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Abstract

This paper describes the semi-structural model DORY used by Norges Bank as a

link between raw data, sector experts and the core policy model NEMO. While the

primary objective in NEMO is to analyse business cycle fluctuations and monetary

policy, DORY is used to identify the underlying trends in the main macro variables

in Norway. DORY has been gradually developed over the last couple of years and

has now been estimated using state of the art Bayesian estimation techniques.

∗The views and conclusions in this publication are those of the authors and do not necessarily reflect
those of Norges Bank and should therefore not be reported as representing the views of Norges Bank. We
would like to thank Thor Andreas Aursland, Leif Brubakk, Fabio Canova, Karsten Gerdrup, Tord Krogh,
Per Espen Lille̊as, Magnus Saxegaard and our colleagues at Norges Bank for their helpful comments and
suggestions.
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1 Introduction

This paper documents a semi-structural model for Norway named DORY. DORY is

a flexible, unified framework used to identify underlying trends in the main macro vari-

ables in Norway. We specify a structure with cyclical interactions between the variables,

common trends and variable-specific trends. The model includes information on a large

set of observables and imposes simple economic relationships between the variables.

Norges Bank has always relied on a combination of models and expert judgment to

produce forecasts. Our main policy model NEMO is used for analyzing and forecasting

business cycle fluctuations.1 Input data to, and forecasts from, NEMO are primarily in

terms of deviation from a steady state (hereafter referred to as gaps). DORY complements

NEMO by transforming raw data into gaps. This is done by decomposing data into gaps,

trends, measurement errors and the steady state.

Norges Bank has used different methods to estimate gaps. For the output gap, a large

set of indicators and suite of models has been developed, see Hagelund et al. (2018). For

other gap estimates, Norges Bank has typically relied on univariate filters in combination

with expert judgement. One issue with most univariate filters is that as real-time prop-

erties are quite poor, the historical estimates are revised substantially when new data

becomes available. They also ignore potential common trends across macroeconomic

variables. It is for example natural to assume that underlying trends in household credit

and house prices are related. Using data on both house prices and credit could therefore

be useful when estimating the respective trends. In fact, it has been shown that impos-

ing some simple economic structure and adding information about developments in other

variables can improve the precision of gap estimation (see e.g Stock and Watson (1989)

and Basistha and Startz (2008)).

Another important drawback with univariate filters is that simple accounting relation-

ships do not necessarily add up. For example, cyclical fluctuations in demand components

should add up to the output gap at the same time as the underlying trend in demand

components should add up to trend GDP. Estimating the gaps of the GDP components

independently of the output gap could lead to trend and gap estimates that do not add

up, especially if there is a large degree of fluctuation in inventories. These issues can

easily be handled within a state space framework. It is also useful to have a unified

1See Kravik and Mimir (2019) for documentation of NEMO.

2



framework that allows experts to apply judgement in a consistent manner. For example,

if the output gap is revised, this should have consequences for the gaps of the demand

components.

DORY is a large, flexible system with many parameters and unobserved variables. We

apply Bayesian techniques to estimate the model and use a version of the Kalman filter

to find the most likely gap estimate of the variables given the raw data, model equations

and parameter estimates. We also allow for judgement endogenously within the model.

The rest of the paper is organized as follows. Section 2 presents the data and trans-

formations. Section 3 describes the structure of the model and Section 4 includes an

overview of the model estimation. Some model properties and results are presented in

Section 6.

2 Data and transformations

The dataset used in the estimation of DORY comprises annual data and runs from

1990 to 2019.2 The observable domestic variables are mainland GDP and the associated

demand components, house prices, credit, wages, disposable income, inflation, unemploy-

ment rate and the policy rate. Finally, we have the observed variables from the financial

markets, which include the nominal exchange rate, nominal interest rate differential be-

tween Norway and its trading partners and the oil price in USD. The data sources are

Statistics Norway, Thomson Reuters and Norges Bank.

