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1 Introduction

Multi-sector models with production networks have been widely used to study positive and normative

questions in macroeconomics, especially in static environments. Yet, some of the most pressing

questions about inflation in the wake of recent macroeconomic events, such as supply chain disruptions,

require dynamic predictions. For instance, how long do we expect high inflation to last in response to

supply chain disruptions and monetary policy shocks?

This paper presents a dynamic model where production across several sectors has input-output

linkages, and firms make forward-looking nominal pricing decisions under staggered pricing-setting.

We do not restrict the input-output linkages and allow for heterogeneity in frequencies of price

adjustments and household expenditure shares across sectors and model both aggregate and sector-

specific shocks. In this environment, we provide analytical results and sufficient statistics on how the

dynamics of sectoral and aggregate inflation rates are affected by production networks in response to

aggregate and sectoral shocks, which plays a crucial role in the eventual propagation to aggregate GDP.

We show, both analytically and quantitatively, how the interaction of sticky prices with a dynamic

setting provides new insights into the transmission of shocks in economies with arbitrary input-output

linkages.

On the analytical side, we provide closed-form results on dynamic responses of inflation and

GDP to sectoral and aggregate shocks, where, in particular, we show theoretically how input-output

linkages affect the persistence of macroeconomic variables. First, we show that the equilibrium sectoral

prices are fully characterized by a system of differential equations that involve sectoral price gaps (the

deviation of sectoral prices from their counterfactual flexible price benchmarks). Second, we show that

a Leontief matrix appropriately adjusted for sectoral price adjustments frequencies governs the role of

these sectoral price gaps in influencing inflation dynamics. This characterization leads to our main

theoretical result: the sufficient statistics for the dynamic responses of inflation and GDP to sectoral

and aggregate shocks are the principal square root of this frequency-adjusted Leontief matrix and the

vector of household’s expenditure shares of sectoral goods.

Building on this main theoretical result, we then show several other substantive analytical results

related to the real effects of monetary policy and the spillover effects of shocks that originate in one

sector and how they permeate through the economy over time. First, we provide an analytical result on

monetary non-neutrality in this economy: The cumulative impulse response of GDP to an aggregate

monetary policy shock is fully determined by the principal square root of the frequency-adjusted

Leontief matrix and the vector of household’s expenditure shares of sectoral goods.
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Next, we provide an analytical result on the effects of persistent but transitory sectoral shocks in

this economy. We show that the principle square root of the frequency-adjusted Leontief matrix also

governs the impulse response functions of aggregate inflation and GDP to these shocks once they

have propagated through the inverse Leontief matrix as in static models without nominal rigidities.

Our analytical solutions, therefore, shed light on two separate roles of the Leontief matrix in the

propagation of sectoral shocks: while the inverse Leontief matrix governs the propagation of sectoral

shocks through the network at any given time—as in static models—the frequency-adjusted Leontief

matrix governs their propagation across sectors through time and thus directly affects the persistence

of inflation and GDP responses to these shocks.1 Accordingly, the endogenous transition dynamics of

the production network economy are captured by the frequency-adjusted Leontief matrix.

To study the quantitative importance of production networks in governing the dynamic response

of the U.S. economy to monetary and sectoral supply shocks, we use input-output tables as well as

data on consumption shares and frequencies of price adjustments across different sectors in the U.S.

to construct our sufficient statistics. Comparing our calibrated U.S. economy with a counterfactual

horizontal economy with no input-output linkages, we first show that taking input-output linkages

into account leads to a more persistent aggregate inflation response to the monetary policy shock.

Next, input-output linkages also lead to 3.45 times higher real effects of the monetary policy shock (as

measured by the cumulative impulse response of GDP) than in a counterfactual horizontal economy.

We interpret such larger effects as coming through strategic complementarities in pricing decisions

introduced by production networks, which increase aggregate inflation persistence by slowing down

price adjustment across sectors, leading to more significant real effects.

Next, motivated by recent supply chain disruptions during the pandemic, we simulate the effects of

a negative supply shock in the “computers and electronics industry.” Compared to the effects predicted

purely based on the expenditure share of this industry, in our calibrated U.S. economy, we find that

such a negative sectoral supply shock leads to a much bigger and more persistent increase in aggregate

inflation. In the presence of input-output linkages, a negative TFP shock to this sector propagates

downstream through the network by increasing the input prices of downstream sectors, leading to a

higher aggregate inflation response on impact. More importantly, since the increase in input prices

is endogenously persistent due to price stickiness, an initial rise in the price of this sector slowly

permeates downstream and causes a significantly more persistent aggregate inflation response relative

to the economy with no input-output linkages.

1Thus, in the flexible price version of our model, where there are no endogenous dynamics, or in the steady-state of our
model, consistent with previous studies, the inverse Leontief matrix fully characterizes the effects of sectoral shocks.
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This effect on aggregate inflation is associated with a contraction in aggregate GDP, which is

also quite persistent over time. There is a negative effect on aggregate GDP because, for sectors that

increase their prices without directly facing a negative TFP shock, demand declines and in the aggregate,

value-added production falls. Put another way, with nominal expenditures constant as monetary policy

has not changed; higher inflation leads to lower GDP. Such spillover effects on other sectors mean that

the negative supply shock in this sector propagates as a markup shock in all downstream sectors and

leads to a more significant effect on aggregate inflation together with an aggregate GDP contraction.

To illustrate further how sectoral TFP shocks manifest as markup shocks in the rest of the economy,

we compare our calibrated economy with a horizontal economy with no input-output linkages and show

that the negative effect on aggregate GDP of this sectoral shock is lower compared to our calibrated

economy, as now there is no mechanism that leads to a propagation of the negative sectoral shock as a

markup shock to other sectors. In particular, the cumulative impulse response of GDP to the negative

sectoral shock is 2.73 times larger in our baseline economy. This shows the role played by production

networks in amplifying the negative aggregate GDP effects of negative sectoral shocks by affecting

aggregate inflation dynamics.

Having shown how a negative TFP shock in the computers and electronics sector propagates like a

markup shock above, we then consider a monetary policy response to this sectoral shock. In particular,

we model a case where money supply contracts precisely by the amount necessary to fully stabilize the

inflationary effects of the shock on impact. We find that such a policy is non-trivially contractionary

over time for aggregate GDP as the cumulative impulse response of GDP is 2.43 times lower than the

case where the monetary policy does not respond to this shock.

Related Literature. Our paper is related to several papers in the literature. Carvalho, Lee, and Park

(2021); La’O and Tahbaz-Salehi (2021); Woodford (2021); Rubbo (2020); Pasten, Schoenle, and Weber

(2020) recently introduce input-output linkages in models with heterogeneous degrees of nominal

rigidities across sectors and are closely related to our paper. Our main contribution to this strand

of the literature is to provide an analytical characterization of sectoral inflation dynamics together

with sufficient statistics for the dynamics of inflation and GDP to both aggregate and sectoral shocks.

Moreover, in addition to studying the effects of an aggregate monetary policy shock, we also study

the effects of a sectoral supply shock, which is motivated by recent supply chain issues during the

pandemic. These analytical characterizations then inform our quantitative results, as they show how

the persistence of aggregate inflation gets affected by production networks, which has important

implications for effects on aggregates GDP.

Our results in connecting the effects of input-output linkages to real effects of monetary policy
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shocks are related to the original insight of Basu (1995) in a model of round-about production

technologies. Basu (1995) showed that when the final good produced by all firms in the economy is

also used as input for production, such an input-output linkage increases the real effects of monetary

policy by introducing strategic complementarities in price-setting decisions.2 In more recent work,

La’O and Tahbaz-Salehi (2021) show that this insight extends to economies with arbitrary input-output

linkages in a static framework. We build on these insights and show how the dynamic effects of

strategic complementarities due to arbitrary input-output linkages are summarized by a sufficient

statistic that is the principal square root of a frequency-adjusted Leontief matrix.

In deriving sufficient statistics for real effects of monetary policy shocks in sticky-price models

with strategic complementarities, our paper connects to recent work by Wang and Werning (2021) and

Alvarez, Lippi, and Souganidis (2022).3 Our main contribution to this strand of the literature is that

we consider a multi-sector New Keynesian model with input-output linkages. Our environment is,

however, simpler on other dimensions: it does not model oligopolistic behavior within a sector (as in

Wang and Werning, 2021) or feature menu costs (as in Alvarez, Lippi, and Souganidis, 2022). Our

sufficient statistic, which is the principal square root of the frequency-adjusted Leontief matrix, is in

close correspondence to, and complements, the ones in Wang and Werning (2021); Alvarez, Lippi,

and Souganidis (2022), as they all share an underlying transmission mechanism based on strategic

complementarities in pricing decisions.

Finally, there is by now a rich literature in static settings that considers various formulations

of exogenous production networks in macroeconomic models. For example, Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2012), Baqaee and Farhi (2020), and Bigio and La’O (2020) are important

contributions and Carvalho (2014); Carvalho and Tahbaz-Salehi (2019) are comprehensive surveys of

the literature. These papers study how sectoral shocks propagate to the aggregate economy to cause

business cycles and how (if at all) they affect aggregate total factor productivity or the labor wedge.4

Our sectoral shock results are related to these ideas, but we focus on how they affect the dynamics of

aggregate inflation and, thereby, the response of GDP in an economy with nominal pricing frictions.

Yet other papers, such as Taschereau-Dumouchel (2020), consider endogenous production networks

2Woodford (2003) contains a comprehensive discussion of various sources of strategic complementarities in New
Keynesian models, such as round-about production networks, segmented labor markets, and non-CES demand that lead to
variable markups, which can all contribute to higher real effects of monetary policy shocks.

3Our analytical results are also related to previous work by Alvarez, Le Bihan, and Lippi (2016); Baley and Blanco
(2021) who do not explicitly model strategic complementarities but provide analytical results in settings with idiosyncratic
shocks and menu costs.

4See, also, Guerrieri, Lorenzoni, Straub, and Werning (2020) which focuses on the plausibility and spillover effects of
Keynesian supply shocks.

4



and study phenomena such as cascades. We use exogenous production networks, thereby using a

simpler setting, but we study a dynamic model with sticky prices.5

Outline. The paper is organized as follows. Section 2 presents the general framework and the

environment of our model. Section 3 includes our main theoretical results and derives sufficient

statistics for the responses of sectoral and aggregate prices and aggregate GDP. Section 5 constructs

our sufficient statistics using U.S. data and presents quantitative results on inflation and GDP responses

to monetary and sectoral TFP shocks. Section 6 concludes.

2 Model

2.1 Environment

Time is continuous and is indexed by t ∈ R+. The economy consists of a representative household,

monetary and fiscal authorities and n industries indexed by i ∈ [n] ≡ {1, . . . , n} with input-output

linkages. Each industry i ∈ [n] consists of a continuum of monopolistically competitive producers, and

a competitive final good producer with a CES production function.6

Household. The representative household demands the final goods produced by each industry, supplies

labor in a competitive market, and holds money as well as nominal bonds with nominal yield it.

