by the noise from 𝜔𝜔𝑡𝑡.  

The second important special case is when 𝜀𝜀𝜁𝜁,𝑡𝑡 = 0, and again the forecaster knows 

this. In this case, much as in the main text: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡 −
1

𝜙𝜙 − 𝜌𝜌𝜁𝜁
�1 +

𝜃𝜃𝜁𝜁

𝜙𝜙 � �𝔼𝔼𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡+1 +
𝜙𝜙 − 𝜌𝜌𝜁𝜁

𝜙𝜙 + 𝜃𝜃𝜁𝜁
𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡� = 𝜌𝜌𝜁𝜁 𝜋𝜋𝑡𝑡, 

so 𝑥𝑥𝑡𝑡 is unhelpful. 

The general case will inherit aspects of these two special cases, as well as the case in 

which 𝜋𝜋𝑡𝑡’s stochastic process was invertible. Inflation and its lags will certainly help 
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forecast inflation, but the output gap may also provide a little extra information, 

possibly with the “wrong” sign. 

D.2 Robustness to non-unit responses to real interest rates 

Suppose that the central bank is unable to respond with a precise unit coefficient to 

real interest rates, so instead follows the monetary rule: 

𝑖𝑖𝑡𝑡 = (1 + 𝛾𝛾)𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

where 𝛾𝛾 ∈ ℝ is some small value giving the departure from unit responses. 

For simplicity, suppose the rest of the model takes the same form as in Subsection 1.3, 

with: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 

𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose 𝜙𝜙 > 1, but do not make any assumptions on the signs of 𝛿𝛿, 𝛽𝛽, 𝜅𝜅, 𝜍𝜍, 𝛾𝛾, 

beyond assuming that 𝜍𝜍 ≠ 0 (so monetary policy has some effect on the output gap) 

and 𝜅𝜅 ≠ 0 (so monetary policy has some effect on inflation, via the output gap). 

Combining the monetary rule with the Fisher equation gives: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝛾𝛾𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, 

so: 

𝑟𝑟𝑡𝑡 =
1
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡 − 𝜁𝜁𝑡𝑡�, 

meaning: 

𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 −
𝜍𝜍
𝛾𝛾 �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝜙𝜙𝜋𝜋𝑡𝑡� + 𝜍𝜍𝑛𝑛𝑡𝑡 +

𝜍𝜍
𝛾𝛾 𝜁𝜁𝑡𝑡. 

Then, since: 

𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
1
𝛽𝛽 𝜋𝜋𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝑥𝑥𝑡𝑡 −

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡, 

we have that: 

𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 = �
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾� 𝑥𝑥𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽� 𝜋𝜋𝑡𝑡 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝛾𝛾𝑛𝑛𝑡𝑡 + 𝜁𝜁𝑡𝑡 +

𝜅𝜅
𝛽𝛽 𝜔𝜔𝑡𝑡�. 
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Woodford (2003) (Addendum to Chapter 4, Proposition C.1) proves that this model is 

determinate if and only if both eigenvalues of the matrix: 

𝑀𝑀 ≔

⎣
⎢
⎢
⎢
⎡

1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 −

𝜍𝜍
𝛿𝛿𝛿𝛿 �𝜙𝜙 −

1
𝛽𝛽�

−
𝜅𝜅
𝛽𝛽

1
𝛽𝛽 ⎦

⎥
⎥
⎥
⎤

 

are outside of the unit circle, which in turn is proven to hold if and only if EITHER: 

Case I: 1 < det 𝑀𝑀, 0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀, and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀, OR Case II: 0 > 1 +

det 𝑀𝑀 − tr 𝑀𝑀, and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀. Note: 

det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

tr 𝑀𝑀 =
1
𝛿𝛿 −

𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 +

1
𝛽𝛽. 

Thus, Case I requires: 

1 < det 𝑀𝑀 =
1

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 𝜙𝜙, 

0 < 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 < 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 

And Case II requires: 

0 > 1 + det 𝑀𝑀 − tr 𝑀𝑀 =
�1 − 𝛽𝛽�(1 − 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �𝜙𝜙 − 1�, 

and 0 > 1 + det 𝑀𝑀 + tr 𝑀𝑀 =
�1 + 𝛽𝛽�(1 + 𝛿𝛿)

𝛽𝛽𝛽𝛽 −
𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 �1 + 𝜙𝜙�. 

To see when these conditions are satisfied, first suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 < 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 = − |𝜍𝜍𝜍𝜍|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. 

Then if 𝛾𝛾 is sufficiently small in magnitude, it is immediately clear that all three 

conditions of Case I are satisfied, since 𝜙𝜙 > 0, 𝜙𝜙 − 1 > 0 and 1 + 𝜙𝜙 > 0. In particular, 

in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
max�0, −�sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 
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Alternatively, suppose that 𝜍𝜍𝜍𝜍
𝛾𝛾𝛾𝛾𝛾𝛾 > 0, so 𝜍𝜍𝜍𝜍

𝛾𝛾𝛾𝛾𝛾𝛾 = |𝜍𝜍𝜍𝜍|
|𝛾𝛾|�𝛽𝛽𝛽𝛽�. Then, similarly, if 𝛾𝛾 is sufficiently 

small in magnitude, both conditions of Case II are satisfied, since 𝜙𝜙 − 1 > 0 and 1 +

𝜙𝜙 > 0. In particular, in this case we need: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
⎨
���
⎧ 𝜙𝜙 − 1

max�0, �sign�𝛽𝛽𝛽𝛽���1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
max�0, �sign�𝛽𝛽𝛽𝛽���1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
⎬
���
⎫

. 