The purpose of the model is to decompose the variation in the demeaned variables

into stochastic, stationary trends and cyclical variation (gaps). The observable variables

are transformed in the following way: First, variables that contain a trend with drift

enter the model in growth rates. This includes the demand components, GDP, wages,

consumer prices, house prices, unemployment rate, credit to households and enterprises

and disposable income. The rest of these observables (exchange rate, interest rate, nom-

inal interest rate differential between Norway and its trading partners and the oil price)

are in levels. Second, all of these observable variables are demeaned.

In addition, we treat the output gap and the oil price gap as observable variables. For

the output gap we use Norges Bank’s estimate. Norges Bank already has a comprehensive

2Some of the data series start later. To deal with some missing values in the early part of the sample
we apply the Kalman filter based on the model equation to estimate the missing values.
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system in place for estimating the output gap, documented in Hagelund et al. (2018),

which includes several models that are similar to DORY.

For the oil price gap we use a simple measure developed for running NEMO, as we

do not expect there to be any information in DORY that can help us identify the trend

in the oil price.3

For more information on the data, the variables and transformations, see Table 1 in

the appendix.

3 The model

The state-space model we use is flexible and allows us to specify a structure with

cyclical interactions between the variables, common trends and variable-specific trends.

We organize the model into sections: a supply side, a demand side, prices and interest

rates, and credit.

3.1 Supply

The stochastic process for changes in output (∆yt) is given by equations (1)-(3).

∆yt = ∆ŷt + ∆y∗t + eỹ,t (1)

ŷt = λŷ · ŷt−1 − αr̂ · r̂t + eŷ,t (2)

∆y∗t = λy∗ ·∆y∗t−1 + ey∗,t (3)

Output growth (∆y) is decomposed into growth in the output gap (∆ŷ), trend output

growth (∆y∗) and a trend-level shock(eỹ). Equation (2) formulates the output gap as a

function of the real interest rate gap (r̂), lagged output gap and shocks to the output

gap (eŷ).Trend output growth is modelled as an AR(1) process, subject to the shock ey∗ .

This shock is meant to capture transitory changes in the path for trend output growth,

such as changes in demographics and technological innovations. As in Garcia-Saltos et al.

3The oil price gap before 2015 is decomposed using an HP filter (lambda = 40 000), but is adjusted
by sector expert judgement. After 2015 we have used a more mechanical method where the the oil price
trend is a linear trend between 72 USD in 2015 Q3 and the endpoint of futures prices.
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(2015), we also include a level-shock term (eỹ) that is meant to capture one-time shifts

in the level of the trend. Such shifts can capture real changes in production capacity, e.g.

discovery and extraction of natural resources, but it can also capture noise in the data.

On the supply side, we also include the unemployment rate which is divided into

changes in the unemployment gap (∆û) and changes in the trend unemployment rate

(∆u∗).

∆ut = ∆ût + ∆u∗t (4)

ût = λû · ût−1 + βŷ · ŷt + eû,t (5)

∆u∗t = λu∗ ·∆u∗t−1 + eu∗,t (6)

The unemployment gap (û) is related to the output gap in equation (5). The change

in the trend rate of unemployment (u∗) is subject to shocks (eu∗), which permanently

impact the trend rate of unemployment. Such shocks could for example be changes in

labour market mismatch.

3.2 Demand

On the demand side, the model includes the same demand components as in NEMO,

which sums up to our approximation of aggregate demand in mainland Norway (AD). The

demand components are consumption (C), housing investment (IH), corporate investment

(IC), oil investments (IO), government expenditures (G), imports (IM), exports from the

oil service sector (EXO) and non-oil related exports (EX). Each demand component has

the same structure in the model, denoted by X below.