Household’s instantaneous preferences over aggregate consumption C, and labor supply L is given by

U(C)− V (L), where U and V are both strictly increasing, U is strictly concave, V is strictly convex,

and they both satisfy Inada conditions. Formally, given initial bond and money holdings {B0− ,M0−},

the household solves

max
{(Ci,t)i∈[n],Lt,Bt,Mt}t≥0

∫ ∞
0

e−ρt [U(Ct)− V (Lt)] dt (1)

subject to
∑
i∈[n]

Pi,tCi,t + Ḃt + Ṁt ≤WtLt + itBt + Profitst + Tt (2)

Ct ≡ Φ(C1,t, . . . , Cn,t) (3)∑
i∈[n]

Pi,tCi,t ≤Mt (4)

Here, Ct is an aggregate consumption index that is a function of the household’s consumption bundle

from all industries (Ci,t)i∈[n] and is defined by the aggregator function Φ(.) that is homogenous of

5A recent application of production networks in a real model with dynamics is Liu and Tsyvinski (2021), which derives
analytical results for the dynamics of the real variables in a model with adjustment costs on inputs. We instead consider an
economy with nominal rigidities but no adjustment cost. The model environments are therefore inherently different.

6Assuming the existence of this final good producer in each industry, which has no value-added to the economy,
is convenient as it allows the industry to produce a unified good that is purchased by other industries. See La’O and
Tahbaz-Salehi (2021) for a similar assumption.
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degree one, and increasing in each of its arguments. Moreover, Lt is the household’s labor supply at

wage Wt, Pi,t is the price of the final good of sector i, Profitst is the aggregate profits of all monopolistic

firms in the economy rebated to the household and Tt is a lump-sum transfer, possibly zero, used by the

government to finance taxes or subsidies on firms. Finally, similar to La’O and Tahbaz-Salehi (2021),

we model demand for money with a cash-in-advance constraint in Equation (4) where the velocity

of money per unit of time is constant and normalized to 1. This approach significantly simplifies the

aggregate dynamics in the model.7

Monetary and Fiscal Policy. We assume that the monetary authority controls the supply of money

over time, (M s
t )t≥0, where we will later model a monetary shock as an unexpected one-time increase in

M s
t , which is a common approach utilized in the literature (e.g., Golosov and Lucas, 2007; Alvarez,

Le Bihan, and Lippi, 2016; Wang and Werning, 2021).

Finally, we allow for the fiscal authority to tax (subsidize) intermediate firms’ sales in every sector

i at a deterministic but possibly time-varying rate τi,t. These wedges can be used to alleviate aggregate

and relative distortions from market power and sticky prices or be set to zero. We assume these taxes

or subsidies are lump-sum transferred to the household at every instant and nominal bonds are at zero

net supply. We will then model a wedge shock to sector i as an unexpected one-time change in the

taxes of that sector.

Final Good Producers. Every industry i has a competitive final good producer that buys from a

continuum of intermediate firms, indexed by ij, j ∈ [0, 1] in the sector and produces a final sectoral

good using a CES production function with an elasticity of substitution σi > 1. Formally, this producer’s

problem, at any given point in time, is

max
(Y dij,t)j∈[0,1]

Pi,tYi,t −
∫ 1

0
Pij,tY

d
ij,tdj subject to Yi,t =

[∫ 1

0
(Y d
ij,t)

1−σ−1i dj

] 1

1−σ−1
i (5)

where Y d
ij,t is the final good producer’s demand for variety ij, Yi,t is its total production of the final

good, Pi,t is the price of i’s final good—which is taken as given by the producer—and Pij,t is the variety

ij’s price at time t. It follows that the final producer’s demand for variety ij is:

Y d
ij,t = D(Pij,t/Pi,t;Yi,t) ≡ Yi,t

(
Pij,t
Pi,t

)−σi
where Pi,t =

[∫ 1

0
P

1−σi
ij,t dj

] 1
1−σi

(6)

Since the final good producer is a price-taker that produces with a constant returns to scale production

function, it has zero value added to the economy and its existence is merely a point of convenience

for aggregation: it allows industries to have a unified good, which is then the input to all intermediate
7An alternative approach that would yield a similar money demand function is use money in the utility function. See,

e.g., Wang and Werning (2021); Alvarez, Lippi, and Souganidis (2022).
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firms in other industries that use i’s output for production.

Intermediate Goods Producers. Every industry i has a unit measure of intermediate goods producers,

indexed by ij, j ∈ [0, 1] that supply to their industry’s final good producer and use labor and other final

goods as inputs. More precisely, an intermediate good producer ij’s production function is given by

Y s
ij,t = Zi,tFi(Lij,t, Xij,1,t, . . . , Xij,n,t) (7)

where Zi,t is a Hicks-neutral sector-specific productivity level that is deterministic but possibly changes

over time, with a TFP shock to sector i at t modeled as a one-time unexpected change in the level of

Zi,t. Moreover, Lij,t is the firm’s labor demand from the competitive labor market and Xij,k,t is the

firm’s demand for the final good of sector k. In addition, the function Fi : Rn → R is homogenous of

degree one and satisfies proper Inada conditions so that demand for all inputs are strictly positive at all

prices. Thus, the firm’s total cost for producing output Y , given the vector of aggregate wage Wt and

all sectoral prices, Pt ≡ (Wt, Pi,t)i∈[n], is:

Ci(Y ; Pt, Zi,t) ≡ min
(Lij,t,Xij,k,t)k∈[n]

WtLij,t +
∑
k∈[n]

Pk,tXij,k,t

subject to Zi,tFi(Lij,t, Xij,1,t, . . . , Xij,n,t) ≥ Y (8)

Intermediate goods producers are monopolistically competitive and set their prices under a Calvo-

type sticky prices friction, where the opportunities for changing prices are i.i.d. across all firms and

arrive according to Poisson processes with intensity θi > 0. Given the cost function Ci(Y s
ij,t; Pt, Zi,t)

in Equation (8) and its demand Y d
ij,t from the final goods producer in Equation (6), a firm ij that has

received the opportunity to change its price at time t chooses its reset price, which we denote by P#
ij,t,

to maximize the expected net present value of its profits until the next price change taking into account

that they will have to meet the implied demand at each point in time in between the two price changes:8

P#
ij,t ≡ arg max

Pij,t

∫ ∞
0

θie
−(θih+

∫ h
0 it+sds)

[
(1− τi,t)Pij,tD(Pij,t/Pi,t+h;Yi,t+h)− Ci(Y s

ij,t+h; Pt+h, Zi,t+h)
]

dh

subject to Y s
ij,t+h ≥ D(Pij,t/Pi,t+h;Yi,t+h), ∀h ≥ 0 (9)

where θie−θih is the density of time until next price change (captured here by h), e−
∫ h
0 it+hds is the

discount rate based on nominal rates for profits at time t+h, and τi,t is the tax rate on intermediate firms’

sales in sector i at t. Note that the only source of dynamic considerations for the firms is stickiness

in prices. Were prices flexible, maximizing the net present value of profits for the firms would be

equivalent to maximizing the static profits within every instant t. Let us define the firm’s desired price,
8This is the common New Keynesian assumption that while prices are fixed, firms produce enough to meet demand.

See Woodford (2003) or Galí (2015) for discussions of this assumption.
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denoted by P ∗ij,t, as the price that the firm would choose under such flexible prices. Then, P ∗ij,t solves:

P ∗ij,t ≡ arg max
Pij,t

(1− τi,t)Pij,tD(Pij,t/Pi,t;Yi,t)− Ci(Y s
ij,t; Pt, Zi,t) (10)

subject to Y s
ij,t ≥ D(Pij,t/Pi,t;Yi,t)

2.2 Equilibrium Definition

Having specified the actions and objectives of all the agents, we now formally define the equilibrium

of this economy given the allocation of goods and the set of prices.

Definition 1. A sticky price equilibrium for this economy is

(a) an allocation for the household, Ah = {(Ci,t)i∈[n], Ct, Lt, Bt,Mt}t≥0 ∪ {B0− ,M0−},

(b) an allocation for all firms Af = {(Yi,t, Y d
ij,t, Y

s
ij,t, Lij,t, Xij,k,t)i∈[n],j∈[0,1]}t≥0,

(c) a set of monetary and fiscal policies Ag = {(M s
t , Tt, τ1,t, . . . , τn,t)t≥0},

(d) and a set of prices P = {(Pi,t, Pij,t)i∈[n],j∈[0,1],Wt, Pt, it}t≥0 ∪ {(Pij,0−)i∈[n],j∈[0,1]}

such that

1. given P and Ag, Ah solves the household’s problem in Equation (1),

2. given P and Ag, Af solves the final goods producers problems in Equation (5), intermediate

goods producers’ cost minimization in Equation (8) and their pricing problem in Equation (9),

3. labor, money, bonds and final sectoral goods markets clear and government budget constraint is

satisfied:

Mt = M s
t , Bt = 0, Lt =

∑
i∈[n]

∫ 1

0
Lij,tdj,

∑
i∈[n]

∫ 1

0
(1− τi,t)Pij,tYij,tdj = Tt ∀t ≥ 0 (11)

Yk,t = Ck,t +
∑
i∈[n]

∫ 1

0
Xij,k,tdj ∀k ∈ [n], ∀t ≥ 0 (12)

Furthermore, to understand how the stickiness of prices will affect and distort the equilibrium

allocations, we will make comparisons between the equilibrium defined above and its flexible-price

analog, formally defined below.

Definition 2. A flexible price equilibrium is an equilibrium defined similar to Definition 1 with the

only difference that intermediate goods producers’ prices solve the flexible price problems specified in

Equation (10) instead of the sticky price problem in Equation (9).

Finally, since we have defined our economy without any aggregate or sectoral shocks, we will pay

specific attention to stationary equilibria, which we define below.

Definition 3. A stationary equilibrium for this economy is an equilibrium as in Definition 1 or

Definition 2 with the additional requirement that all the allocative variables in the household’s allocation
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in Ah and the sectoral production of final good producers (Yi,t)i∈[n] as well as the distributions of the

allocative variables for intermediate good producers in Ai are constant over time.9

3 Theoretical Results

This section presents our main theoretical results and derives our sufficient statistics for inflation and

GDP dynamics for small perturbations around a stationary efficient equilibrium.

3.1 Log-Linearized Approximation of Optimality Conditions

We start by deriving log-linear approximations to optimality conditions of the model presented in

Section 2. These optimality conditions are discussed in Appendix B. We derive these log-linear

approximations around a stationary equilibrium that is efficient—i.e., all exogenous variables are

constant over time and taxes are set to fully offset firms’ market power. Moreover, following Golosov

and Lucas (2007), we assume that household’s preferences are such that U(C) = log(C) and V (L) = L,

which simplify our analytical representations significantly. Finally, notation-wise, small letters in this

section correspond to logs of their corresponding variables in capitalized letters in Section 2.