Thus, it is always sufficient for determinacy that: 

|𝛾𝛾| < |𝜍𝜍𝜍𝜍| min

⎩�
��
��
⎨
��
��
�⎧

𝜙𝜙
max�0, −�sign�𝛽𝛽𝛽𝛽� − �𝛽𝛽𝛽𝛽��� ,

𝜙𝜙 − 1
��1 − 𝛽𝛽�(1 − 𝛿𝛿)� ,

1 + 𝜙𝜙
��1 + 𝛽𝛽�(1 + 𝛿𝛿)� ⎭�

��
��
⎬
��
��
�⎫

. 

Since the right-hand side is strictly positive, there is a positive measure of 𝛾𝛾 for which 

we have determinacy. 

D.3 Real-time learning of Phillips curve coefficients 

We start by assuming that the central bank knows the Phillips curve coefficients. A 

close examination of this case will lead to a natural learning scheme for when the 

central bank does not know these coefficients. 

As in the main text, suppose the central bank is using the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 − 𝜅𝜅−1�𝜋𝜋𝑡𝑡 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1�� + 𝜁𝜁𝑡𝑡, 

and that the model also contains the Phillips curve: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, 

and the Fisher equation: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

We suppose that 𝜁𝜁𝑡𝑡 follows the ARMA(1,1) process: 

𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1, 𝜀𝜀𝜁𝜁,𝑡𝑡 ∼ 𝑁𝑁�0, 𝜎𝜎𝜁𝜁
2�, 

with 𝜌𝜌𝜁𝜁 , 𝜃𝜃𝜁𝜁 ∈ (−1,1), and for simplicity, we suppose that 𝜔𝜔𝑡𝑡 = 𝜀𝜀𝜔𝜔,𝑡𝑡, where 𝜀𝜀𝜔𝜔,𝑡𝑡 ∼

𝑁𝑁�0, 𝜎𝜎𝜔𝜔
2 �. 
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From combining all the above equations, we have that if 𝜙𝜙𝜋𝜋 > 1, there is a unique 

solution with: 

𝜋𝜋𝑡𝑡 = −
1

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁
�𝜁𝜁𝑡𝑡 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
𝜀𝜀𝜁𝜁,𝑡𝑡� +

𝜙𝜙𝑥𝑥
𝜙𝜙𝜋𝜋

𝜀𝜀𝜔𝜔,𝑡𝑡. 

Thus, if we define: 

𝑚𝑚0 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 �
�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � − �1 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
��, 

𝑚𝑚1 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 � ⎣
⎢⎡�𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 − 1��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � + 𝛽𝛽𝜚̃𝜚𝜋𝜋 �1 +

𝜃𝜃𝜁𝜁

𝜙𝜙𝜋𝜋
�

⎦
⎥⎤, 

𝑚𝑚2 ≔
𝜎𝜎𝜁𝜁

2

𝜅𝜅�𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 �
��𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 − 1�𝜌𝜌𝜁𝜁 + 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �, 

then by the Phillips curve 𝑚𝑚0 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡, 𝑚𝑚1 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝑚𝑚2 = 𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2. Also note 

that: 

𝜅𝜅 =
𝜎𝜎𝜁𝜁

2

𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞
,  

𝛽𝛽̃ =
�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝑚𝑚0−�𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2��−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞

,  

𝜚𝜚𝜋𝜋 = −
�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝑚𝑚0−�𝜌𝜌𝜁𝜁 𝑚𝑚1−𝑚𝑚2��−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2
⎠
⎟⎞
.  

In other words, once the central bank knows 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 they can infer the 

parameters of the Phillips curve from the known properties of their monetary rule and 

monetary shock. This is essentially an instrumental variables regression. We are using 

𝜀𝜀𝜁𝜁,𝑡𝑡, 𝜀𝜀𝜁𝜁,𝑡𝑡−1 and 𝜀𝜀𝜁𝜁,𝑡𝑡−2 as instruments for 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 𝜋𝜋𝑡𝑡 and 𝜋𝜋𝑡𝑡−1 in a regression of the output 

gap on those variables. This works as long as 𝜃𝜃𝜁𝜁 ≠ 0, else 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡 are colinear. 

If the central bank does not know the true values of 𝜅𝜅, 𝛽𝛽 ̃ and 𝜚𝜚𝜋𝜋, we suppose they 

dynamically update estimates of 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2 using the following decreasing gain 

learning rules (for 𝑡𝑡 > 0): 

𝑚𝑚0,𝑡𝑡 = 𝑚𝑚0,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 − 𝑚𝑚0,𝑡𝑡−1�, 

𝑚𝑚1,𝑡𝑡 = 𝑚𝑚1,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝑚𝑚1,𝑡𝑡−1�, 

𝑚𝑚2,𝑡𝑡 = 𝑚𝑚2,𝑡𝑡−1 + 𝑡𝑡−1�𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 − 𝑚𝑚2,𝑡𝑡−1�, 
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where 𝜄𝜄 ∈ (0,1] is a gain parameter. Then they can use the monetary rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑥𝑥𝑡𝑡 + 𝑞𝑞1,𝑡𝑡−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝑞𝑞0,𝑡𝑡−1𝜋𝜋𝑡𝑡 + 𝑞𝑞−1,𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜁𝜁𝑡𝑡, 

where: 

𝑞𝑞1,𝑡𝑡 ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0,𝑡𝑡−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1,𝑡𝑡−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞0,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚0,𝑡𝑡−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚1,𝑡𝑡−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚2,𝑡𝑡
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞−1,𝑡𝑡 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚1,𝑡𝑡−𝑚𝑚2,𝑡𝑡�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 .  