∆Xt = ∆X̂t + ∆X∗t + eX̃,t (7)

X̂t = (λŷ + λX̂) · X̂t−1 + eX̂,t (8)

∆X∗t = ∆y∗t + ZX∗,t (9)
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ZX∗,t = λX∗ · ZX∗,t−1 + eZX∗ ,t (10)

As for output, the change in the demand component’s is decomposed into cyclical

variation, represented by the respective demand component’s gap (∆X̂t), trend growth

(∆X∗t ) and a trend-level shock (eX̃,t). For all demand components, the gaps are for-

mulated as AR(1) processes denoted by equation (8). The persistence of the demand

components gap is set equal to that of the output gap (λŷ) plus λX̂ , where λX̂ is spe-

cific for each demand component. The trend growth rate of the demand components

(∆X∗) is given by the growth rate of trend output with temporary deviations, denoted

by (ZX∗). Equation (10) describes the law of motion for ZX∗ , which allows for the trend

growth rate of a given demand component to deviate temporarily from the growth rate of

trend output. Thus, trend output growth is imposed as a common trend for the demand

components.

Further, two constraints are imposed on the demand components. First, equation (11)

requires the weighted sum of the demand component gaps to be equal to the output gap,

where δX,t represents the individual component’s share of GDP. This constraint ensures

that changes to the output gap are reflected in the demand components.

ŷt =
∑
X∈AD

X̂t · δX,t (11)

The second constraint is imposed such that the weighted sum of trend growth in the

demand components is equal to trend growth in output. This is done by restricting the

trend-level shocks to output growth to be equal to the trend-level shocks to the demand

components and the contribution of inventories (∆l), see equation (12).

eỹ,t =
∑
X∈AD

δX,t · eX̃,t + ∆lt (12)

To see why, consider equation (13):

∆yt =
∑
X∈AD

δX,t ·∆Xt + ∆lt (13)

Inserting the decomposition of output from equation (1) and for the demand compo-

nents from equation (7), we get:
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∆ŷt + ∆y∗t + eỹ,t =
∑
X∈AD

δX,t · (∆X̂t + ∆X∗t + eX̃,t) + ∆lt (14)

Further, since the output gap and the weighted sum of the gaps of the demand compo-

nents must be equal each period (see equation 11), this must also be true for the change

in the output gap and the weighted sum of the change in each demand gap. Therefore,

these terms cancel each other out, such that:

∆y∗t + eỹ,t =
∑
X∈AD

δX,t · (∆X∗t + eX̃,t) + ∆lt (15)

Finally, inserting for (12) yields that the trend in output is equal to the weighted sum

of the trends in the demand components:

∆y∗t =
∑
X∈AD

δX,t ·∆X∗t (16)

3.3 Prices

DORY also includes a set of price series: real wage growth, house price growth, the

nominal exchange rate, an oil price gap and core inflation.

Real wage growth (∆w) is decomposed into changes in gap (∆ŵ), trend growth rate

(∆w∗) and a trend-level shock. Equation (18) links the real wage gap to the output gap,

while equation (19) allows for shocks to trend wage growth with a decaying magnitude

over time. Such shocks could be changes in the bargaining power of workers or terms of

trade.

∆wt = ∆ŵt + ∆w∗t + ew̃,t (17)

ŵt = λŵ · ŵt−1 + γ · ŷt + eŵ,t (18)

∆w∗t = λw∗ ·∆w∗t−1 + ew∗,t (19)

In addition to wages, we also include disposable income in the model. Disposable

income is also divided into gap, trend and a trend-level shock.
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∆w∗d,t = ∆C∗t + ewd,t (20)

ŵd,t = ŵt + βwd
· ŷt − αwd

· r̂t + ewd,t (21)

Trend growth in disposable income (∆w∗d) is linked to trend growth in consumption

(∆C∗). Data on disposable income is introduced in order to better identify the consump-

tion gap. Further, the disposable income gap (ŵd) is linked to the wage gap (ŵ), output

gap (ŷ) and the real interest rate gap (r̂). ŷ enters in equation (21) to capture changes

in employment while r̂ captures net interest expense.

