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Abstract

A long strand of literature has shown that the world has become more
global. Yet, the recent Great Global Recession turned out to be hard to predict,
with forecasters across the world committing large forecast errors. We examine
whether knowledge of in-sample co-movement across countries could have been
used in a more systematic way to improve forecast accuracy at the national level.
In particular, we ask if a model with common international business cycle factors
forecasts better than the purely domestic alternative? To answer this question
we employ a Dynamic Factor Model (DFM) and run an out-of-sample forecast-
ing experiment. Our results show that exploiting the informational content in a
common global business cycle factor improves forecasting accuracy in terms of
both point and density forecast evaluation across a large panel of countries. In
line with much reported in-sample evidence, we also document that the Great
Recession has a huge impact on this result. The event causes a clear preference
shift towards the model including a common global factor. Similar shifts are
not observed earlier in the evaluation sample. However, this time is different
also in other respects. On longer forecasting horizons the performance of the
DFM deteriorates substantially in the aftermath of the Great Recession. This
indicates that the recession shock itself was felt globally, but that the recovery
phase has been very different across countries.
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1 Introduction

A long strand of literature has shown that the co-movement of aggregate activity
across a large number of countries can be reasonably well explained by one (or a few)
common business cycle factors. For example, in Kose et al. (2003) up to 35 percent
of the variance in domestic GDP across G7 countries is attributed to one common
international business cycle factor.1 Imbs (2010) provides further evidence. Focusing
on the distribution of business cycles, he shows that the Great Recession was a true
global recession, the first in decades.

Knowledge of in-sample co-movement across countries, in particular during reces-
sions, does not necessarily imply predictability. As is now well known, the Great
Recession (2007-2009) turned out to be hard to predict, with private and public sector
forecasters across the world committing large forecast errors relative to their historical
performance, c.f. Stockton (2012) and Alessi et al. (2014) for a discussion of the fore-
cast performance of the Bank of England, Federal Reserve Bank of New York and the
European Central Bank. A common explanation for this forecast failure has been the
high level of uncertainty at the time. Neither the size or timing of the shocks that hit
the global economy had been foreseen. Nor was the extent of the propagation of these
shocks into economic activity. Consistent with this, many recent papers have shown
that forecast errors typically rise dramatically in severe recessions when uncertainty
is high, c.f., Baker et al. (2013), and most notably during the Great Recession, see
Jurado et al. (2013).2

Our purpose is to examine whether knowledge of in-sample co-movement across
countries could have been used in a more systematic way to improve forecast accuracy
at the national level. As claimed by, e.g., Ashley et al. (1980), in-sample inference
without out-of-sample verification is likely to be spurious, with an out-of-sample ap-
proach inherently involving less over-fitting. Hence, an out-of sample evaluation seems
a natural next step in light of the in-sample evidence of co-movement across countries
(reported in, e.g., Imbs (2010)), and the massive forecast failures across the world prior
to the Great Recession. This paper therefore asks: Does a model with common in-
ternational business cycle factors forecast better than the purely domestic alternative,
i.e., a simple autoregressive process?

To examine whether common international components add value in terms of fore-
casting, we specify a Dynamic Factor Model (DFM) widely used for studying interna-
tional business cycle synchronization. Our dataset contains quarterly real GDP growth
from 1978 to 2011 for 33 countries across the world, broadly covering 4 geographical
regions and both developed and emerging economies. The out-of-sample forecasting
experiment starts in 1991:Q1. For each new vintage of data the DFM is re-estimated
and forecasts produced, generating a total of 82 out-of-sample forecast observations
for each country. The factor model forecasts are compared to forecasts produced by a
simple autoregressive process. In our experiment this is the natural benchmark model,

1Corroborated theoretical and empirical findings are reported in, e.g., Ambler et al. (2002), Stock and
Watson (2005), Baxter and Kouparitsas (2005), Backus and Kehoe (1992), Backus et al. (1995) and
Engel and Wang (2011).

2More generally, GDP is often found to be hard to predict, and it has been difficult to beat an AR(p)
model or a random walk, see, e.g., Stock and Watson (1999, 2002). Furthermore, the predictability of
more complex models relative to naive forecasts seems to have declined since the 1980s, see D’Agostino
et al. (2006).
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Figure 1: In-sample evidence
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Note: Figure 1a (1b) reports the recursively estimated covariance (variance) as implied by the Dy-
namic Factor Model and one common global business cycle factor, see Section 2 for a detailed de-
scription of the model. The covariance (variance) is reported as the average of all elements below (on)
the diagonal in the covariance matrix at each point in time. The variance is reported as a fraction of
the total variance explained by the model. In addition, Figure 1b reports the average within different
regional clusters.

as the DFM we employ collapses to an autoregressive process for each country if the
number of common factors is 0, i.e., if the common factors are irrelevant.3 We evalu-
ate predictability in terms of both point and density forecasts across time, employing
mean squared errors (MSE) and continuous ranked probability score (CRPS) scoring
functions. In particular, we examine whether predictability increased in the recent
financial crisis relative to previous recessions.

The DFM we employ is similar to the factor models used in other business cycle
synchronization studies. For this reason, we would expect the model to also confirm
the earlier in-sample evidence alluded to above - and it does. In line with the results
reported in Imbs (2010), the Great Recession had a huge impact on business cycle
synchronization, increasing the covariance across countries explained by one common
business cycle factor considerably, see Figure 1a. Much of this increased covariance
can be attributed to an increase in overall volatility in the period around the Great

3In a pure forecasting horse-race, other benchmark models would very likely be harder to outperform.
In addition, when assessing predictability across 33 countries, the best benchmark model would almost
surely vary considerably across countries.
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Recession. This is seen in Figure 1b, which reports the variance explained attributed
to the common business cycle factor. Overall, the variance explained attributed to
the common factor is not large, but for countries in Europe and North America it is
substantial.4 As such, the figure also highlights another important feature found in
the more recent business cycle literature, namely that the world is not enough: When
explaining business cycle synchronization, common regional factors seem to matter
more and more relative to one common global factor, see, e.g., Crucini et al. (2011),
Mumtaz et al. (2011) and Thorsrud (2013). In this paper we will address the uncer-
tainty in the number of factors by using the out-of-sample forecasting performance as
a measure of model fit.

Our out-of-sample forecasting experiment delivers the following results: First, ex-
ploiting the information content in a common global business cycle factor improves
forecasting accuracy in terms of both point and density forecast evaluation across a
large panel of countries. In particular we find that the forecasts produced by the
standard DFM on average (across countries) adds marginal predictive power to the
natural benchmark, an autoregressive process for each individual country.

Second, in line with the in-sample evidence reported above, we also document
that the Great Recession has a huge impact on this result. Irrespective of which loss
function we use, the event causes a clear preference shift towards the model including a
common global factor. Similar shifts are not observed earlier in the evaluation sample.
This is in particular interesting in light of the recent evidence of heightened uncertainty
and increased forecast errors during deep recessions, c.f. Baker et al. (2013) and Jurado
et al. (2013). In our out-of sample forecasting experiment the information content in
the common global component now works to reduce the forecast errors (relative to the
AR(1)) and hence increase forecasting accuracy.

However, this time is different also in other respects. On longer forecasting hori-
zons the performance of the DFM deteriorates substantially in the aftermath of the
Great Recession. To the extent that forecast errors are a good proxy for uncertainty,
this indicates that during the recession, information about common movements could
have worked to reduce uncertainty across countries, while during the recovery phase
use of such knowledge would in fact have increased it. One potential reason for this
might be uncertainty related to economic policies in the US and Europe in particular,
see, e.g., Baker et al. (2013). Augmenting the DFM with regional factors (includ-
ing, e.g., an Asia-specific business cycle factor) alleviates this uncertainty somewhat:
It improves the short-term forecasting performance of the model further, and gives
out-of-sample support to the in-sample studies advocating the importance of regional
business cycle factors. Finally, incorporating uncertainty regarding the true number of
factors by employing a forecast combination approach confirms that regional factors
are important.