This is reasonable, as if 𝑚𝑚0,𝑡𝑡−1 ≈ 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡−1 ≈ 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡−1 ≈ 𝑚𝑚2 then 𝑞𝑞1,𝑡𝑡−1 ≈

𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�, 𝑞𝑞0,𝑡𝑡−1 ≈ −𝜅𝜅−1 and 𝑞𝑞−1,𝑡𝑡−1 ≈ 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋, so this monetary rule is 

approximately the same as the full information one previously considered. Using 

lagged estimates (𝑞𝑞1,𝑡𝑡−1 not 𝑞𝑞1,𝑡𝑡 etc.) in the monetary rule reflects central bank 

information (processing) delays and simplifies the model’s solution. It is also a 

common assumption in the reduced form learning literature (Evans & Honkapohja 

2001). 

With the new monetary rule, the model is no-longer linear. As a result, the exact 

solution is analytically intractable. However, we are only really interested in 

asymptotic dynamics. If 𝑚𝑚0,𝑡𝑡 → 𝑚𝑚0, 𝑚𝑚1,𝑡𝑡 → 𝑚𝑚1 and 𝑚𝑚2,𝑡𝑡 → 𝑚𝑚2 as 𝑡𝑡 → ∞ then we know 

the asymptotic solution will be the stable full information one we found previously. 

We will analyse the system’s behaviour with help from the stochastic approximation 

tools frequently used in the reduced form learning literature (Evans & Honkapohja 

2001). These tools only require a zeroth order approximation in 𝑡𝑡−1 to the dynamics of 

𝑥𝑥𝑡𝑡 and 𝜋𝜋𝑡𝑡.37 Intuitively, this is because 𝑥𝑥𝑡𝑡 (hence 𝜋𝜋𝑡𝑡) enters the law of motion for 𝑚𝑚0,𝑡𝑡, 

𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 multiplied by 𝑡𝑡−1, so a zeroth order approximation to the dynamics of 𝑥𝑥𝑡𝑡 

 
37 Given certain regularity conditions on the higher order terms. These conditions will be satisfied here, at least 

providing we restrict 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 to a small enough open set around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, using a so called 

projection facility. 
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and 𝜋𝜋𝑡𝑡 in 𝑡𝑡−1 delivers a first order approximation to the dynamics of 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 

in 𝑡𝑡−1. 

We conjecture a time-varying coefficients solution with: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡 + 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 

where we conjecture 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 

𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. Substituting this into the monetary rule, Fisher equation and 

Phillips curve implies: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐴𝐴𝑡𝑡�𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡�

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡−1 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ 𝐵𝐵𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝑡𝑡−1𝜀𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷𝑡𝑡−1𝜋𝜋𝑡𝑡−1� + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡−1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1 − 𝜙𝜙𝑥𝑥𝜀𝜀𝜔𝜔,𝑡𝑡

+ 𝜁𝜁𝑡𝑡 + 𝑂𝑂�𝑡𝑡−1�. 

Matching terms and using 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� then gives 

that: 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜌𝜌𝜁𝜁

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐴𝐴𝑡𝑡 + 1

+ 𝑂𝑂�𝑡𝑡−1�, 

�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡𝜃𝜃𝜁𝜁

= �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐵𝐵𝑡𝑡 + 𝑂𝑂�𝑡𝑡−1�, 

0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡−1�𝐷𝐷𝑡𝑡�𝐶𝐶𝑡𝑡 − 𝜙𝜙𝑥𝑥 + 𝑂𝑂�𝑡𝑡−1�, 

0 = �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡�𝐷𝐷𝑡𝑡 + 𝜙𝜙𝑥𝑥�𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

+ 𝑂𝑂�𝑡𝑡−1�. 

The final equation has two roots, but we know we need to pick the one that gives 𝐷𝐷𝑡𝑡 →

0 as 𝜙𝜙𝑥𝑥 → 0. Now if 𝑞𝑞0,𝑡𝑡 is sufficiently close to 𝑞𝑞0, then 𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 > 0, so: 

𝐷𝐷𝑡𝑡 =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝑞𝑞−1,𝑡𝑡 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�

+ 𝑂𝑂�𝑡𝑡−1�, 
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and: 

𝐴𝐴𝑡𝑡 = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡��𝐷𝐷𝑡𝑡 + 𝜌𝜌𝜁𝜁 � − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡��
−1

+ 𝑂𝑂�𝑡𝑡−1�, 

𝐵𝐵𝑡𝑡 =
𝜃𝜃𝜁𝜁 �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐴𝐴𝑡𝑡

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�, 

𝐶𝐶𝑡𝑡 =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0,𝑡𝑡 − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1,𝑡𝑡�𝐷𝐷𝑡𝑡
+ 𝑂𝑂�𝑡𝑡−1�. 