House prices are also included in the model and are decomposed into gap, trend

and a trend-level shock as well. To help identify the gap for house prices, the housing

investment gap and the real interest rate gap are introduced in equation (23). Cyclical

changes in house prices and residential investment are expected to be correlated, while

a negative relationship between the house price gap and the real interest rate gap is

expected. Equation (24) allows for time-varying changes to trend growth in house prices.

∆PH,t = ∆P̂H,t + ∆P ∗H,t + eP̃H ,t
(22)

P̂H,t = βPH ,IH · ÎH,t − γr · r̂t + eP̂H ,t
(23)

∆P ∗H,t = λP ∗H ·∆P
∗
H,t−1 + eP ∗H ,t (24)

An equation for the inflation gap (π̂) is included, defined as the difference between

core inflation and the inflation target. The time-varying dynamics of the inflation gap

are modelled as an AR(1) process.

π̂t = λπ̂ · π̂t−1 + eπ̂,t (25)

The exchange rate is decomposed into an exchange rate gap (ŝ) and a trend (s∗). The

gap is determined by a risk premium on the exchange rate (rpt) and the interest rate

differential between Norway and its trading partners (rd). The risk premium is a function
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of its own lag, the oil price gap (opt) and a shock, erp,t, that captures other factors that

could affect the risk premium, such as international risk sentiment. The exchange rate

trend is modeled as an AR(1) process.

st = ŝt + s∗t (26)

ŝt = rpt − rd,t (27)

rpt = λrp · rpt−1 + βrp,op · ôpt + erp,t (28)

s∗t = λs · s∗t−1 + es,t (29)

The oil price is divided into an oil price gap (ôp) and a trend level for the oil price

(op∗). The oil price gap is linked to the gap for oil investment (ÎH) and is subject to

shocks (eôp). The trend oil price (op∗t ) is assumed to follow an AR(1) process.

opt = ôpt + op∗t (30)

ôpt = λôp · opt−1 + βop,IO · ÎO,t + eôp,t (31)

op∗t = λop∗ · op∗t−1 + eop∗,t (32)
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3.4 Interest rate and credit

A measure of the real interest rate4 and two credit variables, household and enterprise

credit, are included in the model.

The real interest rate (r) is decomposed into the real interest rate gap (r̂) and the

neutral real interest rate (r∗).

rt = r̂t + r∗t (33)

r̂t = λr̂ · r̂t−1 + αŷ · ŷt + απ̂ · π̂t + er̂,t (34)

r∗t = σ ·∆y∗t + zr∗,t (35)

zr∗,t = λz · zt−1 + ezr∗ ,t (36)

Equation (34) is a simple Taylor rule, linking the real interest rate gap to the output

gap and the inflation gap (π̂). The neutral real interest rate in equation (35) is linked to

trend output growth with temporary deviations described by the stochastic process zr∗.

Changes in household credit ∆bh,t and enterprise credit ∆be,t are decomposed into

gap, trend and a trend-level shock, similar to equation (7).

∆bh,t = ∆b̂h,t + ∆b∗h,t + eb̃h,t (37)

∆be,t = ∆b̂e,t + ∆b∗e,t + eb̃e,t (38)

Equation (39) relates household credit gap (̂bh) to the house price gap (P̂ ). The lag

term (λb̂h) enables the household credit gap to be more persistent than the house price

gap. The enterprise credit gap (̂be) is conditioned on the corporate investment gap (ÎC).

b̂h,t = λb̂h · b̂h,t−1 + αPH
· P̂H,t + eb̂h,t (39)

4The real interest rate is defined as the three-month nominal interest rate minus core inflation. See
Table 1 for additional information.
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b̂e,t = λb̂e · b̂e,t−1 + αIC · ÎC,t + eb̂e,t (40)

Trend credit growth for both households (∆b∗h,t) and enterprises (∆b∗e) is driven by

the shocks (eb∗h and eb∗e).