The rest of the paper is organized as follows: In Section 2 we describe the DFM,
the data, and the out-of-sample forecasting experiment. In Section 3 we report our
results. We start with our main evaluation using a DFM with one global component
only. We then report the results for the augmented model, including regional factors,
and the results for the model combination experiment. Section 4 concludes.

4Even for countries in these regions the numbers are somewhat smaller than those reported in Kose
et al. (2003). One reason for this is likely the fact that we look at quarterly growth rates, while they
use yearly numbers that contain much less noise.
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2 Model, estimation and evaluation under model

uncertainty

As alluded to above, we entertain a Dynamic Factor Model (DFM) frequently employed
in the business cycle synchronization literature. This model is particularly useful in
a data rich environment such as ours, where common latent factors and shocks are
assumed to drive the co-movements across a large cross section of countries.

The DFM is given by equations 1 and 2:

yt = λ0ft + · · ·+ λsft−s + εt (1)

where the N × 1 vector yt represents the observables at time t. λj is a N × q matrix
with dynamic factor loadings for j = 0, 1, · · · , s, and s denotes the number of lags
used for the dynamic factors ft. Lastly, εt is an N × 1 vector of idiosyncratic errors.

The dynamic factors follow a VAR(h) process:

ft = φ1ft−1 + · · ·+ φhft−h + ut (2)

where ut is a q×1 vector of VAR(h) residuals. The idiosyncratic and VAR(h) residuals
are assumed to be independent:[

εt
ut

]
∼ i.i.d.N

([
0
0

]
,

[
R 0
0 Q

])
(3)

Further, in our application R is assumed to be diagonal.
We consider the case where εt,i, for i = 1, · · · , N , follows independent AR(l) pro-

cesses:
εt,i = ρ1,iεt−1,i + · · ·+ ρl,iεt−l,i + ωt,i (4)

where l denotes the number of lags, and ωt,i is the AR(l) residuals with ωt,i ∼
i.i.d.N(0, σ2

i ). I.e.:

R =


σ2

1 0 · · · 0

0 σ2
2

. . . 0
...

. . . . . .
...

0 · · · · · · σ2
N

 , (5)

To separately identify the factors and the loadings, and to be able to give the
factors an economic interpretation, we enforce the following identification restrictions
on equation 1:

λ0 =

[
λ0,1

λ0,2

]
(6)

where λ0,1 is a q× q identity matrix, and λ0,2 is left unrestricted. As shown in Bai and
Ng (2010) and Bai and Wang (2012), these restrictions uniquely identify the dynamic
factors and the loadings, but leave the VAR(h) dynamics for the factors completely
unrestricted.
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2.1 Data

Our data set is composed of real Gross Domestic Product (GDP) for a large cross
section, covering 33 countries. The data are collected from the GVAR ‘2011 Vintage’
data set constructed by Gang Zhang, Ambrogio Cesa Bianchi, and Alessandro Rebucci
at the Inter-American Development Bank. The cross section of GDP data covers
the countries: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China,
Finland, France, Germany, India, Indonesia, Italy, Japan, Korea, Malaysia, Mexico,
The Netherlands, New Zealand, Norway, Peru, Philippines, Saudi Arabia, Singapore,
South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, the United Kingdom,
and the United States.

The data span the time period 1978:Q1 to 2011:Q2. Prior to estimation, all data
are made stationary by taking the logarithmic difference.

Table 3, in Appendix B, reports descriptive statistics for GDP for the 33 coun-
tries under study. As seen in the table there is large, and well known, heterogeneity
across countries. Mean GDP growth is higher (above median) for most emerging
Asian countries and some commodity exporters (i.e., Australia, Brazil, Mexico, Nor-
way and Peru), and lower for G8 economies. Moreover, volatility is higher for small
open economies (i.e., Norway and Sweden) and for most Asian and South American
countries and lower for G8 and most other European countries.

2.2 Specifications and estimation

In the baseline scenario we specify a factor model including only one global business
cycle factor. That is, we set q = 1 and identify it as a global business cycle factor
by letting US GDP be the first variable in the observable yt vector. Accordingly, the
global business cycle factor loads with one on US GDP growth. As described in greater
detail in below, we later expand the model to include up to q = 4 regional business
cycle factors.

For all specifications we let the number of lags in the transition equation equal two
(h = 2), the number of lags of the dynamic factors equal zero (s = 0), and the number
of lags for the idiosyncratic auto-regressions equal one (l = 1).

Let ỹT = [y1, · · · , yT ]′ and f̃T = [f1, · · · , fT ]′, and define H = [λ0, · · · , λs], β =
[φ1, · · · , φh], Q, R, and pi = [ρ1,i, · · · , ρl,i] for i = 1, · · · , N , as the model’s hyper-
parameters. Inference on the unknown states and hyper-parameters is based on
Bayesian estimation of the state space model and Gibbs simulation, where the fol-
lowing three steps are iterated until convergence is achieved:
Step 1: Conditional on the data (ỹT ) and all the parameters of the model, generate
f̃T
Step 2: Conditional on f̃T , generate β and Q
Step 3: Conditional on f̃T , and data for the i-th variable (ỹT,i), generate Hi, Ri and
pi for i = 1, · · · , N

In Appendix A we describe each step in more detail and document the employed
prior specifications. We simulate the model using a total of 10000 iterations. 5000
draws are used as burn-in, and only every 5th iteration is stored and used for inference.5

5Standard MCMC convergence tests, conducted on the model estimated on the full sample, confirm
that the Gibbs sampler converges to the posterior distribution. Convergence statistics can be reported
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2.3 Out-of-sample forecasting and evaluation

In constructing density and point forecasts, we use a recursive forecasting scheme,
expanding the model estimation sample as forecasting moves forward in time. We
focus on the full sample period 1990:Q1-2011:Q2, a pre-financial crisis sample pe-
riod 1990:Q1-2007:Q3, and the financial crisis period 2007:Q4-2011:Q2. The section
proceeds by detailing our approaches for scoring and comparing forecasts.

We consider several evaluation statistics for point and density forecasts previously
proposed in literature. We compare point forecasts in terms of Root Mean Square
Prediction Errors (RMSPE):

RMSPEk =

√√√√ 1

t∗

t∑
τ=t

ek,τ+h (7)

where t∗ = t− t+ h, τ and τ denote the beginning and end of the evaluation period,
and ek,τ+h is the square prediction error associated to the forecast made by model k
at time τ for the observation yτ+h.

Following Welch and Goyal (2008) we investigate how square prediction varies over
time by a graphical inspection of the Cumulative Squared Prediction Error Difference
(CSPED):

CSPEDk,τ+1 =
t∑
s=t

f̂k,s+h, (8)

where f̂k,τ+1 = eAR,τ+h − ek,τ+h. Increases in CSPEDk,τ+h indicate that the alterna-
tive model compared to the benchmark (AR model) predicts better at out-of-sample
observation τ + h.

Following Gneiting and Ranjan (2011), Groen et al. (2012) and Ravazzolo and
Vahey (2013) for applications to inflation density forecasts, and Clark and Ravazzolo
(2013) for a larger set of macro variables, we evaluate density forecasts based on
the continuous rank probability score (CRPS). The CRPS for the model k measures
the average absolute distance between the empirical cumulative distribution function
(CDF) of yτ+h, which is simply a step function in yτ+h, and the empirical CDF that
is associated with model k’s predictive density:

CRPSk,τ+h =
∫ (

F (z)− I[yτ+h,+∞)(z)
)2

dz (9)

= Et|ỹk,t+τ − yτ+h| − 1
2
Et|ỹk,τ+h − ỹ′k,τ+h|, (10)

where F is the CDF from the predictive density p(ỹk,τ+h|y1:t) of model k and ỹk,τ+h

and ỹ′k,τ+h are independent random variables with common sampling density equal
to the posterior predictive density p(ỹk,τ+h|y1:t). Smaller CRPS values imply higher
precisions and we report in tables the average CRPSk for each model k. Gneiting
and Raftery (2007)) discuss the properties of the CRPS, including that it is a strictly
proper scoring rule that can be related to Bayes factors and to cross-validation, and
can also be used for evaluation of some areas (quantiles) of interest of the predictive
density.

on request.
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As for the RMSPE analysis, we also compute Cumulative CRPS (CRPSD), and
plot them.