Since 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−1,𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, as 

required we have that 𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐵𝐵𝑡𝑡 = 𝐵𝐵𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1� 

and 𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 + 𝑂𝑂�𝑡𝑡−1�. 

Using this result again, we then have that: 

𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷𝑡𝑡−1 + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝑡𝑡−1𝜁𝜁𝑡𝑡

+ �𝐵𝐵𝑡𝑡−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝑡𝑡−1𝜃𝜃𝜁𝜁 + 𝐵𝐵𝑡𝑡−1𝐷𝐷𝑡𝑡−1��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐶𝐶𝑡𝑡−1 − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷𝑡𝑡−1�𝐷𝐷𝑡𝑡−1 − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� + 𝑂𝑂�𝑡𝑡−1�. 

Plugging this into the law of motion for 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡 and 𝑚𝑚2,𝑡𝑡 gives a purely backward 

looking non-linear system in the endogenous states 𝑚𝑚0,𝑡𝑡, 𝑚𝑚1,𝑡𝑡, 𝑚𝑚2,𝑡𝑡 and 𝜋𝜋𝑡𝑡. This system 

is of the correct form to be analysed by the stochastic approximation results given in 

Evans & Honkapohja (2001). 

To apply these results, first suppose that for all 𝑡𝑡, 𝑚𝑚0,𝑡𝑡 = 𝑚𝑚�0, 𝑚𝑚1,𝑡𝑡 = 𝑚𝑚�1 and 𝑚𝑚2,𝑡𝑡 = 𝑚𝑚�2, 

for some values 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2. Then 𝑞𝑞1,𝑡𝑡 = 𝑞𝑞1̂, 𝑞𝑞0,𝑡𝑡 = 𝑞𝑞0̂ and 𝑞𝑞−1,𝑡𝑡 = 𝑞𝑞−̂1 for all 𝑡𝑡, where: 

𝑞𝑞1̂ ≔ 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚�0−
𝜙𝜙𝜋𝜋+𝜃𝜃𝜁𝜁

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝜙𝜙𝜋𝜋⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚�1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚�2
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞0̂ ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �𝑚𝑚�0−
⎝
⎜⎛�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 �𝑚𝑚�1−�1+

𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝑚𝑚�2
⎠
⎟⎞

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 ,  

𝑞𝑞−̂1 ≔ − 𝜙𝜙𝜋𝜋−𝜌𝜌𝜁𝜁

𝜎𝜎𝜁𝜁
2

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 ��𝜌𝜌𝜁𝜁 𝑚𝑚�1−𝑚𝑚�2�

�𝜌𝜌𝜁𝜁 +𝜃𝜃𝜁𝜁 −�1+
𝜃𝜃𝜁𝜁
𝜙𝜙𝜋𝜋

�𝜌𝜌𝜁𝜁 �
2 .  
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Thus, for all 𝑡𝑡, 𝐴𝐴𝑡𝑡 = 𝐴𝐴,̂ 𝐵𝐵𝑡𝑡 = 𝐵̂𝐵, 𝐶𝐶𝑡𝑡 = 𝐶𝐶 ̂and 𝐷𝐷𝑡𝑡 = 𝐷𝐷� , where: 

𝐷𝐷� =
�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂� − �

�𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂�2 ⋯
+4𝜙𝜙𝑥𝑥�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝑞𝑞−̂1 − 𝜅𝜅−1𝛽𝛽𝜚̃𝜚𝜋𝜋�

2�1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�
, 

and: 

𝐴𝐴̂ = ��1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂��𝐷𝐷� + 𝜌𝜌𝜁𝜁 � − �𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂��
−1

, 

𝐵̂𝐵 =
𝜃𝜃𝜁𝜁 �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐴𝐴̂

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
, 

𝐶𝐶̂ =
𝜙𝜙𝑥𝑥

𝜙𝜙𝜋𝜋 + 𝜙𝜙𝑥𝑥𝜅𝜅−1 + 𝜙𝜙𝑥𝑥𝑞𝑞0̂ − �1 + 𝜙𝜙𝑥𝑥𝜅𝜅−1𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋� − 𝜙𝜙𝑥𝑥𝑞𝑞1̂�𝐷𝐷�
. 

So: 

𝜋𝜋𝑡𝑡 = 𝐴𝐴𝜁̂𝜁𝑡𝑡 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−1, 

and: 

𝑥𝑥𝑡𝑡 = 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝜁̂𝜁𝑡𝑡 + �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃𝜁𝜁 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋�𝜋𝜋𝑡𝑡−1� 

= 𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴�̂𝜌𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝜀𝜀𝜁𝜁,𝑡𝑡 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−1�

+ �𝐵̂𝐵 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐴𝐴𝜃̂𝜃𝜁𝜁 + 𝐵̂𝐵𝐷𝐷� ��𝜀𝜀𝜁𝜁,𝑡𝑡 + ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐶𝐶̂ − 𝜅𝜅�𝜀𝜀𝜔𝜔,𝑡𝑡

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁 𝜁𝜁𝑡𝑡−2 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1 + 𝜃𝜃𝜁𝜁 𝜀𝜀𝜁𝜁,𝑡𝑡−2� + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−1

+ 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−1 + 𝐷𝐷� �𝐴𝐴𝜁̂𝜁𝑡𝑡−2 + 𝐵̂𝐵𝜀𝜀𝜁𝜁,𝑡𝑡−2 + 𝐶𝐶𝜀̂𝜀𝜔𝜔,𝑡𝑡−2 + 𝐷𝐷� 𝜋𝜋𝑡𝑡−3���. 