∆b∗h,t = λb∗h ·∆b
∗
h,t−1 + eb∗h,t (41)

∆b∗e,t = λb∗e ·∆b
∗
e,t−1 + eb∗e ,t (42)

4 Estimation

4.1 Estimation

The model presented in Section 3 is a large, flexible system with many parameters and

unobserved variables. This makes it challenging to estimate the parameters of the model.

We apply Bayesian techniques, which makes it possible to combine prior beliefs about the

parameters and the moments of the model and data. We use the prior information/beliefs

to shrink the possible parameter space. In the estimation, we first use the Kalman filter

to evaluate the likelihood, then the likelihood is optimized by using the Artificial Bee

Colony-algorithm by Karaboga and Basturk (2007). The methods are implemented using

the NB toolbox.5 The specific estimation methods are further explained in Appendix B.

For some parameters, we have rather strong prior beliefs about the parameter values

and impose relatively tight priors. This applies to λŷ, which determines the persistence of

the output gap (see Section 3.1).The combination of a well-established model system and

expert judgement makes us confident in the estimate of the output gap that we use in the

Monetary Policy Report. Hence, we use a tight prior on λŷ. We also impose relatively

tight priors for λX̂ . The demand components inherit λŷ, where λX̂ is the persistence of

the gap of demand component X relative to the output gap (see Section 3.2). We thereby

assume that the persistence of the demand component gaps is close to that of the output

gap.

5The NB Toolbox has been developed by Norges Bank and freely available for downloading at
https://github.com/Coksp1/NBTOOLBOX.
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For other parameters, such as βPH ,IH , which links the housing investment gap and

the house price gap (see equation 23), there is little information outside the model. In

that case, we are more agnostic as to what the parameter should be and use a uniform

distribution. The uniform distribution makes any value (within a truncated range) equally

likely.

For the variance parameters, we have either used the inverse gamma distribution

IG(α, β), with shape parameter α and scale parameter β, or used a uniform distribution.

In cases where we have little information from outside the model or prior beliefs about

the parameter values, we have kept our priors relatively loose in order to let the data

inform us of the parameter values.

Table 2 in the appendix summarizes the priors imposed in the estimation. For all

priors, we have truncated the distribution so that the parameters lie within a range that

makes the model interpretable. No posterior mode of the parameters is on the edges of

the truncated prior distributions.

To make the model more stable and easier to estimate, we do not use time-varying

parameters in the estimation. But when running the Kalman filter, we allow the shares of

the demand components to vary over time. For more on the Kalman filter, see Appendix

B.

4.1.1 System priors

System priors are priors about the model’s features and behaviour as a system, such

as the moments of model variables, or the models’ forecast error variance decomposition

(FEVD). Often, it is easier to formulate priors on the system as a whole, rather than

on individual parameters. We follow Andrle and Benes (2013), and use both priors on

individual parameters and system priors in the estimation.

Specifically, we impose priors on the variance of some of the gaps in the model. In

addition, we impose a system prior that limits how much of the forecast error variance

decomposition (FEVD) that the trend-level shocks explain for some of the variables. This

prior ensures that most of the variation in the observable variables are explained by the

trend and gap shocks. See Table 2 in Appendix D for an overview of the system priors.
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5 Judgement

Even though DORY uses a relatively large information set to estimate the gaps, we

may want to impose judgement on the filtering in DORY. This judgement is typically

based on alternative models and a larger information set than what is feasible to include

in DORY. For example, we could have a model or qualitative information suggesting that

house prices are overvalued, while the gap in DORY could be close to zero. In this case,

we would like to impose judgement to push the house price gap in DORY in a more

positive direction.

In DORY, there are two ways of imposing judgement. The first is to condition on

a specific value for the gap. This is done by making the relevant gap observable for

the period in which we impose judgement, while the gap will be estimated for the other

periods.

The other way of imposing judgement is by ”pushing” the gaps in a certain direction.