Firms. For any given sector i, three price indices summarize the behavior of sectoral prices: a desired

price, p∗i,t, which is the firms’ optimal price were prices flexible; a reset price, p#
i,t, which is the optimal

price of price-setting firms at t under price stickiness; and an aggregate sectoral price, pi,t, which is the

average price of all the firms in sector i at time t.

Let us start with desired prices, which depend on the marginal cost of firms in sector i, mci,t, and

on a wedge, ωi,t, which can denote deviations in markups or taxes. With input-output linkages and

labor as the only production factor, mci,t depends on the aggregate wage, wt, the aggregate sectoral

prices, and a Hicks-neutral productivity measure, zi,t. Formally, with all prices denoted in logs:

p∗i,t ≡ ωi,t +mci,t, mci,t ≡ αiwt +
∑

k∈[n] aikpk,t − zi,t, ωi,t ≡ log( σi
σi−1 ×

1
1−τi,t

) (13)

where αi > 0, aik ≥ 0, ∀k and αi +
∑

k∈[n] aik = 1, denoting constant returns to scale in production, and

Ω ∈ Rn×n where [Ω]ik = aik (14)

corresponds to the cost-based input-output matrix under firms’ optimal expenditure shares under the

stationary efficient allocation.

Given desired prices, firms’ optimal reset price in sector i is an average of all the future desired

9Note that the production and input demands of individual intermediate goods producers do not need to be time-invariant
in the stationary equilibrium, but their distributions do.
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prices, weighted by the probability density of the time between price changes.

p#
i,t = (ρ+ θi)

∫ ∞
0

e−(ρ+θi)hp∗i,t+hdh (15)

where θi is the frequency of price changs in sector i and ρ > 0 corresponds to the steady-state interest

rate (the representative household’s discount rate). Finally, given sector i’s initial aggregate price pi,t is

an average of the past reset prices and initial price p0− (left limit of prices at t = 0), weighted by the

density of time between price changes:

pi,t = θi

∫ t

0
e−θihp#

i,t−hdh+ e−θitpi,0− (16)

Aggregate Price and GDP. The household’s compensated demand for sectoral goods defines the

aggregate price index, pt, as an average of sectoral prices, weighted by the household’s expenditure

shares:

pt =
∑

i∈[n] βipi,t, with
∑

i∈[n] βi = 1 (17)

where β = (βi)i∈[n] ∈ Rn denotes expenditure shares from sectoral goods in the point of approximation

(stationary efficient allocation) that sum up to one. Given the preferences in Golosov and Lucas (2007),

household’s total expenditures clear the money market at a given path of money supply, (ms
t )t≥0, and

labor supply is fully elastic so that GDP, yt, is equal to the real wage:

yt = wt − pt (fully elastic labor supply) ms
t = pt + yt (money supply = demand) (18)

Equilibrium. Given our log-linear approximation, it is worth to reiterate our definition of the equilib-

rium in the previous section in this context.

Definition 4. Given a path for the primitives, (ωt, zt,m
s
t )t≥0, a sticky price equilibrium for the log-

linearized economy is a path for GDP, wage and prices, ϑ ≡ {yt, wt, pt, (p∗i,t, p
#
i,t, pi,t)i∈[n]}t≥0, such

that given a vector of initial sectoral prices, p0− = (pi,0−)i∈[n], ϑ solves the optimality conditions in

Equations (13) and (15) to (18). Finally, an equilibrium is stationary if the real GDP and relative

sectoral prices are constant over time.

Flexible Prices and the Flexible Price Level of GDP. Consider a counterfactual economy where

prices are flexible so that all sectoral prices are equal to desired prices in Equation (13). Letting

pft ∈ Rn denote such prices, we have:

pft = wtα+ Ωpft + ωt − zt ⇒ pft = ms
t1 + Ψ(ωt − zt) (19)

10



where α ≡ (αi)i∈[n] ∈ Rn, 1 is the vector of ones in Rn, and Ψ ≡ (I −Ω)−1 is the infamous inverse

Leontief matrix.10 We can then define the flexible price GDP, yft , as the level of output that prevails in

this counterfactual economy. Using Equations (18) and (19), we arrive at:

yft = ms
t − βᵀpft = λᵀzt︸︷︷︸

aggregate TFP

− λᵀωt︸ ︷︷ ︸
labor wedge

, λ ≡ Ψᵀβ (20)

where the vector λ is known as the Domar weights under the efficient allocation—i.e., the ratio of total

sales of all sector relative to the household’s total nominal expenditures.11 Therefore, Equation (20)

shows that aggregate GDP in the natural economy is affected by two terms. The first term is the

aggregate TFP which follows from Hulten (1978)’ theorem: up to a first-order approximation around

the efficient allocation, log-changes in the aggregate TFP is equal to Domar-weighted log-changes

in the sectoral productivities. The second term is the wedge in labor supply caused by distortions

around the efficient allocation (Bigio and La’O, 2020): to first order approximation this term is the

Domar-weighted wedges across sectors. It is important to note that the labor supply wedge only shows

up in presence of elastic labor supply and would not effect the GDP were the labor supply inelastic.

3.2 Evolution of Prices and Sufficient Statistics with Sticky Prices

Given a vector of initial prices, p0− , let pt ≡ (pi,t)i∈[n], p#
t ≡ (p#

i,t)i∈[n] and p∗t ≡ (p∗i,t)i∈[n] denote the

vectors of sectoral aggregate, reset and desired prices, respectively. Then, an immediate implication of

Equation (13) is that we can write desired prices in the following vector form:

p∗t = (I−Ω)1wt + Ωpt + ωt − zt (21)

This equation hints at La’O and Tahbaz-Salehi (2021)’s insight as it shows how the input-output matrix

Ω plays the role of a matrix of strategic complementarities across the economy for the vector of sectoral

prices.

Similarly, we can write reset and aggregate sectoral prices in Equations (15) and (16) in vector

form. It follows that these prices uniquely solve the following systems of differential equation:

~π#
t ≡ dp

#
t /dt = (ρI + Θ)(p#

t − p∗t ), with boundary condition lim
t→∞

e−(ρI+Θ)tp#
t = 0, (22)

~πt ≡ dpt/dt = Θ(p#
t − pt), with boundary condition p0 = p0− (23)

10The inverse Leontief matrix exists because the spectral radius of Ω is strictly less than one by the assumption that
0 < αi ≤ 1,∀i (see the discussion below Remark 1 for more details). Also, in deriving Equation (19) we have utilized the
fact that α = (I−Ω)1.

11Under inefficient allocations, Domar weights can be defined either based on costs or sales of industries, each of which
represent different roles in aggregation (Baqaee and Farhi, 2020). Under the efficient allocation, however, the two are the
same as all firms make zero profits with constant returns to scale and no distortions.
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where Θ = diag(θi) ∈ Rn is the diagonal matrix whose i’th diagonal entry is the frequency of price

adjustments in sector i, and the boundary conditions on the right hand side are chosen so that the

solution of the differential equations coincides with Equations (15) and (16).12 With one further step,

we can combine these two equations to a differential equation just in terms of pt.

Proposition 1. Given p0− , sectoral prices evolve according to the following sectoral Phillips curves:

d
dt~πt = ρ~πt −Θ(ρI + Θ)(I−Ω)(pft − pt) (24)

Equation (24) corresponds to the economy’s sectoral Phillips curves because it relates the sectoral

inflation rates to the deviations of these prices from their flexible counterparts, which move one to

one with sectoral consumption gaps.13 This observation gives a unique interpretation to the matrix

Θ(ρI + Θ)(I−Ω), which we summarize in the following remark.

Remark 1. The matrix Γ ≡ Θ(ρI + Θ)(I−Ω) ∈ Rn×n, denoted as the frequency-adjusted Leontief

matrix is the slope of sectoral Phillips curves in matrix form, which is uniquely determined by the

Leontief matrix, I−Ω, adjusted by a quadratic form of price adjustment frequencies, Θ(ρI + Θ).

Intuitively, dynamics of prices in a production network should depend on how fast prices adjust

to shocks in each sector (here captured by Θ) and how shocks propagate through the input-output

linkages (captured by the Leontief matrix). Proposition 1 and Remark 1 formalize this intuition and

show that the exact form through which these two mechanisms interact is summarized by a particular

combination that is captured by Γ, which rescales every row of the Leontief matrix by the squared

frequency of price changes in the corresponding sector.

Due to its direct correspondence to the slopes of sectoral Phillips curves, the frequency-adjusted

Leontief matrix, and as we will see, its principal square root, are intimately connected to dynamics of

output and inflation and plays a fundamental role in our analysis. To briefly discuss the existence and

properties of these matrices it is useful to note that under the assumption that Ω is positive and has row

sums strictly less than one, I−Ω is a nonsingular M -matrix—which implies that the inverse Leontief

matrix, defined as Ψ ≡ (I−Ω)−1, exists, has positive entries, and all of its eigenvalues have positive

real parts (see, e.g., Carvalho and Tahbaz-Salehi, 2019, p. 639). It is straightforward to show that Γ is

12Throughout this draft, we frequently use exponential function of square matrices, defined by its corresponding power
series: ∀A ∈ Rn×n, eA ≡

∑∞
k=0 Ak/k!, which is well-defined because these power series are always convergent.

13To see this, let ct and cft denote the log-consumption vectors from sectoral goods in the flexible and sticky price
economies, respectively. Then, given that in both economies, nominal demand of the household is equal to the money
supply by Equation (18), up to a first-order approximation around the efficient allocation, we have:

ms
t1 = Epft + cft − log(β) = Ept + ct − log(β) ⇒ pft − pt = E−1(ct − cft ) (25)

where E is the demand cross-elasticity matrix for sectoral goods in the stationary efficient allocation.
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also a nonsingular M -matrix.14 Moreover, what is perhaps less commonly known but is crucial to our

analysis is that every nonsingular M-matrix has exactly one M-matrix as its square root (Alefeld and

Schneider, 1982, Theorem 5), which is also its principal square root. Formally, we have the following

lemma.

Lemma 1. Let
√

Γ denote the principal square root of the frequency-adjusted Leontief matrix. Then,
√

Γ is an M-matrix. In particular, all the eigenvalues of
√

Γ have positive real parts.

A second observation about Equation (24) is that it is a system of second-order differential equations

in pt that with its two boundary conditions—p0 = p0− and non-explosive prices—uniquely pins down

the path of sectoral prices as a function of the flexible price path (pft )t≥0. This leads to the following

remark.

Remark 2. All primitives (ωt, zt,m
s
t )t≥0 affect dynamics of prices only through flexible prices, (pft )t≥0.

The observation in Remark 2 demonstrates the power of expressing inflation dynamics in terms of

sectoral price gaps relative to a counterfactual equilibrium with flexible prices because it implies that

solving for the dynamics of prices for a given path of pft is equivalent to having characterized impulse

response functions of all the prices in the economy to all three types of TFP, markup, and monetary

shocks in a unified framework. For an arbitrary path of flexible prices, the following Proposition

characterizes these dynamics and shows that
√

Γ is a sufficient statistic for how the vector of sectoral

prices evolve over time.