To provide a rough gauge of whether the differences in forecast accuracy are sig-
nificant, we follow Clark and Ravazzolo (2013) and apply Diebold and Mariano (1995)
t-tests for equality of the average loss (with loss defined as squared error or CRPS). In
the tables and figures, differences in accuracy that are statistically different from zero
are denoted by one or two asterisks, corresponding to significance levels of 10% and
5%, respectively. The underlying p-values are based on t-statistics computed with a
serial correlation-robust variance, using the pre-whitened quadratic spectral estimator
of Andrews and Monahan (1992). Since our models are nested to the AR benchmark,
we report p-values based on one-sided tests and look for rejection of the null of equal
accuracy versus the alternative that the factor model is superior to the benchmark AR
model.6

Finally, we evaluate the predictive densities using a test of absolute forecast accu-
racy. As in Diebold et al. (1998), we utilize the Probability Integral Transforms (PITS)
of the realization of the variable with respect to the forecast densities. A forecast den-
sity is preferred if the density is correctly calibrated, regardless of the forecaster’s loss
function. The PIT at time τ + 1 are:

PITk,τ+1 =

∫ yτ+h

−∞
p(ũk,τ+h|y1:τ )dũk,τ+h. (11)

and should be uniformly, independently (if h = 1) and identically distributed if the
forecast densities p(ỹk,τ+h|y1:t), for τ = t, . . . , t, are correctly calibrated. Hence, cali-
bration evaluation requires the application of tests for goodness of fit. We apply the
Berkowitz (2001) test for zero mean, unit variance and independence of the PITS. The
null of the test is no calibration failure. Mitchell and Wallis (2010) discuss the value
of information-based methods for evaluating forecast densities that are well calibrated
on the basis of PIT tests.

3 Results

Below we first discuss the forecast performance of the global model for predicting
GDP. In line with the in-sample business cycle synchronization literature, referred to in
Section 1, we focus on average results across all countries and on average results within
geographical regions. We then expand the model to incorporate regional business
cycle factors and evaluate the forecast performance of the expanded model. Finally,
we incorporate factor uncertainty by combining factor model forecasts from models
including up to 4 common business cycle factors.

3.1 Forecasting GDP using one global component

Figure 2 reports the estimated global business cycle factor. The solid black line dis-
plays the factor estimate from the last forecast vintage, i.e., 2011:Q2. The white bars
together with the coloured bars report the contribution to the factor estimate, at each

6The AR is estimated using Gibbs simulations, using the same priors as specified for the serially
correlated idiosyncratic errors of the factor model, see Sections 2.2 and A.0.4.
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Figure 2: The global business cycle factor and relative historical forecast performance
GDP
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Note: The plot reports the global business cycle factor, estimated using the whole sample.

point in time, from the individual series used to derive the factor. In particular, the
coloured bars show the eight most important series in terms of MSE over the entire
sample. The contribution of each series is estimated based on the difference between
the predicted state estimate and the updated state estimate within the Kalman Fil-
ter. All results are based on median estimates. As seen in the figure, the estimated
factor has characteristics associated with the global business cycle showing a decline
in world activity during the early 1980s and early 1990s, following the dot-com bubble
that burst in 2000/2001, and during the Great Recession. The latter trough is by far
the most severe. These are all periods that correspond closely to the recessions dated
by the NBER for the US. The eight most important countries (in terms of MSE) are
also primarily North American and European countries.

Figures 3a and 3b report the relative out-of-sample forecasting performance for
GDP in all countries based on root mean square prediction error (RMSPE) and the
continuous rank predictability score (CRPS), respectively, at forecast horizon 1 (solid
line) and for horizon 5 (dotted line). In each plot the lines are the average relative
forecast performance across all 33 countries in the sample. Particularly for RMSPE
(CRPS) comparisons, the plots show the cumulative squared prediction errors of the
benchmark; the AR(1), minus the cumulative squared prediction error of the Alterna-
tive model (i.e., the global factor model). Hence, an increase in a line indicates better
performance of the global model; a decrease in a line indicates better performance of
the AR(1). When the line is above zero the Alternative model has the best average
forecast performance up to that point in time. In the plots we also report, with light
grey bars, specific episodes that in the literature are considered as important events
that might have significant effects on business cycles around the world.7

7These are: ERM; European Exchange Rate Mechanism crisis in 1992, LTCM; Long-Term Capital
Management collapse in 1998-1999, NASDAQ; the Nasdaq crash in 1999-2000, US bankruptcies; wave
of bankruptcies in the US in 2002, the Financial Crisis; the Global Recession spreading around the
world in 2008, see Imbs (2010) for details.
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Figure 3: Relative historical forecast performance GDP - one global component
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(b) CRPS
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Note: Figures 3a and 3b report relative out-of-sample forecasting performance, measured by the median
across all countries. In particular, for RMSPE (CRPS) comparisons the plots show the cumulative
squared prediction errors (the CRPS) of the benchmark minus the cumulative squared prediction
error (the CRPS) of the Alternative model. An increase in a line indicates better performance of the
Alternative model; a decrease in a line indicates better performance of the benchmark. The vertical
grey lines identify some episodes with potential contagion effects.

Figure 3 has two main messages: The Great Recession was the first truly global
recession in decades, and this time is different. In particular, Figure 3a shows that at
horizon 1, a model including one global factor improves forecast performance (i.e., an
increase in the line) relative to the benchmark. For RMSPE evaluation, the results are
in particular strong when we include the period of the financial crisis, as seen by the
sharp increase in the line early in the financial crisis. Although forecast performance
increases steadily from the late 1990s (the Asian crisis), no other major business cycle
event, e.g., the LTCM or the NASDAQ crash, caused such abrupt changes in relative
forecast performance. Hence, the one-step ahead forecast performance is greatly im-
proved using information contained in the global business cycle factor. Furthermore,
the fact that the forecast performance of the global model increases sharply early in
the financial crisis is consistent with the interpretation that the financial crisis is due
to a common global shock, which may have affected most economies in a similar way.
Hence, using a forecasting framework we confirm what Imbs (2010) has shown in an
in-sample business cycle setting: The Great Recession was the first truly global reces-
sion in decades. We also confirm the in-sample evidence reported in Figure 1, namely
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Table 1: Density calibration statistics: PIT test - one global component

Horizon
1-step 5-step

Benchmark Alternative Benchmark Alternative

All 0.15 0.30 0.12 0.33

North America 0.00 0.67 0.00 1.00
Asia 0.23 0.00 0.23 0.08
Europe 0.17 0.58 0.08 0.50
South America 0.00 0.20 0.00 0.20

Note: Each entry shows the fraction of density forecasts passing the Berkowitz (2001) test for zero
mean, unit variance and independence of the PITS. The null of the test is no calibration failure,
and we have used the 5 percent significance level as a cut-off in computing the fractions in the table.
Evaluation sample: 1991:Q1-2011:Q2.

that business cycle synchronization increased during this period.8 It is also interesting
to note that the short-term forecasting performance of the Alternative model relative
to the benchmark declines again in the recovery phase of the financial crisis. This
is consistent with the in-sample synchronization results reported in Figure 1, but is
a new finding relative to that reported in Imbs (2010), where the sample ended in
2009:M5.

For density forecast evaluation, see Figure 3b, the results reported above hold for
horizon 1. That is, the global factor model’s forecast performance relative to the
benchmark increases almost monotonically already from the start of the evaluation
sample. Yet, the increase in the performance of the global factor model relative to the
AR(1) early in the financial crisis stands out.