We do this in two steps. First, we run the filter to find the gap without judgement. Then

we change some values based on judgement. In the second step, we run the filter again

conditioning on the new value of the gap for the given period. This way of imposing

judgement is useful when we have a view on the value of the gap at a certain point in

time, but still would like DORY to update the gaps in a consistent way in light of new

information.

Both ways of imposing judgement ensure that the imposed judgement will influence

the filtering of the other variables, based on the economic relationships in the model.

During the forecasting process, some rounds of iterations are usually needed before the

process converges and the gaps are used as observables in NEMO.
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6 Results

In this section, we highlight some results and key properties of the model. Additional

results are provided in Section C of the appendix. The results are model-driven (without

any additional judgement).

Figure 1 shows Norges Banks output gap6 decomposed into the different demand

components’ gaps. By assumption, the output gap will always be fully explained by the

demand gaps. Note that Figure 1 shows the reduced form contributions, i.e. not the

contributions from the shocks. Thus, the figure shows the propagation of shocks through

demand and not the underlying shocks driving the cycle. The figure shows that the

different investment components seem to be important drivers of the business cycle in

Norway.

Figure 1: Decomposition of the output gap. Percent

Figure 2 shows the contributions from the demand components’ trends to trend output

growth. As in Figure 1, this is reduced form contributions. By assumption, the trends of

the demand components sum to trend output. The figure shows that the trend growth

rates of consumption and government expenditure have historically accounted for a large

6The model treats the output gap as an observable variable, and we condition on Norges Banks official
output gap. The methods used to estimate Norges Banks output gap are further described in Hagelund
et al. (2018).
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part of trend output growth.

Figure 2: Decomposition of trend output growth. Percent

Next, in Figure 6 we decompose growth in mainland GDP. More specifically, the

figure shows the estimated contributions from gap, trend-level and trend-growth shocks

to variation in output growth around its mean. Among other things, it is evident that

the estimated contributions from trend shocks to output growth have changed over the

sample period. Before the financial crisis of 2008, the contribution from trend-growth

shocks is consistently positive, while it is estimated to have been negative ever since

the crisis. This is consistent with the observed fall in productivity growth over the same

period. In more recent years, the gap component pulls in the opposite direction to that of

the trend component. See Appendix C for decompositions of other observable variables.

Further, we also compare the estimated gaps from DORY to the gaps in Kravik

and Mimir (2019). The gaps in Kravik and Mimir (2019) are estimated using different

methods. Overall, the estimates are quite similar, see Figures 4 and 5 in Appendix C.

Lastly, Figure 3 shows the estimate of the neutral real money market interest rate

in DORY. The neutral real interest rate shows a downward trend over time. The figure

also shows other estimates of the neutral real interest rate for Norway from Brubakk

et al. (2018), and we see that the estimate from DORY indicates a fall in the neutral real
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interest rate in line with previous estimates.

Figure 3: Estimates of the neutral real money market interest rate. Percent
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7 Conclusion

This paper presents the DORY model used by Norges Bank as a link between raw data,

sector expert judgement and the core policy model NEMO. DORY is used to identify the

underlying trends in the main macro variables in Norway. In the model, we specify a

structure with cyclical interactions between the variables, common trends and variable-

specific trends. As a multivariate filter, the model incorporates information on several

variables and economic relationships between the variables. This should help identify

underlying trends in the variables of interest. Further, the multivariate setting/setup

allows us to incorporate simple accounting relationships; for example, that the cyclical

fluctuations in the demand components should add up to the output gap. The model is

also a useful framework to allow for adding/applying judgement in a consistent manner.

DORY has been gradually developed over the last couple of years and has now been

estimated using Bayesian estimation techniques.
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A Data

Table 1: Data

Observable variable Description Transformation

Consumption (ct)
Private consumption. Fixed prices.
Source: Statistics Norway

Demeaned growth rate.