Proposition 2. Suppose pft is piece-wise continuous and is bounded,15 and let ρ = 0.16 Then, given

pft and a vector of initial prices p0− ,
√

Γ is a sufficient statistic for dynamics of prices and the unique

non-explosive solution to Equation (24) is given by:17

pt = e−
√

Γtp0− +
√

Γe−
√

Γt

∫ t

0
sinh(

√
Γh)pfhdh︸ ︷︷ ︸

inertial effect of past prices due to stickiness

+
√

Γ sinh(
√

Γt)

∫ ∞
t

e−
√

Γhpfhdh︸ ︷︷ ︸
forward looking effect of future prices

(26)

14By Theorem 2.3 in (Berman and Plemmons, 1994, p. 134, conditionN38), Γ is anM -matrix if it is inverse-positive; i.e.,
Γ−1 exists and Γ−1 ≥ 0 elementwise. Since Θ(ρI + Θ) is invertible because θi > 0,∀i, and I−Ω is also invertible with
(I−Ω)−1 =

∑∞
n=0 Ωn, Γ−1 exists and is the infinite sum of positive matrices: Γ−1 =

∑∞
n=0 Ωn(ρI + Θ)−1Θ−1 ≥ 0.

15In deterministic environments like ours, piece-wise continuity guarantees that the pft is Riemann integrable and is
without significant loss of generality our unexpected shocks will introduce only a finite number of jumps in flexible prices.
In stochastic environments this assumption would need to be adapted for stochastic integrals. Moreover, the boundedness
assumption is also without loss of generality because we assume zero trend inflation and this assumption guarantees
existence of the Laplace transform which we use in the proof of this proposition. With trend inflation, boundedness should
be replaced with pft being of an exponential order.

16The assumption of ρ = 0 is not necessary for analytical tractability but simplifies the analytical representation of the
solution significantly. Moreover, given the small value of this parameter in a model that is calibrated to the long-run interest
rates at a monthly frequency (ρ = 0.96(1/12) ≈ 0.001), it is without a significant loss of generality.

17The hyperbolic sine of a square matrix A is defined as sinh(A) ≡ (eA − e−A)/2.
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While Proposition 2 characterizes the dynamics of prices for any piece-wise continuous and

bounded path of pft , we are particularly interested in characterizing impulse response functions

of prices, inflation and GDP to monetary, TFP and markup (wedge) shocks. We would like our

characterization to be general enough to capture two sets of properties. First, we would like to capture

both permanent changes (for monetary policy shocks) and persistent but transitory changes (for TFP or

markups shocks) in flexible prices. Second, we want the path for pft to be general enough to allow for

heterogeneous shocks across sectors so that we can capture both sectoral and aggregate shocks.

To this end, let us consider an economy in its steady-state at t = 0− (left limit at t = 0) meaning

that prices are at their flexible level: p0− = pf
0− = ms

0−1 + Ψ(ω0− − z0−). For this economy, consider

the following paths for money supply, productivities and wedges:

ms
t = m0− + δm, ∀t ≥ 0, ωt − zt = ω0− − z0− +

n∑
i=1

e−φitδiz, ∀t ≥ 0 (27)

where δm ∈ R captures a permanent change in money supply—with a positive δm denoting an

expansionary monetary shock. Moreover, letting ei denote the i’th vector of the standard basis in Rn,

each δiz ≡ δizei ∈ Rn is a vector that captures a TFP/wedge shock of size δiz to sector i that decays

at the rate φi > 0—with positive δiz denoting a negative TFP or a positive wedge shock to sector i.

Combining these paths, and plugging them into Equation (19), we arrive at the following expression

for the dynamics of flexible prices:

pft = pf
0− + δm1 + Ψ

n∑
i=1

e−φitδiz (28)

Note that this formulation for pft satisfies all the conditions stated above: while δm captures

monetary shocks, different combinations of {δiz, φi}i ∈ [n] capture arbitrarily persistent shocks to either

aggregate or sectoral TFP/wedges. The following Proposition derives the dynamics of sectoral prices

for this path.

Proposition 3. Suppose pft follows the dynamics specified in Equation (28). Let ρ = 0 and assume

all the eigenvalues of
√

Γ are distinct from the decay rates of sectoral shocks, {φi}i∈[n].18 Then, given

the shock parameters, {δm, δiz, φi}i∈[n], the impulse response functions of all sectoral prices, pt, to

18This is not a very restrictive assumption but allows for a tremendous amount of tractability in our analysis by ruling
out issues that arise from repeated eigenvalues. To see why this assumption is not very restrictive, we can think of Γ, which
we will measure in the data, as being drawn from a distribution that is absolutely continuous with respect to the Lebesgue
measure—i.e., it has a density with respect to this measure (by Radon-Nikodym Theorem). Then the eigenvalues of Γ are
almost surely different from any finite set of values, including {φi}i∈[n].
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monetary and sectoral TFP/wedge shocks are uniquely determined by the principal square root
√

Γ as:

pt = pf
0− + (I− e−

√
Γt)1δm︸ ︷︷ ︸

response to monetary shock

+

n∑
i=1

(e−φitI− e−
√

Γ t)(I− φ2
iΓ
−1)−1Ψδiz︸ ︷︷ ︸

response to TFP/wedge shock in sector i

(29)

Having shown how sectoral prices evolve when aggregate and sectoral shocks hit the economy, we

now present the solution in the following Collorary for aggregate GDP and inflation, which are a focus

of the paper as they illustrate the key aggregate implications.

Corollary 1. GDP and aggregate inflation dynamics are given by

yt = yf
0− + βᵀe−

√
Γt1δm︸ ︷︷ ︸

response to monetary shock

−
n∑
i=1

βᵀ(e−φitI− e−
√

Γ t)(I− φ2
iΓ
−1)−1Ψδiz︸ ︷︷ ︸

response to TFP/wedge shock in sector i

(30)

πt = βᵀ(
√

Γe−
√

Γt)1δm︸ ︷︷ ︸
response to monetary shock

+

n∑
i=1

βᵀ(
√

Γe−
√

Γ t − φie−φitI)(I− φ2
iΓ
−1)−1Ψδiz︸ ︷︷ ︸

response to TFP/wedge shock in sector i

(31)

Next, as a summary statistic for GDP effects, we present in the Corollary below the solution for

the cumulative impulse response (CIR) of GDP. This is the main object of interest in the literature on

sufficient statistics for non-neutrality of monetary policy shocks. Here, we provide such a result for

both monetary policy shock as well as sectoral TFP shocks.

Corollary 2. The cumulative impulse response (CIR) of GDP is given by

CIRy(δm, δz) ≡
∫ ∞

0
(yt − yf0−)dt = βᵀ

√
Γ
−1

1δm︸ ︷︷ ︸
response to monetary shock

−
n∑
i=1

φ−1
i β

ᵀ
(
I + φi

√
Γ
−1
)−1

Ψδiz︸ ︷︷ ︸
response to TFP/wedge shock in sector i

(32)

Finally, to compare our results with the production networks literature in static settings, as well

as for a reference point, we present in the Corollary below the solution for the cumulative impulse

response (CIR) of GDP in a counterfactual case of fully flexible prices. In such an environment, there

are no internal dynamics in the model and the CIR of GDP is given by the Domar weights, as in the

literature. We note that the Domar weights depend on the inverse Leontief matrix, while our model

solutions above in the case of sticky prices depend on the Leontief matrix (appropriately adjusted for

frequency of price adjustment) for transition dynamics.

Corollary 3. The cumulative impulse response (CIR) of GDP in the flexible price economy to a set of

sectoral TFP shocks is the Domar weighted cumulative TFP response in all sectors:

CIRf
y(δz) ≡

∫ ∞
0

(yft − y
f
0−)dt = − λᵀ

︸︷︷︸
Domar weights

×
n∑
i=1

δiz
φi︸ ︷︷ ︸

cumulative TFP response

(33)

To see how Equation (33) follows from Equation (32), note that the CIR of flexible price GDP
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is the limit of CIR of GDP in the sticky price economy when θi → ∞, ∀i ∈ [n]—i.e., frequencies of

price adjustments are arbitrarily large. In this case,
√

Γ
−1 → 0 (as Γ−1 = (I−Ω)−1Θ−2) and the term

(I + φi
√

Γ
−1

)−1 → I. Given that, Equation (33) then follows from the fact that βᵀΨ = λᵀ.

4 Special Cases from the Literature

To unpack our general results in the previous section, we start with revisiting some of the well-known

examples from the previous literature. For monetary shocks, we pay particular attention to Basu

(1995)’s roundabout production economy with homogenous price-stickiness as well as Carvalho

(2006)’s multisector (horizontal) economy with heterogenous price-stickiness across sectors but no

input-output linkages. In addition to monetary shocks, we also derive analytical solutions for impulse

response functions of inflation and GDP to TFP shocks in these economies to further illustrate the role

of the frequency-adjusted Leontief matrix in the propagation of sectoral shocks within these economies.

4.1 The One Sector Roundabout Economy

We start with a one sector economy whose frequency of price change is θ, and production network has

a roundabout structure as in Basu (1995) and as depicted in Figure 1.

Sufficient Statistics. Since there is only one sector in this economy, the input-output matrix is a scalar

between zero and one, which we denote by γ. Therefore, the principal square root of the frequency-

adjusted Leontief matrix is also a scalar and is given by
√

Γ = θ
√

1− γ. Finally, the expenditure share

vector is also a singleton and is given by β = 1, implied by the homotheticity of preferences.

Figure 1: One Sector Roundabout Economy

L 1 H

γ

1− γ β = 1

Notes: The figure draws a one sector roundabout production network. The node L represents labor as the only factor of
production and 1− γ represents the expenditure share of labor in the production of the only producing sector in the efficient
steady-state. Accordingly, γ is the expenditure share of firms of the final good produced by the sector as in Basu (1995).
Finally, the node H represent the household who consumes the final good produced by firms.

Monetary Shocks. Applying Corollary 1 to the one sector roundabout economy, we obtain the impulse

responses of output and inflation to an expansionary monetary shock of size δm is given by

yt − yf0− = δme
−θ
√

1−γ t, πt = δmθe
−θ
√

1−γ t (34)
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These two expressions show how the frequency and the network structure interact with one another

in shaping the impulse responses of inflation and output to monetary shocks. First, as expected, both

output and inflation responses are less persistent when frequency of price changes θ is larger. The

more frequently firms change their prices, the faster the economy adjusts to the monetary shock and

the lower is monetary non-neutrality, which vanishes to zero as prices become perfectly flexible with

θ →∞. This is more concisely captured by the cumulative impulse response of output, which using

Corollary 2 is

CIRy(δm) =
δm

θ
√

1− γ
(35)

The second observation is that the use of the final good as an input for production amplifies

monetary non-neutrality by inducing strategic complementarities through γ, which was Basu (1995)’s

insight.19 When γ is lager, the final good is a more integral part of production for firms in this economy,

but since the price of this input is the average price across all firms, its adjustment is endogenous and

slower than the price for labor input. Our analytical results applied to this economy in Equations (34)

and (35) shows exactly how γ leads to such amplification. In particular, output and inflation responses

become infinitely persistent as γ → 1.