Turning to the longer forecasting horizon, horizon 5, the forecast performance of the
global model and the AR(1) are basically identical throughout the evaluation sample,
based on RMSPE, or increase monotonically throughout the sample, based on CRPS.
Thus, the Alternative model is better able than the benchmark to correctly capture
the whole forecast distribution. If the forecast user is more concerned about higher
order moments, this is important information and should, all else equal, favour the
global factor model more relative to the simple AR(1).

A few years into the crisis, however, the five quarter ahead forecast performance
deteriorates sharply. That is, from 2009/2010, the forecast performance of the global
model declines sharply relatively to the AR(1). This holds for both the RMSPE and
the CRPS criteria. Hence, this time is different; Only after the Great Recession do we
observe a sharp deterioration of the long horizon forecast performance of the global

8Engel and Wang (2011) has shown that trade in durable goods is an important element in open-
economy rational expectations (RE) macro models that can account for some of the high correlation
of output across countries. Yet, and as pointed out by the same authors, the channels explored may
be different from those in the traditional RE models. One possibility is that agents receive strong
signals about the future common component. If news helps to drive business cycles (c.f., Beaudry and
Portier (2007)), then perhaps news about the common component also effectively filters an otherwise
noisy signal, thereby increasing forecast performance across countries.
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factor model relative to the benchmark. Why is this so? One explanation could be that
while countries are synchronized in the recession phase of the financial crisis (when
the shock occurs), the recovery phase has been much less synchronized. Some small
open economies have recovered fast while others have recovered much more slowly,
and some are still in a recession. To the extent that forecast errors are a good proxy
for uncertainty, this is consistent with the findings in Baker et al. (2013), who find
that since 2008/2009 uncertainty about the US fiscal situation and economic policies in
Europe, in particular, has surged and slowed down the pace of an already slow recovery
in these countries and areas. In any case, these idiosyncratic developments favour the
AR(1) model relative to the model entertaining one common global component.

The first row of Table 1 reports the results for the PIT tests, summarized as
averages across all countries. The null hypothesis of correct calibration can not be
rejected in only 15 (12) percent of the cases for the benchmark model on horizon
1 (horizon 5). For the Alternative model, i.e., the factor model, the performance is
better, and rejection of the null hypothesis of correct calibration is obtained for 30 (33)
percent of the cases on horizon 1 (horizon 5). Thus, the AR(1) model delivers less
calibrated predictive densities on average. We notice that the variance of the predictive
densities from the DFM is on average smaller than the one from the AR(1) model.
The information content in the common global component reduces the forecast errors,
shrinking the densities and increasing calibration. Therefore, global factors not only
improve relative predictability, but also, and importantly, provide useful information
that delivers higher calibration.

3.2 Country and region specific details

So far we have examined to what extent the global model can improve forecast per-
formance for GDP relative to an AR(1) by looking at averages across all countries.
Such aggregates can easily conceal interesting information. In this section we examine
the country and region specific details behind Figure 3, as well as tests of significance
in terms of difference in forecasting performance. To organise the discussion for the
individual countries, we focus on performance up until the financial crisis, and then on
the period thereafter, see Figures 4 and 5 for horizons 1 and 5, respectively. Figures 8
and 9 decompose the results reported in Figure 3 into regional averages. For brevity,
the figures with regional details are reported in Appendix B.

Country specific details confirm the picture from above. On average, the short-term
forecasting performance of the global model increases before and immediately after the
Great Recession. Focusing on the period up until 2007:Q3, we see that for many of
the individual countries the performance of the Alternative model is also significantly
better than the benchmark. This is especially so for CRPS evaluation. Among the
countries where the global factor model does not seem to add much value in terms of
short-term forecasting are Turkey, Thailand, Peru, Indonesia, and China, see Figure
4a. Interestingly, these countries are also very different from the other countries in the
sample in that they have exceptionally high and (or) volatile growth rates, see Table
3 in Appendix B. As the common factor captures commonalities across countries, it is
not surprising that it does not add value in terms of forecasting performance for these
countries.
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Figure 4: Forecast evaluation GDP: 1 Factor, Horizon=1

(a) 1990:Q1-2007:Q3

(b) 2007:Q4-2011:Q2

Note: The bars show the relative forecast performance of the Alternative models against the bench-
mark, normalized such that a value larger than 1 indicates that the Alternative model is better. The
vertical lines report the average relative score across a given set of variables, as indicated by the line’s
coverage. The left- (right-) hand side y-axis reports the variable names together with Diebold and Mar-
iano (1995) t-tests for equality of the RMSPE (CRPS). Based on one-sided tests a rejection of the
null of equal accuracy versus the alternative that the Alternative model is superior to the benchmark
is shown by one or two asterisks, corresponding to significance levels of 10% and 5%, respectively.
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Figure 5: Forecast evaluation GDP: 1 Factor, Horizon=5

(a) 1990:Q1-2007:Q3

(b) 2007:Q4-2011:Q2

Note: See Figure 4.

Turning to longer-term forecasting, almost all countries benefit from entertaining
the Alternative model, but as emphasized above, more so for density forecasting than
for point forecasting, see Figure 5a. Going into the crisis, however, the picture is
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reversed, and now almost all countries do worse when entertaining the global model
relative to the benchmark.

Newer studies in the business cycle synchronization literature highlight a growing
importance of regional business cycle developments relative to global one, see, e.g.,
Crucini et al. (2011), Mumtaz et al. (2011) and Thorsrud (2013). This motivates
grouping the results reported above into regional averages and investigating to what
extent the relative forecast performance for countries across regions differs.9 Doing
so, we see from Figures 8 and 9, in Appendix B, that the Great Recession caused an
unprecedented increase in the performance of the Alternative model relative to the
benchmark at horizon 1, but a fall on longer forecasting horizons in all regions. This
is in line with the more aggregated results reported above. However, the regional
results also uncover differences in terms of the performance path across time and in
absolute performance. In particular, for Asia, the global factor model is on average
outperformed by the simple AR(1) throughout much of the evaluation sample. This
should come as no surprise given that many outliers found in Figure 4a and 4b were
from Asia. For the South American countries, on the other hand, there is an increase
in the relative performance of the global model, but only until the late 1990s.

Large regional differences in relative forecasting performance can also be observed
by looking at the PIT tests, see the second to fifth row of Table 1.10 Starting with Asia
we see from the table that for almost all countries in this region, the density forecasts
are badly calibrated, i.e., they do not pass the test. The benchmark model, the AR(1),
does a better job with 23 percent of the countries passing the test (both horizons).
This confirms the results reported above, emphasising the weak forecast performance
when using the global model for many Asian countries. However, for the majority of
countries in North America and Europe, we cannot reject the null hypothesis of no
calibration failure. Moreover, the Alternative model outperforms the benchmark by
a large margin. This also holds for countries in South America on average, but the
fraction of countries in the region actually passing the test is only 20 percent.

3.3 Forecasting GDP including regional components

The results, and literature, reported above naturally beg the question: Can we improve
the relative forecasting performance of the factor model by including region specific
business cycle factors? To address this question we re-specify the global factor model
such that it includes four regional business cycle factors: A North American factor,
an Asian factor, a European factor, and a South American factor. The four factors
are identified by employing the following ordering of the first four variables in yt:
the US, Korea, Germany, Brazil. See Section 2 for details about the identification
strategy. Here we note that other alternative factor identification schemes could have
been employed, see, e.g., Bai and Wang (2012). We prefer the one selected because it
leaves the VAR(h) dynamics completely unrestricted and allows for spillovers between
the regional factors. Accounting for such spillovers is consistent with findings in, e.g.,
Thorsrud (2013).

The four factors, as estimated using the whole sample, are reported in Figure 12

9It also motivates including regional business cycle factors into the model. We do so in the next
section.