Hence: 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 ��𝐴𝐴̂ + �1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐵̂𝐵�, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴�̂𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴̂ + 𝐵̂𝐵��, 

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2 = 𝜎𝜎𝜁𝜁
2𝜅𝜅−1 ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��𝐷𝐷� + 𝜌𝜌𝜁𝜁 ��𝐴𝐴𝜌̂𝜌𝜁𝜁 �𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 �

+ ��1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝐷𝐷� �𝐷𝐷� − 𝛽𝛽𝜚̃𝜚𝜋𝜋��𝐴𝐴�̂𝜌𝜌𝜁𝜁 + 𝜃𝜃𝜁𝜁 � + 𝐷𝐷� �𝐴𝐴̂ + 𝐵̂𝐵���. 

Now denote by 𝒯𝒯  the map taking the vector: 

𝑚𝑚�: =
⎣
⎢
⎡

𝑚𝑚�0
𝑚𝑚�1
𝑚𝑚�2⎦

⎥
⎤ 
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to the vector: 

𝒯𝒯 (𝑚𝑚�): =
⎣
⎢⎢
⎡

𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−1
𝔼𝔼𝑥𝑥𝑡𝑡𝜀𝜀𝜁𝜁,𝑡𝑡−2⎦

⎥⎥
⎤

. 

Stochastic approximation theory relates the stability of our nonlinear difference 

equation to the stability of the ODE: 
𝑑𝑑𝑚𝑚�(𝜏𝜏)

𝑑𝑑𝜏𝜏 = 𝒯𝒯 �𝑚𝑚�(𝜏𝜏)� − 𝑚𝑚�(𝜏𝜏). 

The 𝒯𝒯  map here plays the role usually played by the mapping from the perceived law 

of motion to the actual law of motion in the reduced form learning literature (Evans & 

Honkapohja 2001). 

We conjecture that: 

𝑚𝑚 ≔
⎣
⎢⎡

𝑚𝑚0
𝑚𝑚1
𝑚𝑚2⎦

⎥⎤ 

is a locally asymptotically stable point of this ODE. To check this, note that tedious 

algebra gives that: 

𝜕𝜕𝒯𝒯 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
=

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋

−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁

−𝛽𝛽𝜚̃𝜚𝜋𝜋 1 − 𝜙𝜙𝜋𝜋
−1𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋�𝜙𝜙𝜋𝜋
−1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�� − 𝜙𝜙𝜋𝜋

−1𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁

0 −𝛽𝛽𝜚̃𝜚𝜋𝜋
𝜙𝜙𝜋𝜋�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌𝜁𝜁 � − 𝛽𝛽𝜚̃𝜚𝜋𝜋

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

For simplicity, we assume 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ≥ 0, 𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and 

𝜙𝜙𝜋𝜋 ≥ �𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��−1. Under these assumptions, the off-diagonal elements of this 

matrix are all non-positive. Other cases may also go through, but for the sake of brevity 

we concentrate on this most relevant case. Given these assumptions, applying the 

Gershgorin circle theorem to the columns of this matrix gives the following upper 

bound on the real part of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
: 

𝜙𝜙𝑥𝑥
𝜅𝜅𝜙𝜙𝜋𝜋

max
⎩�
�⎨
��
⎧ 1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋, 𝜙𝜙𝜋𝜋

−1�𝛽𝛽�̃𝜙𝜙𝜋𝜋 − 𝜚𝜚𝜋𝜋� + 𝜙𝜙𝜋𝜋 − 1�,
�1 − 𝜙𝜙𝜋𝜋

−1��𝜙𝜙𝜋𝜋 − 𝛽𝛽𝜚̃𝜚𝜋𝜋� + 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋��1 + 𝜙𝜙𝜋𝜋�1 − 𝜌𝜌𝜁𝜁 �� − 𝜙𝜙𝜋𝜋
−1

𝜙𝜙𝜋𝜋 − 𝜌𝜌𝜁𝜁 ⎭�
�⎬
��
⎫

. 
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The first and second arguments in curly brackets here are both less than 1 + 𝛽𝛽.̃ Taking 

the derivative of the third argument in curly brackets with respect to 𝜌𝜌𝜁𝜁  produces an 

expression whose sign is not a function of 𝜌𝜌𝜁𝜁 . Thus, the third argument in curly 

brackets is maximized at either 𝜌𝜌𝜁𝜁 = 0 or 𝜌𝜌𝜁𝜁 = 1. In the former case, the argument is 

less or equal to 1 + 𝛽𝛽 ̃providing 𝛽𝛽̃ ≤ 1. In the latter case, the argument is less or equal 

to 1 + 𝛽𝛽 ̃providing that 2�1 − 𝜚𝜚𝜋𝜋� ≤ 𝜙𝜙𝜋𝜋. Therefore, if 𝜙𝜙𝑥𝑥 ≥ 0, 𝜙𝜙𝜋𝜋 ≥ 0, 𝜅𝜅 ≥ 0, 𝛽𝛽̃ ∈ [0,1], 

𝜚𝜚𝜋𝜋 ∈ [0,1), 𝜌𝜌𝜁𝜁 ∈ [0,1) and: 