Our analytical results in this special case also connect our framework to those in Wang and

Werning (2021); Alvarez, Lippi, and Souganidis (2022), which study oligopolistic firms and menu cost

environments with strategic complementarities, respectively, and derive similar expressions in special

cases of their economies with monopolistic competition and Calvo pricing. Our framework is more

general in the particular dimension that we consider economies with arbitrary input-output linkages

but is simpler in other dimensions as we do not consider oligopolies or menu costs.

TFP/Wedge Shocks. Let us now consider transitory but persistent shocks to TFP or wedges. Formally,

as in Equation (27), consider the following path for ωt − zt:

ωt − zt = ω0− − z0− + e−φtδz (36)

where, here, both φ and δz are scalars rather than matrices and vectors because the economy considered

here has only one sector. Thus, a positive δz represents a negative TFP or a positive wedge shock that

decays back to its initial value at the rate φ > 0. Moreover, since this economy has one sector, the

shock to this sector also represents an aggregate shock to this economy.

Now, applying Corollary 1, we arrive at the following impulse response functions of GDP to a

19To see formally that γ is the degree of strategic complementarity in this economy, it suffices to apply Equation (21) to
this example to arrive at p∗t = (1 − γ)wt + γpt + ωt − zt. Thus, γ is the weight that firms put on the average price of
other firms in their ideal prices, which is the definition of strategic complementarity(see, e.g., Woodford, 2003).
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negative TFP/positive wedge shock, δz:

yt = yf
0− −

θ2

θ2(1− γ)− φ2
(e−φt − e−θ

√
1−γ t)δz (37)

with the cumulative impulse response of GDP given by

CIRy(δz) = − θ
√

1− γ
θ
√

1− γ + φ︸ ︷︷ ︸
effect of sticky prices

× 1

1− γ
δz
φ︸ ︷︷ ︸

flex. price response

(38)

Unlike monetary shocks which were assumed to be permanent, our assumed TFP/wedge shocks

are transitory, which is why this impulse response function is more involved and features an extra

exponential term, e−φt, that captures the dynamics of the shock itself. However, aside from the e−φt

term, we still see that the dynamics of GDP is governed by the frequency adjusted Leontief term, which

is a scalar here given by θ
√

1− γ.

4.2 Monetary Shocks in Multi-Sector Economies with Heterogeneous Frequencies

Carvalho (2006) was the first paper that argued heterogeneity in price stickiness amplifies monetary

non-neutrality. His argument, in particular, did not rely on input-output linkages and only leveraged a

multisector economy where different sectors had different frequencies of price changes.

Carvalho (2006)’s model is nested in our framework when Ω = 0 (no input-output linkages) and

Θ ≡ diag(θi)i∈[n] is a diagonal matrix in Rn×n where n is the number of sectors in the economy, as

depicted in Figure 2. Thus, the principal square root of the frequency-adjusted Leontief matrix in this

economy is Θ itself.20 Now, applying Corollary 1, we obtain the IRFs of output and inflation to an

expansionary monetary shock of size δm as

Figure 2: Horizontal Production Networks

L

1 2 3 n

H

1

. . .

β1

β2 β3

βn

Notes: The figure draws the structure of a horizontal production network. The node L represents labor as the only factor of
production for all sectors in an economy with no input-output linkages. The node H represents the household as the final
consumer and the number on every arriving edge represents the expenditure share of household from the corresponding
sector in the efficient steady-state.

20
√

Γ =
√

Θ2(I−Ω) = Θ
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yt − yf0− = δm

n∑
i=1

βie
−θit (39)

πt = δm

n∑
i=1

βiθie
−θit (40)

In particular, one can reproduce Carvalho (2006)’s amplification result by applying Jensen’s inequality

to Equation (39):

Remark 3 (Carvalho 2006). Let θ̄ ≡
∑n

i=1 βiθi denote the expenditure weighted average frequency of

price changes in a multisector economy with no input-output linkages. Then, for any t ≥ 0, output IRF

is larger in the multisector economy relative to a one sector economy with this average frequency of

price change:

δm

n∑
i=1

βie
−θit ≥ δme−θ̄t (41)

where the inequality is strict if there are at least two sectors with distinct frequencies of price changes.

5 Quantitative results

We now present quantitative results on dynamic responses of inflation and GDP to aggregate and

sectoral shocks, using U.S. data to construct our sufficient statistics. We then do counterfactual

experiments to show the role of various model ingredients that affect the propagation of shocks.

Sufficient Statistics Construction From Data. Proposition 3 shows that the sufficient statistics for

inflation and output dynamics in response to shocks in our model are the frequency-adjusted Leontief

matrix, as given by Γ ≡ Θ2(I−Ω), and the vector of consumption expenditure shares across sectors,

as given by β. Here, we briefly describe how we construct Γ and β using detailed sectoral U.S. data.

Further details are in the Appendix C.

First, we use the input-output (IO) tables from the BEA to construct the input-output linkages

across sectors, given by the matrix Ω; the consumption expenditure shares across sectors, given by

the vector β; and the sectoral labor shares, given by the vector α. We construct these objects using

the IO tables from 2019 at the summary-level disaggregation, excluding the government sectors. This

leads to 66 sectors in our sample. In particular, to construct Ω, we use both the “make” and “use”

IO tables. The use IO table also provides data on the compensation of employees, which we use to

construct the sectoral labor shares α. Moreover, we also construct the consumption expenditure shares

across sectors, β, using the use IO table, where the consumption share for a given sector is given by

the personal consumption expenditure on that sector over total personal consumption expenditure.
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Next, we construct the diagonal matrix Θ2, whose diagonal elements are the squared frequency of

price adjustment in each sector, using data on 341 sectors from Pasten, Schoenle, and Weber (2020).

We match data from Pasten, Schoenle, and Weber (2020) on the frequency of price changes with the

2002 concordance table between the IO industry codes and the NAICS codes. Then, we match the

resulting table with the 2012 concordance table between the IO industry codes and the NAICS codes.

The last step is needed to link the frequency of price adjustment at the detail level disaggregation,

which is a finer disaggregation, and the summary level disaggregation, which is what we use in the

paper.21 The consumption share weighted average frequency of price changes across sectors is 0.185

(0.204), before (after) our continuous-time transformation.22

Dynamic Responses to a Monetary Policy Shock. For our calibrated economy, in Figure 3, we show

impulse responses of aggregate inflation and GDP to an expansionary monetary policy shock. The

shock size is chosen such that it leads to a 1 percent increase in inflation on impact.

After increasing by 1 percent on impact, inflation slowly goes back to steady-state, as endogenous

state variables evolve over time and input-output linkages and differential price stickiness across sectors

slow down the inflation adjustment. More importantly, there are substantial real effects on GDP of this

shock, as seen by the large initial effect on GDP of around 10 percent. Critically, these effects on GDP

are persistent and decay slowly, and the cumulated impulse response of GDP is about 130 percent.

To put these magnitudes in context, as well as to illustrate the roles of model ingredients that lead

to such substantial real effects, we now do various counterfactual experiments. In these counterfactuals,

we keep the initial impact on inflation the same at 1 percent.23 In Figure 4, we compare our calibrated

baseline economy to a counterfactual horizontal economy. This counterfactual economy thus does not

feature any input-output linkages and labor is the only input in production. The cumulated impulse

response of GDP is 3.45 times larger in our baseline economy, which shows the role played by produc-

tion networks in amplifying the real effects of monetary policy shocks. Strategic complementarity in

price setting that arises through input-output linkages, as we pointed out while discussing the analytical

results, is the driving force for this result.

In addition to input-output linkages, another source that amplifies the real effects of monetary policy

in our model is heterogenous price stickiness across sectors, as pointed out by Carvalho (2006) in a

21Here, we linked the frequency of price adjustment data with the 2002 concordance table first because Pasten, Schoenle,
and Weber (2020) used the IO tables for 2002.

22In our continuous time model, the monthly frequency of price adjustment in the data corresponds to one minus the
probability that the Poisson variable does not arrive within one month. Thus, let fpa be the frequency of price adjustment in
Pasten, Schoenle, and Weber (2020). Then, the Poisson arrival rate of price change opportunities is θ = − log(1− fpa).

23The monetary policy shock size is therefore different across the baseline and the counterfactual cases. The cumulated
impulse response of aggregate inflation corresponds to the monetary policy shock size in our model.
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New Keynesian model without production networks. To investigate the role of this channel, in Figure 5,

we compare our calibrated baseline economy to a counterfactual economy that has homogenous price

stickiness across sectors. We calibrate the common frequency of price changes in this economy to

be the same as the weighted average of the frequency of price changes across sectors in our baseline

economy.24 This economy therefore, still features input-output linkages, and through that, strategic

complementarity in price setting. The cumulated impulse response of GDP is 1.862 times larger in

our baseline economy, which shows that heterogeneity in price stickiness across sectors does play a

quantitatively important role in magnifying monetary non-neutrality. The importance of this channel

however, is not as high as that of input-output linkages that arise through our modelling of production

networks.

Finally, shutting down both channels, in Figure 6, we compare our calibrated baseline economy to

a counterfactual horizontal economy that also has homogenous price stickiness across sectors. This

economy can be considered a textbook multisector New Keynesian model. The results show that

compared to this economy, the cumulated impulse response of GDP is 5.179 times larger in our baseline

economy.25

Dynamic Responses to a Sectoral Supply Shock. Motivated by supply chain issues during the

ongoing pandemic, we now consider implications of a negative supply (TFP) shock in the computers

and electronics sector. For our calibrated economy, in Figure 7 we show impulse responses of aggregate

inflation, aggregate GDP, and sectoral inflation to a negative TFP shock in the computers and electronics

sector. The shock size is chosen such that it leads to a 1 percent increase in inflation on impact in that

sector, as shown in Figure 7. The average duration of the sectoral shock is 6 months in this experiment.

Given that the consumption expenditure share of this sector is 0.00663, in a basic model with

no input-output linkages, we would expect the impact effect on aggregate inflation to be 0.00663.

Moreover, in such an economy, we would expect the aggregate inflationary impact to last for about 7

months, the same duration for which there is inflationary effect on sectoral inflation.26 Instead, what

we see in Figure 7 is that the initial impact effect is almost double that and the inflationary impact lasts

longer, for 10 months.27 The reason aggregate inflation increases by more and more persistently is that

24As we mentioned above in the data description, the weighted average frequency of price adjustment is 0.2048.
25Note that even in this textbook type multisector New Keynesian model, inflation effects are persistent because our

modelling of monetary policy introduces an endogenous state variable in the model. This is a standard approach in the
literature on sufficient statistics of monetary policy shocks, but is a different approach than assuming a Taylor rule where
the interest rate feedback coefficient is on inflation.

26The frequency of price adjustment in this sector is 0.0928, which is lower than the weighted average frequency of price
adjustment across sectors of 0.2048.