10Table 4, in Appendix B, reports the p-values for each individual country.
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Figure 6: 4 factor model relative to AR(1)

(a) RMSPE
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(b) CRPS
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Note: Figures 3a and 3b report relative out-of-sample forecasting performance, measured by the median
across all countries. In particular, for RMSPE (CRPS) comparisons the plots show the cumulative
squared prediction errors (the CRPS) of the benchmark minus the cumulative squared prediction
error (the CRPS) of the Alternative model. An increase in a line indicates better performance of the
Alternative model; a decrease in a line indicates better performance of the benchmark. The vertical
grey lines identify some episodes with potential contagion effects.

in Appendix B. We note five silent facts: First, the North American factor resembles
the one global factor used in Section 3.1. Second, the Great Recession is visible in
all four factor estimates. Third, the Asian crisis around 1998 is clearly visible in the
Asia-specific business cycle factor and not in any of the other estimates. Fourth, the
European business cycle factor resembles the North American business cycle factor,
questioning the presence of any truly common European specific business cycle factor,
see, e.g., Canova et al. (2007). Finally, the South American business cycle shows large
and volatile swings in the early part of the sample, consistent with the period when
many of the South American countries were fighting hyper-inflation and particularly
unstable macroeconomic developments.

The results of re-doing the out-of-sample forecasting experiment, but now with the
factor model including four regional factors as the Alternative model, are reported in
Figures 6a and 6b, for RMSPE and CRPS scores, respectively. As in Figure 3, we here
only report averages across all countries. The effect of the Great Recession dominates
both the short-run and long-run relative forecast performance. However, the absolute
forecasting performance, relative to the AR(1), seems to become somewhat better
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after including the additional factors, at least for RMSPE evaluation. That is, the
distance from the zero line is larger (smaller, when negative) than in Figures 3a and
3b. Moreover, the performance does not seem to deteriorate as much at the end of the
evaluation sample.

Detailed results for all the four regions are reported in Figures 10 and 11 in Ap-
pendix B. For the countries in North America and in Europe we confirm that the
absolute forecasting performance, relative to the AR(1), has become somewhat better
after including the additional factors. Also for South America, we observe that for
RMSPE evaluation the absolute relative performance becomes better with the aug-
mented factor model, both for short-run and long-run forecasting. However, looking
at CRPS evaluation a different picture emerges. The performance of the augmented
model relative to the AR(1) is worse than it was for the more parsimonious one-factor
model, see Figure 11. Moreover, the effect of the Great Recession on relative fore-
casting performance is not visible. Finally, for Asia, we see that the relative short-run
point forecasting performance of the augmented model clearly improves. Especially
evident are the effects of the Asian crisis, resulting in a large and lasting increase in
relative forecasting performance. The same dramatic shift can be seen when looking at
Figure 11 and CRPS evaluation. Thus, including an Asia-specific business cycle factor
improves forecasting performance for the Asian countries. However, on longer forecast-
ing horizons, and for both point and density forecast evaluation, the augmented model
actually seems to perform worse than the one-factor model relative to the AR(1).

The contrasting results of the augmented factor model for Asia and South American-
countries are surprising. One reason for these results might be that the more factor-rich
model provides a better in-sample fit than the more parsimonious one-factor model,
but that this fit, for the countries in Asia in particular, translates into worse rela-
tive forecasting performance at longer horizons. By introducing more factors into the
model we also introduce more estimation uncertainty.

Table 2 reports the PIT tests for the factor model with four factors and the AR(1).
As before, these models are denoted Alternative and Benchmark, respectively, in the
table. Comparing the results in Table 2 to those in Table 1, we see that augmenting the
factor model with four regional factors clearly improves the calibration of the density
forecast, although not uniformly. On average across all countries 42 (36) percent now
pass the test on horizon 1 (horizon 5). Most of the gain comes through a better
calibration obtained for countries in Asia in particular, but also to some extent for
countries in South America. Thus, our experiment with the augmented factor model
delivers conflicting results: On the one hand, the relative forecasting performance
seems to improve and also yield better calibrated densities for most countries. On the
other hand, the inclusion of extra regional factors also seem to introduce extra noise in
the model and forecasts. For some Asian and South American countries this reduces
the gain obtained from using the augmented model.

In summary, the results reported in Sections 3.1 - 3.3 emphasize three regularities:
First, in line with in-sample evidence showing an increase in cross-country business
cycle synchronization during the Great Recession, we find a large and positive increase
in the short-term relative forecasting performance of the global factor model during this
period. However, our results indicate that this time is different; during the recovery
phase of the recession relative forecasting performance declines, especially at longer
forecasting horizons. Second, while the factor model on average outperforms the simple
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Table 2: Density calibration statistics: PIT test - four regional components

Horizon
1-step 5-step

Benchmark Alternative Benchmark Alternative

All 0.15 0.42 0.12 0.36

North America 0.00 0.67 0.00 0.67
Asia 0.23 0.15 0.23 0.15
Europe 0.17 0.67 0.08 0.58
South America 0.00 0.40 0.00 0.20

Note: See the note to Table 1

benchmark model using both RMSPE and CRPS scoring rules, the factor model seems
to be particularly good (relative to the benchmark) at correctly capturing the whole
forecast distribution, i.e., when using the CRPS scoring rule. Third, regional factors
matter, at least for short-term forecasting. Augmenting the one-factor model to include
up to four regional business cycle factors yields an improvement in relative scores and
gives better calibrated density forecasts. This result is consistent with business cycle
synchronization studies documenting an increase in the importance of regional factors
(relative to one global business cycle factor), but has not before been shown to hold
in an out-of-sample forecasting experiment. Still, the latter results does not apply
uniformly, suggesting that regional factors might play a varying role across countries
and regions.

Our results offer an important extension to the existing in-sample business cycle
synchronization literature. The results should also be of interest to model builders,
policy makers and forecasters searching for which variables to include in their forecast-
ing framework: Incorporating common global and regional factors increases forecasting
accuracy.11

3.4 Forecasting GDP using global components: Incorporat-
ing model uncertainty

The number of international business cycle factors to include in the model is uncertain,
but matters for forecasting performance, as reflected by the results reported above.
In this section we incorporate model uncertainty into the analysis by employing an
out-of-sample model combination scheme. In line with the nature of the forecasting ex-
periment we construct model weights based on the different factor model’s forecasting
performance, and construct a combined factor model forecast based on these weights.
The details are described below.

First, four factor models are estimated, each differentiated by the number of factors
they include: One to four factors. The model with only one factor is identical to

11More so for some countries than others. Moreover, as noted in Section 1, in a pure forecasting horse-
race, other benchmark models (than the AR(1)) would very likely be harder to outperform. We leave
it to future research to assess this for specific countries.
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the model employed in Section 3.1. The model with two factors includes one North
American and one Asia-specific business cycle factor. The model with three and four
factors augments this model with a European and a South American business cycle
factor, respectively.

We combine the different factor model forecasts using the linear opinion pool:

p(yτ,h) =
K∑
k=1

wk,τ+h g(yτ+h|Ik,τ ), τ = t, . . . , t (12)

where K denotes the number of models to combine, Ik,τ is the information set used
by model k to produce the density forecast g(yτ+h|Ik,τ ) for variable y at forecasting
horizon h. t and t are the period over which the individual forecasters’ densities are
evaluated, and finally wk,τ+h is a set of non-negative weights that sum to unity.

Combining the K density forecasts according to equation (12) can potentially pro-
duce a combined density forecast with characteristics quite different from those of the
individual forecasters. As Hall and Mitchell (2007) notes, if all the individual forecast-
ers’ densities are normal, but with different mean and variance, the combined density
forecast using the linear opinion pool will be mixture normal. This distribution can ac-
commodate both skewness and kurtosis and be multimodal, see Kascha and Ravazzolo
(2010).

We follow Bjørnland et al. (2011) and construct model weights according to:

wk,τ+h =
h(sk,τ )∑K
i=1 h(si,τ )

(13)

where si,tau is a statistic from the ith model at time τ , and h(·) is a monotonically
increasing function. Two statistics are considered: the MSE and the CRPS. For both
statistics the function h(s) = 1

s
. For MSE weights, s is computed using the square of

equation (7). For CRPS weights s is computed using equation (9). Two points are
worth emphasizing: The weights are derived based on out-of-sample performance, and
the weights are horizon-specific.