𝜙𝜙𝜋𝜋 > max
⎩�⎨
�⎧ 1

𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�
, 2�1 − 𝜚𝜚𝜋𝜋�,

𝜙𝜙𝑥𝑥�1 + 𝛽𝛽�̃
𝜅𝜅 ⎭�⎬

�⎫, 

then all of the eigenvalues of 𝜕𝜕𝜕𝜕 (𝑚𝑚�)
𝜕𝜕𝑚𝑚� �

𝑚𝑚�=𝑚𝑚
 are less than one. Consequently, in this case 

the ODE is locally asymptotically stable, so the stochastic approximation results of 

Evans & Honkapohja (2001) apply. In particular, if we suppose that 𝑚𝑚�0, 𝑚𝑚�1 and 𝑚𝑚�2 are 

constrained to remain within a sufficiently small ball around 𝑚𝑚0, 𝑚𝑚1 and 𝑚𝑚2, then the 

central bank’s estimates of the Phillips curve parameters will converge to their true 

values, and the model’s dynamics will converge to the determinate ones under rational 

expectations. 

D.4 Responding to other endogenous variables in a general model 

Now, suppose the central bank uses the rule: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜄𝜄𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 + 𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 

Here, 𝑧𝑧𝑡𝑡 is a vector of other endogenous variables, with 𝑧𝑧𝑡𝑡,1 = 𝑟𝑟𝑡𝑡, 𝜄𝜄 > 0 is a scalar 

governing the strength of response to all of them, and 𝜈𝜈𝑡𝑡 is an arbitrary exogenous 

stochastic process (potentially vector valued). As usual, we assume 𝜙𝜙𝜋𝜋 > 1. 

Without loss of generality, we suppose that the other endogenous variables satisfy the 

general linear expectational difference equation: 

0 = 𝐴𝐴𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1 + 𝐵𝐵𝑧𝑧𝑡𝑡 + 𝐶𝐶𝑧𝑧𝑡𝑡−1 + 𝑑𝑑𝜋𝜋𝑡𝑡 + 𝐸𝐸𝜈𝜈𝑡𝑡, 
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where the coefficient matrices are such that there is a unique matrix 𝐹𝐹 with eigenvalues 

in the unit circle such that 𝐹𝐹 = −(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝐶𝐶.38 This condition on 𝐹𝐹 just states that 

there is no real indeterminacy in the model. Once inflation is determined, so too is 𝑧𝑧𝑡𝑡. 

Having the same shock process entering both the monetary rule and the model’s other 

equations is without loss of generality as it is multiplied by 𝜙𝜙𝜈𝜈
⊤ and 𝐸𝐸 respectively. 

Now define: 

𝐺𝐺 ≔ −𝐴𝐴(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1. 

Let 𝐿𝐿 be the lag operator, then note that: 

�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹) = 𝐴𝐴𝐿𝐿−1 + 𝐵𝐵 + 𝐶𝐶𝐶𝐶. 

Thus, by the model’s real determinacy, all of 𝐺𝐺’s eigenvalues must also be inside the 

unit circle. 

In terms of the lag operator, the model to be solved is then: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡 = −𝜄𝜄𝜙𝜙𝜋𝜋

−1𝜙𝜙𝑧𝑧
⊤𝑧𝑧𝑡𝑡 − 𝜙𝜙𝜋𝜋

−1𝜙𝜙𝜈𝜈
⊤𝜈𝜈𝑡𝑡, 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡 = −𝑑𝑑𝜋𝜋𝑡𝑡 − 𝐸𝐸𝜈𝜈𝑡𝑡. 

Note for future reference that since 𝜙𝜙𝜋𝜋
−1, 𝐺𝐺 and 𝐹𝐹 all have all their eigenvalues in the 

unit circle, �1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�, �𝐼𝐼 − 𝐺𝐺𝐿𝐿−1� and (𝐼𝐼 − 𝐹𝐹𝐹𝐹) are all invertible. 

We conjecture a series solution of the form: 

𝜋𝜋𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝜋𝜋𝑡𝑡

(𝑘𝑘), 𝑧𝑧𝑡𝑡 = � 𝜄𝜄𝑘𝑘
∞

𝑘𝑘=0
𝑧𝑧𝑡𝑡

(𝑘𝑘). 

Matching terms gives that 𝜋𝜋𝑡𝑡
(0) solves: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡

(0) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡, 

implying that 𝜋𝜋𝑡𝑡
(0) is determinate with: 

𝜋𝜋𝑡𝑡
(0) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝜈𝜈

⊤𝜈𝜈𝑡𝑡. 

Similarly, from matching terms in the law of motion for 𝑧𝑧𝑡𝑡, we have that: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡
(0) = −𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡 

 
38 The lack of terms in 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 and 𝜋𝜋𝑡𝑡−1 is without loss of generality, as such responses can be included by adding 

an auxiliary variable 𝑧𝑧𝑡𝑡,𝑗𝑗 with an equation of the form 𝑧𝑧𝑡𝑡,𝑗𝑗 = 𝜋𝜋𝑡𝑡. 
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so 𝑧𝑧𝑡𝑡
(0) is also determinate (by our assumption on 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶) with: 

𝑧𝑧𝑡𝑡
(0) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1�𝑑𝑑𝜋𝜋𝑡𝑡

(0) − 𝐸𝐸𝜈𝜈𝑡𝑡�. 