27Inflation eventually goes negative, but that is by construction, as in our model, in response to transitory shocks, the
cumulated impulse response of aggregate inflation is zero.
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input-output linkages mean that sectors that are not directly hit by the negative supply shock see an

increase in prices for their inputs that is provided by the computer and electronics sector. Moreover,

this then has a ripple effect on input prices throughout the economy. This effect induces many sectors

to increase prices for their goods, leading to higher sectoral inflation, and which shows up in higher

aggregate inflation.

Associated with this effect on aggregate inflation is a contraction in aggregate GDP, which is quite

persistent over time. The cumulated impulse response of GDP is -1.169 percentage, as shown in

Figure 7. In this sense, the negative sectoral supply shock acts like an aggregate markup shock, leading

to an aggregate inflationary effect that goes together with a contraction in aggregate GDP. The reason

there is a negative effect on aggregate GDP is that for sectors that increase prices without having

directly faced a negative TFP shock, demand for their goods declines and sectoral consumption falls

(denoted as sectoral GDP in the figures).28 Then in the aggregate, value-added production also declines.

Put another way, with money supply constant, higher aggregate inflation leads to lower GDP.

To further show clearly these input-output mechanisms that lead to such spillover effects on sectoral

inflation and GDP, Figure 8, we show how the impact effect on sectoral inflation and CIR of sectoral

consumption correlate with the input share of the computers and electronics sector in various sectors

in the economy.29 As is clear, the higher the input share of the computers and electronics sector, the

higher the sectoral inflation and more negative the CIR of sectoral consumption.

Moreover, to show that the increased duration of aggregate inflationary effects and the aggregate

contraction are not a numerical artifact, in Figure 9, we show impulse responses when the average

duration of the sectoral shock is 12 months. As is clear, now as well, while inflationary effects in the

sector last for 11 months, inflationary effects on the aggregate are longer, for 15 months. Moreover, the

cumulative impulse response of GDP is now proportionately bigger, at -2.513 percent.

Next, like with the aggregate monetary policy shock, to put magnitudes in context and to illustrate

the roles of model ingredients that lead to the magnified aggregate inflationary effect, we now do a

counterfactual experiment. In this experiment, we keep the initial impact on sectoral inflation the same,

at 1 percent, and consider a counterfactual horizontal economy. In Figure 10, we compare our calibrated

baseline economy to this counterfactual horizontal economy. In this horizontal economy, aggregate

inflation increases by less on impact and it is also less persistent. That is, as can be seen, aggregate

28While our characterization of sectoral prices along with aggregate GDP and prices do not depend on the cross-
elasticities of demand across sectors (due to Shephard’s lemma), response of sectoral consumptions depend on these
cross-elasticities of demand. Thus, to derive an expression for how sectoral consumption responds to shocks, one needs to
specify these elasticities. In deriving sectoral consumption responses, for now, we have assumed that the aggregator Φ(.) is
of Cobb-Douglas form so that the cross-elasticity matrix is the identity matrix.

29To focus on the spillover effects, we exclude the computers and electronics sector itself from this Figure.
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inflation just simply follows the path of sectoral inflation of this sector. The reason is that without

input-output linkages, sectoral inflation dynamics become de-coupled across sectors. Moreover, note

how sectoral inflation dynamics are indistinguishable between the two economies, and yet aggregate

inflation dynamics are quite different between them.30

As a result, the negative effect on aggregate GDP is lower in the horizontal economy, as now there

is no mechanism that leads to a propagation of the negative sectoral shock as an aggregate markup

shock. In particular, as Figure 10 shows, the cumulated impulse response of GDP to the negative

sectoral shock is 2.73 times larger in our baseline economy, which shows the role played by production

networks in amplifying the aggregate GDP effects of negative sectoral shocks by affecting aggregate

inflation dynamics.

Effects of Monetary Policy Response to a Negative Sectoral Supply Shock. Having shown how a

negative TFP shock in the computers and electronics sector propagates like an aggregate markup shock

above, we now consider a monetary policy response. In particular, we consider a case where money

supply contracts exactly by the amount necessary to stabilize aggregate inflation fully on impact. This

policy experiment is motivated by ongoing policy discussions on how and if monetary policy should

respond to ongoing inflation pressures that are evident in the aggregate data. Figure 11 shows that such

a policy response would be non-trivially contractionary for aggregate GDP. In particular, the cumulated

impulse response of GDP is roughly 2 times higher than the case in Figure 7 where monetary policy

does not respond in this manner to this shock.

6 Conclusion

We provide sufficient statistics for inflation and GDP dynamics in multisector dynamic New Keynesian

economies with input-output linkages. We show that the sufficient statistic for these dynamic responses

is the principal square root of the Leontief matrix appropriately adjusted for the sectoral frequencies

of price adjustments.

We construct this sufficient statistic using data from input-output tables and frequencies of price

adjustments across sectors in the U.S. In quantitative experiments on this calibrated economy, we

find a significant role for production networks in the propagation of aggregate monetary and sectoral

TFP shocks. First, monetary shocks lead to effects on GDP that are thrice as large, relative to a

baseline multisector economy with a horizontal production network. Second, in response to a negative

30The sectoral inflation dynamics could be different in theory, depending on the input-output linkages, but for this sector,
the input-output linkages clearly have a second-order effect in practice in this numerical example. Moreover, sectoral
consumption responses are also extremely close between the counterfactual horizontal and baseline economies.
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supply shock in the “computers and electronics industry,” input-output linkages lead to a much bigger

and more persistent increase in aggregate inflation than the increase predicted purely based on the

expenditure share of this industry. It also leads to a greater aggregate output contraction compared to a

horizontal economy. Negative supply shock in this sector thus manifests itself as an aggregate markup

shock as it leads to aggregate inflation together with an aggregate GDP contraction.

In future work, we plan to extend our framework and analysis in several directions. For instance,

it will be interesting to study welfare and optimal policy implications in our model. We also plan

to extend the model to capture another important source of dynamics, through endogenous capital

accumulation, to further develop the framework for business cycle analysis.
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7 Figures

Figure 3: Impulse response functions to a monetary policy shock
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. The calibration of the model is at a monthly frequency. CIR denotes the
cumulative impulse response.
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Figure 4: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. It compares our baseline economy that has production networks with an economy
that has a horizonal production structure where only labor is used as an input for production. The calibration of the model
is at a monthly frequency. CIR denotes the cumulative impulse response.

27



Figure 5: Impulse response functions to a monetary policy shock in two economies
IRF for Inflation
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. It compares our baseline economy that has heterogeneous price stickiness
across sectors with an economy that has homogeneous price stickiness across sectors. The homogeneous price adjustment
frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors. The calibration of the
model is at a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 6: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. It compares our baseline economy that has production networks and
heterogeneous price stickiness across sectors with an economy that has both a horizonal production structure where only
labor is used as an input for production as well as homogeneous price stickiness across sectors. The homogeneous price
adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors. The
calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 7: Impulse response functions to a sectoral TFP shock
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Notes: This figure plots the impulse response functions for aggregate inflation, GDP, and sectoral inflation to a negative
sectoral TFP shock that generates a one percentage increase in sectoral inflation on impact. The sectoral shock is in the
“computers and electronics industry” and the average duration of the shock is six months. The calibration of the model is at
a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 8: Relationship between input share and response of inflation and GDP of other sectors
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Notes: This figure plots how the impact response of inflation and CIR of GDP of other sectors depend on the input share
of the “computers and electronics industry” in those sectors. The shock considered is a negative sectoral TFP shock in
the “computers and electronics industry” that generates a one percentage increase in that sector’s inflation on impact. The
calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 9: Impulse response functions to a sectoral TFP shock
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Notes: This figure plots the impulse response functions for aggregate inflation, GDP, and sectoral inflation to a negative
sectoral TFP shock that generates a one percentage increase in sectoral inflation on impact. The sectoral shock is in the
“computers and electronics industry” and the average duration of the shock is twelve months. The calibration of the model
is at a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 10: Impulse response functions to a sectoral TFP shock in two economies
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Notes: This figure plots the impulse response functions for aggregate inflation, GDP, and sectoral inflation to a negative
sectoral TFP shock that generates a one percentage increase in sectoral inflation on impact. The sectoral shock is in the
“computers and electronics industry” and the average duration of the shock is six months. It compares our baseline economy
that has production networks with an economy that has a horizonal production structure where only labor is used as an
input for production. The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response.
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Figure 11: Impulse response functions to a sectoral TFP shock together with a monetary policy
response to offset inflation
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Notes: This figure plots the impulse response functions for aggregate inflation and GDP to a joint shock: a negative
sectoral TFP shock that generates a one percentage increase in sectoral inflation on impact together with a monetary policy
that responds with a contractionary shock to fully offset the aggregate inflation on impact. The sectoral shock is in the
“computers and electronics industry” and the average duration of the shock is six months. The calibration of the model is at
a monthly frequency. CIR denotes the cumulative impulse response.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Differentiating Equation (23) with respect to time and substituting Equation (22) we arrive at

d

dt
~πt =

d2

dt2
pt = Θ(~π#

t − ~πt) = Θ(ρI + Θ)(p#
t − p∗t )−Θ~πt

= Θ(ρI + Θ)(pt − p∗t ) + Θ(ρI + Θ)(p#
t − pt)−Θ~πt︸ ︷︷ ︸

=ρ~πt by Equation (23)

(A.1)

Now using the definition of p∗t from Equation (13) observe that:

pt − p∗t = pt − ωt + zt −ms
tα+ Ωpt = −(I−Ω)(ms

t1 + Ψ(ωt − zt)︸ ︷︷ ︸
=p

f
t by Equation (19)

−pt) (A.2)

Combining Equations (A.1) and (A.2) gives us the desired result.

A.2 Proof of Lemma 1

Since Γ is a nonsignular M -matrix, it satisfies the assumptions of Theorem 5 in Alefeld and Schneider
(1982) which states that Γ has a unique square root matrix that is also an M -matrix. Let us denote this
square root by

√
Γ. Since the real parts of all the eigenvalues of a M-matrix are non-negative,

√
Γ is

also the principal square root of Γ.