Weighting schemes based on MSE weights are common in the model combination
literature focusing on point forecasts, and has a long history, see, e.g., Bates and
Granger (1969), Clemen (1989), and Stock and Watson (2004). Combining density
forecasts has only more recently become popular, see, e.g., Amisano and Giacomini
(2007), Amisano and Geweke (2009), Kascha and Ravazzolo (2010) and Aastveit et al.
(2014) for recent applications. Still, using CRPS weights has so far not been common
in the economic literature.12

To implement the model combination scheme, and to asses the effect of uncertainty
related to how many factors to include in the model, we re-do the out-of-sample
forecasting experiment described in Section 2.3. For each new vintage of data, we
compute model weights as described by equation (13) and use these weights out-of-
sample to construct a combined factor model forecast according to (12). Thus, the

12A commonly used weighting scheme in the density combination literature is based on the Logarithmic
Score (LS). We prefer to use the CRPS measure mainly due to the fact that the CRPS is less sensitive
to outliers compared to LS scoring, and because the CRPS also rewards values from the predictive
density that are close but not equal to the actual realizations.
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Figure 7: Combination relative to AR(1)

(a) RMSPE
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Note: The different plots report the average relative performance among all 33 countries. See also
the notes to Figure 3.

weights will vary through time. The weights will also be horizon-specific. As before,
the combined forecast is evaluated against an AR(1) as the benchmark.13

Addressing model uncertainty by employing model combination is often found to be
preferable in empirical applications.14 Yet, model weights will be affected by estimation
uncertainty. This is also seen in Figures 13 and 14, in Appendix B, which report
the weights for horizons 1 and 5, respectively. Irrespective of how we construct the
weights, the model weights are volatile and uncertain at the beginning of the evaluation
sample, reflecting the limited information set on which they are derived.15 However,
as more information is accumulated, the model weights seem to converge. In terms
of constructing weights using MSE scores, we see from Figure 13 and for horizon 1
that the model including up to 4 business cycle factors gets a slightly higher weight
than the other factor models, and that all the factor models also get a substantially

13The combined forecast is evaluated with RMSPE (CRPS) when the combination is obtained using
MSE (CRPS) based weights. We stress that the weights are used out-of-sample. At the beginning
of the evaluation sample, when no scores are available for weight computation, we simply use equal
weighting.

14See, e.g., Timmermann (2006) for theoretical results and a discussion on when and how weighting
will be optimal, and for more details about the motivation for doing model combination.

15Note that the weights reported are averages across all countries. As such, they under-report the
actual variability observed in model weights across countries.
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higher weight than the AR(1) model, consistent with the results already reported. On
the longer forecasting horizon, horizon 5, it is almost impossible to distinguish the
model weights from each other. Turning to CRPS based weights, Figure 14 shows
that on both forecasting horizons the factor models are preferred to the simple AR(1)
model. However, based on the model weights it is not easy to discriminate between
the different factor models.

Figure 7 shows the relative performance of the combined factor model forecast.
That is, the combined forecasts obtained using weights where the weight assigned to
the AR(1) are normalized away. In terms of RMSPE evaluation, the performance of
the combined factor model forecast outperforms the benchmark when evaluated over
the whole sample. Compared to the results reported in Figure 3a, we also see that
the combined forecast offers an improvement relative to the one-factor model (i.e., the
distance from the zero line is larger (smaller, when negative)), on both forecasting
horizons. Having noted that, the time path of the relative forecasting performance
differs markedly from the one-factor model case. In particular, the precision of the
long-run combined factor model forecast improves more substantially early in the crisis,
and then remains more or less elevated. We do not observe any substantial drop in the
short-term relative forecasting performance during the recovery phase of the Great
Recession either. Thus, by combining the predictive content across all four factor
models it seems that we are better able to capture country-specific (or region specific)
information than in the one factor case. This resonates well with the interpretation
where increased uncertainty about policies in the US and Europe are accompanied by
large long-run forecast errors in the one factor model case (discussed in Section 3.1),
but where the inclusion of additional regional factors (through model combination)
reduces this uncertainty.16

Turning to the CRPS evaluation the main message from Section 3.1 holds through:
The relative forecasting performance of the combined factor model forecast increases
substantially on shorter horizons after the Great Recession, but falls some years into
the crisis for longer horizons. However, compared to the results in Figure 3b, we now
observe a much smaller gain in terms of CRPS scoring. Evaluated over the whole
sample, the combined factor model forecast is actually outperformed by the AR(1) on
horizon 5. As discussed in Section 3.3, one likely explanation for this deterioration
of relative forecasting performance is the extra estimation uncertainty introduced by
including additional factors. In the combination experiment, uncertainty related to the
model weights adds to this estimation uncertainty. The combination results reported
in Figure 7 indicate that these extra layers of model complexity are more harmful for
density evaluation than for point forecast evaluation.

In sum, employing model combination to account for the uncertainty in the number
of factors, offers no free lunch. Still, on average, regional business cycle factors matter
and are given a large weight in the model combination experiment. The Great Reces-
sion has considerable impact on relative forecasting performance and highlights the
potential benefit of using common international business cycle factors in forecasting.

16Remember here that in the one factor model case, the factor is identified using US GDP and that
Figure 2 confirms that this factor is highly associated with European and North American countries.
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4 Conclusion

The in-sample evidence pointing toward a high degree of co-movement in aggregate
GDP across a large number of countries is well documented in the business cycle
literature. However, high co-movement in-sample does not necessarily imply good
out-of-sample performance, and inference without out-of-sample verification is likely
to be spurious, with an out-of-sample approach inherently involving less over-fitting.
In light of findings in, e.g., Imbs (2010), that argue that the Great Recession was the
first really global recession in decades, understanding the nature of predictability using
common global components seems especially relevant.

This paper therefore asks: Does a model with common international business cycle
factors forecast better than the purely domestic alternative, i.e., a simple autoregres-
sive process? To answer this question we employ a Dynamic Factor Model, commonly
used in the business cycle synchronization literature, and run an out-of-sample fore-
casting experiment. We forecast GDP growth for a total of 33 countries and evaluate
the forecast performance across 82 out-of-sample periods using both point and density
evaluation measures.

Our results show that exploiting the informational content in a common global
business cycle factor improves forecasting accuracy in terms of both point and density
forecast evaluation across a large panel of countries. In line with in-sample evidence, we
also document that the Great Recession has a huge impact on this result. Irrespective
of which loss function we use, the event causes a clear preference shift towards the
model including a common global factor. Similar shifts are not observed earlier in
the evaluation sample. However, this time is different also in other respects. On
longer forecasting horizons the performance of the DFM deteriorates substantially in
the aftermath of the Great Recession. This indicates that the recession shock itself
was felt globally, but that the recovery phase has been very different across countries.
Finally, augmenting the DFM with regional factors improves the performance of the
model further, giving out-of-sample support to the in-sample studies advocating the
importance of regional business cycle factors. Still, when taking into account the
uncertainty associated with which and how many regional factors to include in the
model, the results are less clear cut: No factor model specification gets a substantially
higher weight than the others, although the combined factor model forecasts seem to
score slightly better than those obtained from a one factor model only.
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Appendices

Appendix A The Gibbs sampling approach

The three steps of the Gibbs sampler, described in Section 2.2, are iterated until
convergence. Below we describe the three steps in more detail. The exposition follows
Kim and Nelson (1999) (Chapter 8) closely, and we refer to their book for details.

For convenience, we repeat some notation: ỹT = [y1, · · · , yT ]′, f̃T = [f1, · · · , fT ]′,
H = [λ0, · · · , λs], and pi = [ρ1,i, · · · , ρl,i] for i = 1, · · · , N , and rewrite the state space
model defined in equation 1 and 2 as:

yt = ΛFt + εt (14)

and
Ft = AFt−1 + et (15)

where Ft = [f ′t , · · · , f ′t−h]′, et = Gut, with ut ∼ i.i.d.N(0, Q) and:

A =


φ1 φ2 · · · φh
Iq 0 · · · 0

0 Iq
. . .

...
0 0 Iq 0

 , G =


Iq
0
...
0

 , Λ =
(
H 0N,h−s

)
(16)

Note that h > s in our application.
We also allow for serially correlated idiosyncratic errors. In particular, we consider

the case where εt,i, for i = 1, · · · , N , follows independent AR(l) processes:

εt,i = piEt,i + ωt,i (17)

where ωt,i is the AR(l) residuals with ωt,i ∼ i.i.d.N(0, σ2
i ),

R =


σ2

1 0 · · · 0

0 σ2
2

. . . 0
...