Note that 𝜋𝜋𝑡𝑡
(0) can be treated as exogenous for solving for 𝑧𝑧𝑡𝑡

(0), as the causation only 

runs one way, from 𝜋𝜋𝑡𝑡
(0) to 𝑧𝑧𝑡𝑡

(0). 

Now suppose that we have established that 𝜋𝜋𝑡𝑡
(𝑘𝑘) and 𝑧𝑧𝑡𝑡

(𝑘𝑘) are determinate for some 𝑘𝑘 ∈

ℕ, with a determined solution not a function of higher order terms. (We have already 

proven the base case of 𝑘𝑘 = 0.) We seek to prove that 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) and 𝑧𝑧𝑡𝑡

(𝑘𝑘+1) are also 

determinate. Matching terms again gives that: 

𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋
−1𝐿𝐿−1�𝜋𝜋𝑡𝑡

(𝑘𝑘+1) = −𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

so 𝜋𝜋𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝜋𝜋𝑡𝑡
(𝑘𝑘+1) = −𝔼𝔼𝑡𝑡�1 − 𝜙𝜙𝜋𝜋

−1𝐿𝐿−1�−1𝜙𝜙𝜋𝜋
−1𝜙𝜙𝑧𝑧

⊤𝑧𝑧𝑡𝑡
(𝑘𝑘), 

where we used the inductive hypothesis that 𝑧𝑧𝑡𝑡
(𝑘𝑘) is already determined, and so it is 

effectively exogenous for the purpose of determining 𝜋𝜋𝑡𝑡
(𝑘𝑘+1). Then from matching 

terms in the law of motion for 𝑧𝑧𝑡𝑡: 

𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�(𝐴𝐴𝐴𝐴 + 𝐵𝐵)(𝐼𝐼 − 𝐹𝐹𝐹𝐹)𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 

so 𝑧𝑧𝑡𝑡
(𝑘𝑘+1) is also determinate, with: 

𝑧𝑧𝑡𝑡
(𝑘𝑘+1) = −(𝐼𝐼 − 𝐹𝐹𝐹𝐹)−1(𝐴𝐴𝐴𝐴 + 𝐵𝐵)−1𝔼𝔼𝑡𝑡�𝐼𝐼 − 𝐺𝐺𝐿𝐿−1�−1𝑑𝑑𝜋𝜋𝑡𝑡

(𝑘𝑘+1), 

much as before. This completes our proof by induction, establishing that there is a 

series solution of the given form. 

The only remaining thing to check is that the series does indeed converge for 

sufficiently small 𝜄𝜄. This follows immediately from the product structure of the 

solution above, which means that the variances of 𝑧𝑧𝑡𝑡
(𝑘𝑘) and 𝜋𝜋𝑡𝑡

(𝑘𝑘) must be 𝑂𝑂�ℎ𝑘𝑘� for some 

ℎ ≥ 1. Hence for sufficiently small 𝜄𝜄, the model is determinate. I.e., given the Taylor 

principle is satisfied, a sufficiently small response to other endogenous variables will 

not break determinacy. 
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D.5 If inflation is identical, other endogenous variables are identical 

Let 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑡̃𝑡 be vectors stacking the endogenous variables other than inflation in the 

economy with our rule and the economy with the alternative rule, respectively. We 

assume without loss of generality that they are all zero in steady state. By linearity, the 

equations other than the monetary rule or monetary policy first order condition must 

have the form: 

0 = 𝒜𝒜𝑥𝑥𝑡𝑡−1 + 𝒶𝒶𝜋𝜋𝑡𝑡−1 + ℬ𝑥𝑥𝑡𝑡 + 𝒷𝒷𝜋𝜋𝑡𝑡 + 𝒞𝒞𝒞𝒞𝑥𝑥𝑡𝑡+1 + 𝒸𝒸𝒸𝒸𝜋𝜋𝑡𝑡+1 + � 𝒹𝒹𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, (10) 

in the economy with our rule, and they must have the form: 

0 = 𝒜𝒜𝑥𝑥𝑡̃𝑡−1 + 𝒶𝒶𝜋̃𝜋𝑡𝑡−1 + ℬ𝑥𝑥𝑡̃𝑡 + 𝒷𝒷𝜋̃𝜋𝑡𝑡 + 𝒞𝒞𝒞𝒞𝑥𝑥𝑡̃𝑡+1 + 𝒸𝒸𝒸𝒸𝜋̃𝜋𝑡𝑡+1 + � 𝒹𝒹𝑛𝑛𝜀𝜀𝑛𝑛,𝑡𝑡

𝑁𝑁

𝑛𝑛=1
, 

in the economy with the alternative rule. (Here, 𝒜𝒜 , ℬ  and 𝒞𝒞  are square matrices, while 

𝒶𝒶 , 𝒷𝒷  and 𝒸𝒸  are scalars, and 𝒹𝒹1, … , 𝒹𝒹𝑁𝑁 are vectors.) Since 𝜋𝜋𝑡𝑡 ≡ 𝜋̃𝜋𝑡𝑡, 𝑥𝑥𝑡𝑡 ≡ 𝑥𝑥𝑡̃𝑡 must solve 

equation (9). It will be the unique solution providing the model has no source of 

indeterminacy other than perhaps monetary policy. For example, in a three equation 

NK model, given that 𝜋𝜋𝑡𝑡 ≡ 𝜋̃𝜋𝑡𝑡, the Phillips curve implies that the output gap must 

agree in the two economies, thus the Euler equation then implies that the interest rate 

must also agree. 