A.3 Proof of Proposition 2

For ρ = 0, the differential equation in Equation (24) is

d

dt
~πt =

d2

dt2
pt = Γ(pt − pft ) (A.3)

Since pft is piece-wise continuous and bounded, it has a Laplace transform for any s ≥ 0. Let
Pf (s) = Ls(pft ) ≡

∫∞
0 e−stpft dt denote the Laplace transform of pft . Similarly, let P(s) = Ls(pt)

denote the Laplace transform of pt. Then, applying the Laplace transform to the differential equation
above, we have:

P(s) = (s2I− Γ)−1(sp0+ + ~π0+)− (s2I− Γ)−1ΓPf (s) (A.4)

Thus,

pt =
√

Γ
−1

sinh(
√

Γt)~π0+ + cosh(
√

Γt)p0+ − L−1
t

[
(s2I− Γ)−1ΓPf (s)

]
(A.5)

where c0 and c1 are vectors in Rn and are appropriate linear transformations of p0+ and ~π0+ . Moreover,
the last terms is the inverse Laplace transform of the product of (s2I − Γ)−1Γ and Pf (s). Since the
inverse Laplace transform of a product is the convolution of inverse Laplace of individual functions,
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we have:

L−1
t

[
(s2I− Γ)−1ΓPf (s)

]
=

∫ t

0
L−1
t−h
[
(s2I− Γ)−1Γ

]
pfhdh

=
√

Γ

∫ t

0
sinh(

√
Γ(t− h))pfhdh (A.6)

Combining Equations (A.5) and (A.6) and using the definitions of sinh(.) and cosh(.) we arrive at

pt =
1

2
e
√

Γt

[√
Γ
−1
~π0+ + p0+ −

√
Γ

∫ t

0
e−
√

Γhpfhdh

]
− 1

2
e−
√

Γt

[√
Γ
−1
~π0+ − p0+ −

√
Γ

∫ t

0
e
√

Γhpfhdh

]
(A.7)

Now, in terms of boundary conditions pt satisfies the following two: (1) it is continuous at t = 0, since
the probability of price change opportunities arriving at a short interval around any point is arbitrarily
small—i.e., p0+ = p0− because no firm changes their price exactly at t = 0 as it is a measure zero
event, (2) we are looking for the solution in which prices are non-explosive; in fact bounded because
pft is bounded. So the term multiplying e

√
Γt has to be zero as t→∞ and we have:

√
Γ
−1
~π0+ + p0− =

√
Γ

∫ ∞
0

e−
√

Γhpfhdh (A.8)

Plugging these boundary conditions into the solution we have:

pt = e−
√

Γtp0− +

√
Γ

2
e
√

Γt

∫ ∞
t

e−
√

Γhpfhdh−
√

Γ

2
e−
√

Γt

∫ ∞
0

e−
√

Γhpfhdh+

√
Γ

2
e−
√

Γt

∫ t

0
e
√

Γhpfhdh

= e−
√

Γtp0− +
√

Γe−
√

Γt

∫ t

0
sinh(

√
Γh)pfhdh+

√
Γ sinh(

√
Γt)

∫ ∞
t

e−
√

Γhpfhdh (A.9)

A.4 Proof of Proposition 3

This can be derived from Proposition 2 by solving explicitly for the integrals in Equation (26) but it is
more convenient to guess a particular solution for the differential equation in Equation (24) for the
particular path of flexible prices specified in Equation (28): with ρ = 0, a path of non-explosive prices,
pt, is uniquely characterized by

d
dt~πt = d2

dt2
pt = −Γ(p0− + δm1 + Ψe−Φtδz − pt) with p0 = pf

0− (A.10)

Noting that this is a system of non-homogenous differential equations, the general solution to this
system can be written as pt = ppt + pgt , where ppt is a particular solution to the non-homogenous system
of differential equations above and pgt is the general solution to the homogenous system, d2

dt2
pgt = Γpgt .

To obtain the solution we start with the guess that a candidate for the particular solution is

ppt = pf
0− + δm1 + Ae−Φtδz (A.11)

for some A ∈ Rn×n. Plugging this into Equation (A.10) we obtain (ΓA−AΦ2−ΓΨ)e−Φtδz = 0. Since
we want this equation to hold for any t ≥ 0 and any δz, and noting that ΓΨ = Θ2(I−Ω)(I−Ω)−1 = Θ2,
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it follows that our guess is verified when A is the solution to the Sylvester equation

ΓA−AΦ2 = Θ2 (A.12)

which is unique because we assumed that Γ and Φ2 do not have any common eigenvalues (see, e.g.,
Horn and Johnson, 2012, Theorem 2.4.4.1). As for the general solution, pgt , one can solve this
differential equation by the method of undetermined coefficients for second-order matrix differential
equations (see Apostol, 1975). In particular, one can easily confirm that such a solution has the form:

pgt =

∞∑
k=0

Γkt2k

(2k)!
c0 +

∞∑
k=0

Γkt2k+1

(2k + 1)!
c1 (A.13)

whose domain of convergence in t includes our time domain [0,∞) and c0, c1 are constant vectors in
Rn. Now, letting

√
Γ denote the principal square root of Γ, which exists and is a non-singular M -matrix

by Lemma 1, we can write the equation above as

pgt =

∞∑
k=0

(
√

Γt)k

k!︸ ︷︷ ︸
=e
√

Γt

(
c0 +

√
Γ
−1

c1

2︸ ︷︷ ︸
≡c̃0

) +

∞∑
k=0

(−
√

Γt)k

k!︸ ︷︷ ︸
=e−

√
Γt

(
c0 −

√
Γ
−1

c1

2︸ ︷︷ ︸
≡c̃1

) (A.14)

Thus, the general solution to the non-homogenous system is given by

pt = ppt + pgt = pf
0− + δm1 + Ae−Φtδz + e

√
Γtc̃0 + e−

√
Γtc̃1 (A.15)

Now, to determine the constant vectors c̃0, c̃1, we have the two sets of boundary conditions. (1)
p0 = pf

0− (notice with positive and finite frequencies of price changes, no firm gets an opportunity
to change their prices at instant zero so the left and right limits are the same). (2) With zero trend
inflation (which is the assumption here), prices converge to a steady-state level as t → ∞—i.e., the
price function is non-explosive over time. The second set of boundary conditions immediately imply
c̃0 = 0 because all of the eigenvalues of Γ have strictly positive real parts by Lemma 1. The first set of
boundary conditions imply: c̃0 = −δm1−Aδz. Thus,

pt = pf
0− + δm(I− e−

√
Γt)1 + Ae−Φtδz − e−

√
ΓtAδz (A.16)

A.5 Proof of Corollary 1

By Equation (18):

yt = ms
t − pt = ms

0− + δm − βᵀpt

= ms
0− − β

ᵀpf
0−︸ ︷︷ ︸

≡yf (steady-state output)

+δmβ
ᵀe−
√

Γt1− βᵀAe−Φtδz + βᵀe−
√

ΓtAδz (A.17)
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For inflation, we start by differentiating Equation (29) with respect to time to get the impulse response
function of sectoral inflation rates:

~πt = δm(
√

Γe−
√

Γt)1 + (
√

Γe−
√

ΓtA−Ae−ΦtΦ)δz (A.18)

Now, since πt = βᵀ~πt, multiplying the equation above by βᵀ from left gives us the desired result.

B Derivations of Optimality Conditions in the Model

We now turn to charachterizing the flexible- and sticky-price stationary equilibrium of this economy.

B.1 Households’ Optimality Conditions

Demand for Sectoral Goods. We can decompose the household’s consumption problem into two
stages, where for a given level of Ct the household minimizes her expenditure on sectoral goods
(compensated demand) and then decides on the optimal level of Ct as a function of life-time income
(uncompensated demand). The compensated demand of the household for sectoral goods given the
vector of sectoral prices Pt = (P1,t, . . . , Pn,t) gives us the expenditure function:

E(Ct; Pt) ≡ min
C1,t,...,Cn,t

∑
i∈[n]

Pi,tCi,t subject to Φ(C1,t, . . . , Cn,t) ≥ Ct

= PtCt, Pt ≡ E(1,Pt) (B.1)

where the second line follows from the first degree homogeneity of the function Φ(.) and Pt is the cost
of a unit of Ct and, or in short, the price of Ct. Note that due to first degree homogeneity of Φ(.), Pt
does not depend on household’s choices and is just a function of the sectoral prices, Pt. Applying
Shephard’s lemma, we obtain that the household’s expenditure share of sectoral good i is proportional
to the elasticity of the expenditure fuction with respect to the price of i:

Pi,tC
∗
i,t = βi(Pt)× PtCt where βi(Pt) ≡

∂ log(E(Ct,Pt))

∂ log(Pi,t)
(B.2)

It is important to note that due to the first degree homogeneity of the expenditure function these
elasticities are independent of aggregate consumption Ct and only depend on sectoral prices, Pt.
Moreover, it is easy to verify that they are also a homongeous of degree zero in these prices so that the
vector of household’s expenditure shares, denoted by βt ∈ Rn, can be written as a function of sectoral
prices relative to wage:

βt = β(Pt/Wt) (B.3)

Notably, a vector of constant expenditure shares corresponds to Φ(.) being a Cobb-Douglas aggregator
where sectoral goods are neither complements nor substitutes.

Household’s Other Decisions. Given the household’s expenditure function and the aggregate price
index Pt in Equation (B.1), it is straightforward to derive the labor supply and Euler equations for
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bonds:

γ(Ct)
Ċt
Ct︸ ︷︷ ︸

marginal loss from saving

= it − ρ−
Ṗt
Pt︸ ︷︷ ︸

marginal gain from saving

where γ(Ct) ≡ −
U ′′(Ct)Ct
U ′(Ct)︸ ︷︷ ︸

inverse elasticity of intertemporal substitution

(B.4)

V ′(Lt)

U ′(Ct)︸ ︷︷ ︸
MRSLC

=
Wt

Pt︸︷︷︸
real wage

⇒ ψ(Lt)
L̇t
Lt

+ γ(Ct)
Ċt
Ct

=
Ẇt

Wt
− Ṗt
Pt

where ψ(Lt) ≡
V ′′(Lt)Lt
V ′(Lt)︸ ︷︷ ︸

inverse Frisch elasticity of labor supply

(B.5)

Moreover, as long as the interest rate it > 0, which we will confirm is the case in the stationary
equilibria as well as in small enough neighborhoods around them, the cash-in-advance constraint binds.
Combined with the money supply rule, this implies that nominal demand grows at the same rate as
money supply:

Ṗt
Pt

+
Ċt
Ct

=
Ṁt

Mt
= µ (B.6)

Note that by combining Equations (B.4) to (B.6) we can write the growth rate of wages as well as the
nominal interest rates as a function of consumption and labor supply growths:

Ẇt

Wt
= µ+ ψ(Lt)

L̇t
Lt

+ (γ(Ct)− 1)
Ċt
Ct
, it = ρ+ µ+ (γ(Ct)− 1)

Ċt
Ct

(B.7)

As shown and utilized by Golosov and Lucas (2007) and more recenty by Wang and Werning (2021),
a convenient set of preferences that simplify these conditions tremendously are U(Ct) = log(Ct) and
V (Lt) = Lt which imply γ(Ct) = 1 and ψ(Lt) = 0. Plugging these elasticities into Equation (B.7), we
can see how these preferences simplifiy aggregate dynamics by setting wage growth to the constant
rate of µ and interest rates to a constant rate at ρ+ µ.

B.2 Firms’ Optimality Conditions

Cost Minimization and the Input-Output Matrices. We start by characterizing firms’ expenditure
shares on inputs by first solving their expenditure minimization problems. Since expenditure minimiza-
tion is a static decision within every period, our characterization of these expenditure shares closely
follow Bigio and La’O (2020); Baqaee and Farhi (2020), and we refer the reader to these papers for
more detailed treatments.