. . . . . .
...

0 · · · · · · σ2
N

 , (18)

and Et,i = [εt−1,i, · · · , εt−l,i]′.

A.0.1 Step 1: f̃T |ỹT ,Λ, A,R,Q, p

We employ Carter and Kohn’s multimove Gibbs sampling approach (see Carter and
Kohn (1994)). Because the state space model given in equations 14 and 15 is linear
and Gaussian, the distribution of FT given ỹT and that of Ft given Ft+1 and ỹt for
t = T − 1, · · · , 1 are also Gaussian:

FT |ỹT ∼ N(FT |T , PT |T ) (19)

Ft|ỹt, Ft+1 ∼ N(Ft|t,Ft+1 , Pt|t,Ft+1), t = T − 1, T − 2, · · · , 1 (20)
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where

FT |T = E(FT |ỹT ) (21)

PT |T = Cov(FT |ỹT ) (22)

Ft|t,Ft+1 = E(Ft|ỹt, Ft+1) = E(Ft|Ft|t, Ft|t+1) (23)

Pt|t,Ft+1 = Cov(Ft|ỹt, Ft+1) = Cov(Ft|Ft|t, Ft|t+1) (24)

Given F0|0 and P0|0, we obtain FT |T and PT |T from the last iteration of the Gaussian
Kalman filter:

Ft|t−1 = AFt−1|t−1 (25)

Pt|t−1 = APt−1|t−1A
′ +GQG′ (26)

Kt = Pt|t−1Λ′(ΛPt|t−1Λ′ +R)−1 (27)

Ft|t = Ft|t−1 +Kt(yt − ΛFt|t−1) (28)

Pt|t = Pt|t−1 −KtΛPt|t−1 (29)

This means that at t = T equation 28 and 29 above, together with equation 19, is
used to draw FT |T .

We draw Ft|t,Ft+1 for t = T −1, T −2, · · · , 1 based on 20, where Ft|t,Ft+1 and Pt|t,Ft+1

are generated from the following updating equations:

Ft|t,Ft+1 = E(Ft|Ft|t, Ft|t+1)

= Ft|t + P ′t|tA(APt|tA
′ +GQG′)−1(Ft+1 − AFt|t)

(30)

Pt|t,Ft+1 = Cov(Ft|Ft|t, Ft|t+1)

= Pt|t + Pt|tA
′(APt|tA

′ +GQG′)APt|t
(31)

A.0.2 Step 2: A,Q|ỹT , f̃T ,Λ, R, p

Conditional on f̃T , equation 15 is independent of the rest of the model, and the dis-
tribution of A and Q are independent of the rest of the parameters of the model, as
well as the data.

By abusing notation, we put the transition equation in SUR form and define:

y = Xβ + ε (32)

where y = [f1, · · · , fT ]′, X = [X1, · · · , XT ]′, ε = [ε1, · · · , εT ]′ and β = [β1, · · · , βq]′,
with βk = [φ1,k, · · · , φh,k] for k = 1, · · · , q. Further,

Xt =


xt,1 0 · · · 0

0 xt,2
. . .

...
...

. . . . . .
...

0 · · · · · · xt,q


with xt,k = [f ′t−1, · · · , f ′t−h]. Finally, ε ∼ i.i.d.N(0, Iq ⊗Q).17

17With the transition equation specified in SUR form it becomes easy to adjust the VAR(h) model such
that different regressors enter the q equations of the VAR(h).
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To simulate β and Q, we employ the independent Normal-Whishart prior:

p(β,Q) = p(β)p(Q−1) (33)

where
p(β) = fN(β|β, V β) (34)

p(Q−1) = fW (Q−1|vQ, Q−1) (35)

The conditional posterior of β is:

β|y,Q−1 ∼ N(β, V β)I[s(β)] (36)

with

V β = (V −1
β +

T∑
t=1

X ′tQ
−1Xt)

−1 (37)

and

β = V β(V −1
β β +

T∑
t=1

X ′tQ
−1yt) (38)

I[s(β)] is an indicator function used to denote that the roots of β lie outside the unit
circle.

The conditional posterior of Q−1 is:

Q−1|y, β ∼ W (vQ, Q
−1

) (39)

with
vQ = vQ + T (40)

and

Q = Q+
T∑
t=1

(yt −Xtβ)(yt −Xtβ)′ (41)

A.0.3 Step 3: Λ, R, p|ỹT , f̃T , A,Q

Conditional on f̃T , and given our assumption of R being diagonal, equation 14 result
in N independent regression models.

However, to take into account serially correlated idiosyncratic errors, and still
employ standard Bayesian techniques, we need to transform equation 14 slightly.

Thus, for i = 1, · · · , N , conditional on p, and with l = 1, we can rewrite equation
14 as:

y∗t,i = ΛiF
∗
t + ωt,i (42)

with y∗t,i = yt,i − p1,iyt−1,i, and F ∗t = Ft − p1,iFt−1, and Λi being the i-th row of Λ.
From 42 we can then simulate the parameters Λi and Ri,i = σ2

i = 1
hi

using standard
independent Normal-Gamma priors (for notational convenience we drop the subscript
i from the expressions below):18

p(Λ, h) = p(Λ)p(h) (43)

18Note that with l = 0, we could have simulated the parameters Λi and σ2
i without doing the transfor-

mation of variables described above.
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where
p(Λ) = fN(Λ|Λ, V Λ) (44)

p(h) = fG(h|s−2, vh) (45)

The conditional posterior of Λ is:

Λ|ỹ, h, p ∼ N(Λ, V Λ) (46)

with;

V Λ = (V −1
Λ + h

T∑
t=1

F ∗
′

t F
∗
t )−1 (47)

and

Λ = V Λ(V −1
Λ Λ + h

T∑
t=1

F ∗
′

t y
∗
t ) (48)

The conditional posterior for h is:

h|ỹ,Λ, p ∼ G(vh, s
−2) (49)

with
vh = vh + T (50)

and

s =

∑T
t=1(y∗t − ΛF ∗t )′(y∗t − ΛF ∗t ) + vhs

2

vh
(51)

Finally, conditional on Λ and h, the posterior of p depends upon its prior, which
we assume is a multivariate Normal, i.e.:

p(p) = fN(p|p, V p) (52)

Accordingly, the conditional posterior for p is:

p|ỹ,Λ, h ∼ N(p, V p)I[s(p)] (53)

with

V p = (V −1
p + h

T∑
t=1

E ′tEt)
−1 (54)

and

p = V p(V
−1
p p+ h

T∑
t=1

E ′tεt) (55)
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A.0.4 Prior specifications and initial values

The Benchmark model is estimated using two-step parameter estimates (see Section
2.2) as priors. We label these estimates OLS. In particular, for equations 34 and 35
we set β = βOLS, V β = V OLS

β × 3, Q = QOLS and vQ = 10.

For equations 44, 45 and 52 we set vh = 10, s2 = s2,OLS, Λ = [λOLS0 : 0N,h−s−1] and
V Λ = [(Is × 3)⊗ VλOLS0

]. p = 0, and V p = 0.5.
In sum, these priors are reasonable uninformative, but still proper. We have also

experimented with other prior specifications, e.g. using Minnesota style prior for the
transition equation parameters, and setting Λ = 0. This yields similar results as those
reported in the main text. However, the variables in our sample display very different
unconditional volatilities. The prior specification should accommodate this feature.