D.6 Solution properties of first welfare example 

Recall, that for 𝑘𝑘 > 1 the solution must satisfy the recurrence relation: 

𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

The characteristic equation of this recurrence relationship has roots: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� ± ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2�
2

− �2𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� ± ��1 + �1 + 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

. 
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The positive root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� + ��1 + �1 + 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� + ��1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
1 + 𝜆𝜆

𝜅𝜅2 − 𝛽𝛽�1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
1 + 𝜆𝜆

𝜅𝜅2 − �1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1 +
1

𝛽𝛽 𝜆𝜆
𝜅𝜅2

> 1. 

The negative root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2�
2

− �2𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 0, 

and: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆

𝜅𝜅2� − ��1 + �1 + 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

<
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + �1 − 𝛽𝛽�2 𝜆𝜆

𝜅𝜅2� �1 + �1 − 𝛽𝛽�2 𝜆𝜆
𝜅𝜅2�

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1. 

Hence, the positive root is greater than 1, while the negative root is in (0,1). Thus for 

𝑘𝑘 ≥ 1: 

𝜃𝜃𝑘𝑘 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2
− �2𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

𝑘𝑘−1

. 



Page 37 of 39 

 

Hence, 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2 are the unique solution of the three linear (in 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2) 

equations: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� − 𝛽𝛽

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃2 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽2 𝜆𝜆
𝜅𝜅2�

2
− �2𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

. 

D.7 Solution under discretion of first welfare example 

Under discretion, we have the standard first order condition: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 𝑥𝑥𝑡𝑡 = 0, 

i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ��𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
= 0, 

so: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 ≥ 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� = 0. 

The latter recurrence relation has the general solution 𝜃𝜃𝑘𝑘 = 𝜃𝜃1�𝜅𝜅2

𝛽𝛽𝛽𝛽 + 1
𝛽𝛽�

𝑘𝑘−1
, which is 

explosive as 𝛽𝛽 < 1. Thus, we must have 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 0. Hence, 𝜃𝜃0 = 𝜆𝜆
𝜆𝜆+𝜅𝜅2. 

D.8 Solution under the timeless perspective of first welfare example 

The timeless perspective (Woodford 1999) leads to the first order condition: 

𝜋𝜋𝑡𝑡 +
𝜆𝜆
𝜅𝜅 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) = 0, 

i.e.: 

𝜅𝜅 � 𝜃𝜃𝑘𝑘𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0
+

𝜆𝜆
𝜅𝜅 ���𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1 − 𝟙𝟙[𝑘𝑘 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=0

− ��𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘 − 𝟙𝟙[𝑘𝑘 − 1 = 0]�𝜔𝜔𝑡𝑡−𝑘𝑘

∞

𝑘𝑘=1
� = 0, 
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so: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

∀𝑘𝑘 > 1, 𝜃𝜃𝑘𝑘 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘 − 𝛽𝛽𝜃𝜃𝑘𝑘+1� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃𝑘𝑘−1 − 𝛽𝛽𝜃𝜃𝑘𝑘� = 0. 

The roots of the characteristic equation corresponding to the latter recurrence relation 

are: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� ± ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

. 

The positive root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� + ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
1 + 𝛽𝛽

2𝛽𝛽 > 1. 

The negative root satisfies: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

>
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 0, 
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and: 

�1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2� − ��1 + 𝜆𝜆
𝜅𝜅2 + 𝛽𝛽 𝜆𝜆

𝜅𝜅2�
2

− 4𝛽𝛽 � 𝜆𝜆
𝜅𝜅2�

2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − �1 + �1 − 𝛽𝛽�2 � 𝜆𝜆

𝜅𝜅2�
2

+ 2�1 + 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

<
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − �1 + �1 − 𝛽𝛽�2 � 𝜆𝜆

𝜅𝜅2�
2

+ 2�1 − 𝛽𝛽� 𝜆𝜆
𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + �1 − 𝛽𝛽� 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

=
2𝛽𝛽 𝜆𝜆

𝜅𝜅2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

= 1. 

Hence, the positive root is greater than 1, while the negative root is in (0,1). Thus for 

𝑘𝑘 ≥ 1: 

𝜃𝜃𝑘𝑘 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2
− 4𝛽𝛽 � 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

𝑘𝑘−1

. 

Hence, 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2 are the unique solution of the three linear (in 𝜃𝜃0, 𝜃𝜃1 and 𝜃𝜃2) 

equations: 

𝜃𝜃0 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃1 +
𝜆𝜆
𝜅𝜅2 �𝜃𝜃1 − 𝛽𝛽𝜃𝜃2� −

𝜆𝜆
𝜅𝜅2 �𝜃𝜃0 − 𝛽𝛽𝜃𝜃1 − 1� = 0, 

𝜃𝜃2 = 𝜃𝜃1

⎣
⎢
⎢
⎢
⎢
⎡�1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2� − ��1 + 𝜆𝜆

𝜅𝜅2 + 𝛽𝛽 𝜆𝜆
𝜅𝜅2�

2
− 4𝛽𝛽 � 𝜆𝜆

𝜅𝜅2�
2

2𝛽𝛽 𝜆𝜆
𝜅𝜅2

⎦
⎥
⎥
⎥
⎥
⎤

. 

 