Let us start with the observation that the firms’ cost function in Equation (8), given the wage Wt

and sectoral prices Pt = (Pi,t)i∈[n], is homogenous of degree one in production:

Ci(Y s
ij,t;Wt,Pt) = min

Ljk,t,(Xij,k,t)k∈[n]
WtLij,t +

∑
k∈[n]

Pk,tXij,k,t subject to ZiFi(Lij,t, (Xij,k,t)k∈[n]) ≥ Y s
ij,t

= MCi(Wt,Pt)× Y s
ij,t, MCi(Wt,Pt) ≡ Ci(1;Wt,Pt) (B.8)

where the second line follows from the first degree homogeneity of the production function ZiFi(.)
and MCi(Wt,Pt) is the cost of producing a unit of output, or in short, the firm’s marginal cost of
production. Note that due to the first degree homogeneity of the production function, marginal costs

39



are independent of level of production and depend only on the sector’s production function and input
prices. Applying Shephard’s lemma and re-arranging firms’ optimal demand for inputs gives us the
result that firms’ expenditure share of any input is the elasticity of the cost function with respect to that
input:

WtL
∗
ij,t = αi(Wt,Pt)×MCi(Wt,Pt)Y

s
ij,t, Pk,tX

∗
ij,k,t = aik(Wt,Pt)×MCi(Wt,Pt)Y

s
ij,t, ∀k ∈ [n]

(B.9)

where αi(Wt,Pt) and aik(Wt,Pt) are the elasticities of the sector i’s cost function with respect to labor
and sector k’s final good respectively:

αi(Wt,Pt) ≡
∂ log(Ci(Y ;Wt,Pt))

∂ log(Wt)
, aik(Wt,Pt) ≡

∂ log(Ci(Y ;Wt,Pt))

∂ log(Pk,t)
∀k ∈ [n] (B.10)

with the property that αi(Wt,Pt) +
∑

k∈[n] aik(Wt,Pt) = 1. It is important to note that the first degree
homogeneity of the cost function in Equation (8) also implies that these elasticities are only functions of
the aggregate wage and sectoral prices. It is also well-known that these elasticities are directly related
to the cost-based input-output matrix, denoted by Ωt ∈ Rn×n, and the labor share vector, denoted by
αt ∈ Rn:

[Ωt]i,k ≡
total expenditure of sector i on sector k
total expenditure on inputs in sector i

= aik(Wt,Pt), ∀(i, k) ∈ [n]2 (B.11)

[αt]i ≡
total expenditure of sector i on labor
total expenditure on inputs in sector i

= αi(Wt,Pt), ∀i ∈ [n] (B.12)

where the second equality holds only under firms’ optimal expenditure shares and follows from
integrating Equation (B.9). Since these elasticities are also homogenous of degree zero in the price
vector (Wt,Pt), Equations (B.11) and (B.12) imply that in any equilibrium, the cost-based input-output
matrix and the vector of sectoral labor shares are only a function of the sectoral prices relative to the
nominal wage; i.e.,

Ωt = Ω(Pt/Wt) = [aik(1,Pt/Wt)], αt = α(Pt/Wt) = [αi(1,Pt/Wt)] (B.13)

A notable example is Cobb-Douglas production functions, which imply constant elasticities for the cost
function—because inputs are neither substitutes nor complements—and lead to a constant input-output
matrix and constant vector of labor shares over time.

Optimal Prices. Having characterized firms’ cost functions, we now derive the optimal desired prices,
P ∗ij,t, in Equation (10) and reset prices, P#

ij,t in Equation (B.15). It follows that the optimal desired price
is a markup over the marginal cost of production and proporitional to the wedge introduced through
taxes/subsidies:

P ∗ij,t = P ∗i,t ≡
1

1− τi︸ ︷︷ ︸
tax/subsidy wedge

× σi
σi − 1︸ ︷︷ ︸
markup

×MCi(Wt,Pt)︸ ︷︷ ︸
marginal cost

(B.14)
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It is then straightforward to show that the firms’ optimal reset prices are a weighted average of all
future desired prices in industry i:

P#
ij,t = P#

i,t ≡
∫ ∞

0

weight (density) on P∗i,t+h︷ ︸︸ ︷
e−(θih+

∫ h
0 it+sds)Yi,t+hP

σi
i,t+h∫∞

0 e−(θih+
∫ h
0 it+sds)Yi,t+hP

σi
i,t+hdh

×P ∗i,t+hdh

︸ ︷︷ ︸
weighted average of all future desired prices

(B.15)

Given this reset price, we can then calculate the aggregate price of sector i from Equation (6) as:

P
1−σi
i,t =

∫ 1

0
P

1−σi
ij,t dj = θi

∫ t

0
e−θih(P#

i,t−h)1−σidh+ e−θit
∫ 1

0
P

1−σi
ij,0− dj (B.16)

where the second equality follows from the observation that at time t the density of firms that reset
their prices h periods ago to P#

i,t is governed by the exponential distribution of time between price
changes and is equal to θie−θih.

B.3 Market Clearing and Total Value Added

Define the sales-based Domar weight of sector i ∈ [n] at time t as the ratio of the final producer’s sales
relative to the households total expenditure on consumption:

λi,t ≡ Pk,tYk,t/(PtCt) (B.17)

Now, substituting optimal consumption of the household from sector k ∈ [n] in Equation (B.2) and
optimal demand of firms for the final good of sector k ∈ [n] in Equation (B.9) into the market clearing
condition for final good of sector k and dividing by household’s total expenditure, we get

λk,t = βi(Pt/Wt) +
∑

i∈[n] aik(1,Pt/Wt)λi,t∆i,t/µi,t (B.18)

where µi,t ≡ Pi,t/MCi(Pt,Wt) is the markup of sector i and ∆i,t is the well-known measure of price
dispersion in the New Keynesian literature defined as

∆i,t =

∫ 1

0
(Pij,t/Pi,t)

−σidj ≥ 1 (B.19)

Where the inequality follows from applying Jensen’s inequality to the definion of the aggregate price
index Pi,t.31 Thus, letting λt ≡ (λi,t)i∈[n] denote the vector of sales-based domar weights at time t
across sectors and Mt ≡ diag(µi,t/∆i,t) as the diagonal matrix whose i’th diagonal entry is the price
dispersion adjusted markup wedge of sector i, we can write Equation (B.18) in the following matrix
form:

λt = (I−Ωᵀ
tM

−1
t )−1βt (B.20)

31Note that 1 = [
∫ 1

0
(Pij,t/Pi,t)

1−σidj]
σi
σi−1 dj = [

∫ 1

0
((Pij,t/Pi, t)

−σi)
σi−1

σi dj]
σi
σi−1 dj ≤

∫ 1

0
(Pi,t/Pt)

−σidj.
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Finally, substituting firms labor demand into the labor market clearing condition, we arrive at the
following expression for the labor share:

WtLt
PtCt

= αᵀ
tM

−1
t λt (B.21)

C Data and Calibration

Proposition 3 shows that the sufficient statistics for inflation and output dynamics in response to
shocks in our model are the frequency-adjusted Leontief matrix, as given by Γ ≡ Θ2(I−Ω), and the
consumption expenditure shares across sectors, as given by the vector β. We now describe in detail
how we construct Γ and β using detailed sectoral US data.

First, we use the IO tables from the BEA to construct the input-output linkages across sectors,
given by the matrix Ω; the consumption expenditure shares across sectors, given by the vector β; and
the sectoral labor shares, given by the vector α. We construct these objects using the tables from 2019
at the summary-level disaggregation, excluding the government sectors, which implies 66 sectors in
our sample. In particular, to construct Ω we use both the make and use input-output tables. The make
table shows the value of the production of goods by industries. Each row represents an industry and
the columns for that row represent the commodities produced by this industry. Therefore, given a row,
adding up its columns gives the value of the total production of the sector associated with this row. The
use table shows the value of each commodity used by industry or by final use. Each column represents
an industry and the rows for that column represent the commodities used by this industry. Figure C.1
presents the matrix Ω we construct from the data, in a heat-map version.

Next, the use IO table shows the components of value added used by a industry. In particular,
it provides data on compensation of employees, which is also used to construct the sectoral labor
shares α. Figure C.2 shows the distribution of labor share across sectors in our data. Moreover, we
also construct the consumption expenditure shares across sectors β using the use IO table, where the
consumption share for a given sector is given by the share of the personal consumption expenditure on
that sector over the total personal consumption expenditure. Figure C.3 presents the distribution of
consumption expenditure share across sectors in our data.

For the final component, we construct the diagonal matrix Θ2, whose diagonal elements are the
squared frequency of price adjustment in each sector using data on 341 sectors from Pasten, Schoenle,
and Weber (2020). We match data from Pasten, Schoenle, and Weber (2020) on frequency of price
changes with the 2002 concordance table between IO industry codes and the related 2002 NAICS
codes. Then, we match the resulting table with the 2012 concordance table between IO industry codes
and the related 2012 NAICS codes. The last step is performed in order to get the link between the
frequency of price adjustment at the detail level disaggregation, which is a finer disaggregation, and the
summary level disaggregation, which is what we use in the paper.32 In order to aggregate the frequency

32We linked the frequency of price adjustment data with the 2002 concordance table first because Pasten, Schoenle, and
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Figure C.1: U.S. sectoral input-output matrix (heat map) in 2019

Notes: This figure presents the sectoral input-output matrix in a heat map version, using data from the make and use
input-otput tables produced by the BEA in 2019. The industry classification is at the summary-level disaggregation, for a
total of 66 sectors.
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Figure C.2: U.S. sectoral labor share in 2019

Notes: This figure presents the sectoral labor share, using compensation of employees data from the use input-otput tables
produced by the BEA in 2019. The industry classification is at the summary-level disaggregation, for a total of 66 sectors.
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Figure C.3: U.S. sectoral consumption expenditure share in 2019

Notes: This figure presents the sectoral consumption expenditure share, using data from the use input-otput tables produced
by the BEA in 2019. The industry classification is at the summary-level disaggregation, for a total of 66 sectors.
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of price adjustment from the detail level to the summary level, we took the average frequency of price
adjustment across detail level industries within a given summary level.

This procedure gives us the frequency of price adjustment for 50 sectors. For the 16 sectors that we
were not able to calculate the frequency of price adjustment in this way, we impute their value using
the average frequency of price adjustment across sectors in the data. The weighted average frequency
of price changes across sectors is 0.185 (0.204), before (after) the continuous time transformation.33

Figure C.4 presents the distribution of frequency of price adjustment across sectors in our data.
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Figure C.4: U.S. sectoral frequency of price adjustment in 2002

Notes: This figure presents sectoral frequency of price adjustment in 2002, using data from Pasten, Schoenle, and Weber
(2020). The industry classification is at the summary-level disaggregation, for a total of 66 sectors.

Weber (2020) used the tables for 2002.
33As we work in continuous time, we calculate its continuous time counterpart. Thus, let fpa be the frequency of

price adjustment in Pasten, Schoenle, and Weber (2020). Then, the frequency of price adjustment used in this paper is
θ = − log(1− fpa).
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