The Gibbs sampler is initialized using parameter values derived from the two-step
estimation procedure. Parameters not derived in the two-step estimation (i.e. p and
λ1, · · · , λs) are set to 0.

In this model, a subtle issue arises for the t = 0 observations (i.e. lags of the
dynamic factors and the idiosyncratic errors at time t = 1). However, since we assume
stationary errors in this model, the treatment of initial conditions is of less importance.
Accordingly, we follow common practice and work with the likelihood based on data
from t = h+ 1, · · · , T .
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Appendix B Additional figures and tables

Table 3: Data and factor statistics

Country Statistics RMSE
Data Factors

Mean Std. ACF N. America Asia Europe S. America

Argentina 0.64 2.19 1.09 0.58 1.01 0.64 0.71
Australia 0.79 0.75 0.99 0.56 1.03 0.65 0.69
Austria 0.54 1.13 0.64 0.57 1.03 0.63 0.72
Belgium 0.49 0.70 0.67 0.56 1.02 0.60 0.69
Brazil 0.70 1.77 0.05 0.57 1.03 0.64 0.70
Canada 0.63 0.76 0.42 0.50 1.03 0.65 0.66
Chile 1.13 2.00 0.48 0.57 1.02 0.64 0.69
China 2.47 1.14 0.35 0.57 1.03 0.65 0.72
Finland 0.59 1.39 0.41 0.56 1.03 0.65 0.71
France 0.44 0.50 0.23 0.55 1.00 0.59 0.72
Germany 0.42 0.88 -0.10 0.56 1.03 0.58 0.70
India 1.54 0.99 1.07 0.58 1.03 0.65 0.72
Indonesia 1.24 2.17 0.77 0.57 1.01 0.64 0.70
Italy 0.36 0.65 0.80 0.54 1.01 0.59 0.70
Japan 0.46 1.03 0.31 0.57 1.00 0.62 0.72
Korea 1.45 1.65 -0.03 0.56 0.82 0.62 0.71
Malaysia 1.42 1.62 0.23 0.56 0.87 0.61 0.65
Mexico 0.65 1.56 0.82 0.56 1.02 0.63 0.68
Netherlands 0.51 0.78 -0.03 0.56 1.02 0.62 0.70
New Zealand 0.53 0.94 1.16 0.56 1.01 0.65 0.69
Norway 0.68 1.21 0.06 0.57 1.03 0.64 0.71
Peru 0.78 3.09 0.05 0.57 1.03 0.65 0.72
Philippines 0.78 1.48 2.85 0.57 1.02 0.64 0.72
Saudi Arabia 0.53 2.13 0.14 0.57 1.02 0.64 0.71
Singapore 1.64 1.90 1.17 0.57 0.98 0.63 0.69
South Africa 0.61 0.84 0.57 0.56 1.02 0.64 0.66
Spain 0.58 0.55 -0.33 0.55 1.03 0.59 0.73
Sweden 0.54 1.32 1.84 0.56 1.03 0.64 0.71
Switzerland 0.44 0.68 0.98 0.56 1.01 0.62 0.68
Thailand 1.32 1.62 1.03 0.56 0.86 0.62 0.70
Turkey 1.02 2.68 -0.01 0.57 1.03 0.64 0.71
UK 0.47 0.70 0.26 0.50 1.00 0.64 0.72
USA 0.63 0.75 1.15 0.52 1.03 0.64 0.68

Median 0.63 1.14 0.48 0.56 1.02 0.64 0.70

Note: Columns 2-4 report the mean, standard deviation (Std.) and autocorrelation (ACF) of the
individual series. The ACF statistic is computed as the sum of the auto-correlation coefficients on lag
1-5. The columns associated with the RMSE Factors heading reflect the estimates based on estimating
a BDFM with 4 regional factors. The RMSE columns report the root mean squares error associated
with variable i in explaining factor j. In Figure 12 the coloured bars reflect the contribution by the 8
variables with the lowest RMSE.
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Figure 8: Relative historical forecast performance GDP: Across regions, RMSPE scores

(a) North America
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Note: The different plots report the average relative performance among countries within a geograph-
ical region. See also the notes to Figure 3.
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Figure 9: Relative historical forecast performance GDP: Across regions, CRPS scores

(a) North America
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(b) South America

1991.01 1996.02 2001.02 2006.02 2011.02
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) Europe

1991.01 1996.02 2001.02 2006.02 2011.02
0

1

2

3

4

5

6

7

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

0

1

2

3

4

5

6

7

(d) Asia

1991.01 1996.02 2001.02 2006.02 2011.02
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Note: The different plots report the average relative performance among countries within a geograph-
ical region. See also the notes to Figure 3.
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Figure 10: 4 factor model relative to AR(1), RMSPE scores
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1991.01 1996.02 2001.02 2006.02 2011.02
−1

0

1

2

3

4

5

6

7

8

9

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

−1

0

1

2

3

4

5

6

7

8

9

(b) South America

1991.01 1996.02 2001.02 2006.02 2011.02
−4

−2

0

2

4

6

8

10

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

−4

−2

0

2

4

6

8

10

(c) Europe

1991.01 1996.02 2001.02 2006.02 2011.02
−2

0

2

4

6

8

10

12

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

−2

0

2

4

6

8

10

12

(d) Asia

1991.01 1996.02 2001.02 2006.02 2011.02
−4

−3

−2

−1

0

1

2

3

 

 

ERM LTCM NASDAQ USBankruptcies FinancialCrisis

Horizon 1

Horizon 5

−4

−3

−2

−1

0

1

2

3

Note: The different plots report the average relative performance among countries within a geograph-
ical region. See also the notes to Figure 3.
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Figure 11: 4 factor model relative to AR(1), CRPS scores
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Note: The different plots report the average relative performance among countries within a geograph-
ical region. See also the notes to Figure 3.
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Table 4: Density calibration statistics: PIT test - one global component, all countries

Horizon
1-step 5-step

Benchmark Alternative Benchmark Alternative

USA 0.00 0.11 0.00 0.24
Argentina 0.02 0.38 0.00 0.00
Australia 0.00 0.00 0.00 0.01
Austria 0.67 0.86 0.03 0.00
Belgium 0.00 0.71 0.00 0.00
Brazil 0.00 0.02 0.00 0.17
Canada 0.00 0.00 0.00 0.59
China 0.02 0.00 0.00 0.00
Chile 0.00 0.00 0.00 0.00
Finland 0.14 0.66 0.23 0.31
India 0.00 0.00 0.00 0.01
Indonesia 0.00 0.00 0.08 0.52
Italy 0.00 0.00 0.00 0.00
Japan 0.00 0.00 0.00 0.00
Korea 0.00 0.02 0.00 0.02
Malaysia 0.47 0.01 0.01 0.00
Mexico 0.01 0.13 0.00 0.15
Peru 0.00 0.00 0.00 0.00
Philippines 0.00 0.00 0.00 0.00
South Africa 0.00 0.00 0.00 0.02
Saudi Arabia 0.00 0.00 0.00 0.00
Singapore 0.01 0.00 0.54 0.00
Spain 0.00 0.03 0.00 0.00
Switzerland 0.00 0.15 0.00 0.18
Thailand 0.06 0.00 0.00 0.00
Turkey 0.53 0.03 0.41 0.02
Norway 0.00 0.06 0.00 0.09
UK 0.00 0.00 0.00 0.06
France 0.00 0.55 0.00 0.00
Netherlands 0.00 0.00 0.00 0.64
Germany 0.00 0.54 0.00 0.32
New Zealand 0.00 0.00 0.00 0.00
Sweden 0.00 0.01 0.00 0.01

Note: Each entry shows the p-value of the Berkowitz (2001) test for zero mean, unit variance and
independence of the PITS. The null of the test is no calibration failure. Evaluation sample: 1991:Q1-
2011:Q2.
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Figure 12: Factors, 4 factor model
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Note: The plots report 4 regional business cycle factors, estimated using the whole sample. See also
Section 3.1. 37



Figure 13: Model weights: MSE
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Figure 14: Model weights: CRPS
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