Housing Investment (jht)
Gross investment in housing. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Business investment (jct)
Firms gross investment. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Government expenditures (gt)
Public sector consumption and gross investment. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Petroleum investment (jost)
Gross investment in oil activities and sea transport. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Imports (imt)
Imports for mainland Norway. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Exports (et)
Exports from mainland Norway. Fixed prices.
Source: Statistics Norway.

Demeaned growth rate.

Oil exports (exot)
Exports from oil services. Fixed prices.
Source: Statistics Norway and Norges Bank.

Demeaned growth rate.

Inventories (lt) Inventories. Source: Statistics Norway Demeaned growth rate.

Wage growth (wt) Real wage growth. Source: Statistics Norway.
Nominal wage growth minus the
growth rate of CPI-ATE and demeaned.

Unemployment rate (ut)
Registered unemployed as a share of the labour force.
Source: Norwegian Labour and Welfare Administration (NAV)

. First differences of the unemployment rate.

Inflation (πt)
CPI-ATE (CPI adjusted for taxes and excluding energy prices).
Sources: Statistics Norway.

Growth rate of CPI-ATE minus the inflation target
(2.5 percent until 2017 and 2 percent since).

House prices (pht)
Nominal house prices deflated by CPI-ATE.
Sources: Eiendom Norge, Eiendomsverdi. Finn.no,
Norges Bank and Statistics Norway

. Growth rate minus growth rate of CPI-ATE and demeaned.

Disposable income (wd,t)
Real disposable income for households.
Source: Statistics Norway.

Growth rate minus growth rate of CPI-ATE and demeaned.

Interest rate (rt)
Real money market interest rate.
Source: Norges Bank

3-month nominal interest rate,
Norwegian Interbank Offered Rate (Nibor)
minus the growth rate of CPI-ATE.

Exchange rate (st)
Import-weighted exchange rate measured against the currencies of 44 countries (I-44).
Source: Norges Bank.

In logs and demeaned.

Interest rate differential Norway
and trading partners ((rd,t)

Difference between Norwegian money market interest rate
and trading partners. Trade-weighted.
Source: Refinitiv Datastream and Norges Bank.

Demeaned.

Credit to households (bh,t)
Credit indicator for households (C2).
Source: Statistics Norway.

Taken in logs, divided by CPI adjusted for taxes
and excluding energy prices (CPI-ATE) and demeaned.

Credit to enterprises (be,t)
Credit indicator for non-financial enterprises (C3).
Source: Statistics Norway.

Taken in logs, divided by CPI adjusted for taxes
and excluding energy prices (CPI-ATE) and demeaned.

Output gap (ŷt)
Norges Banks official estimate of the output gap.
Documented in Hagelund et al. (2018)

Oil price gap (opt)
Brent blend USD per barrel.
Sources: Norges Bank and Statistics Norway.

The oil price gap before 2015 is decomposed using an HP filter
(lambda = 40 000), but is adjusted by sector expert judgement.
After 2015 we have used a more mechanical method where
the oil price trend is a linear trend between 72 USD in
2015 Q3 and the endpoint of futures prices.
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B Algorithm

The DORY model can be put on the form

D(θt)Xt = G(θt)Xt−1 + C(θt)Ut, (43)

θt = F (θt−1, Xt−1), (44)

where Xt are the endogenous variables. Ut are the exogenous variables, with size N . Let

the number of equations be given by M , which must also be the number of endogenous

variables. D(θt), G(θt) and C(θt) are all matrices which are a function of potentially

time-varying parameters θt. D(θt) and G(θt) has size MxM , while C(θt) has size MxN .

θt is the parameter vector of size Q of the model. θt may change over time following the

process F (θt−1, Xt−1) : RM → RQ.

The solution to the linear system in equation (43) given θt is

Xt = D(θt)
−1G(θt)Xt−1 +D(θt)

−1C(θt)Ut, (45)

or in a more compact representation

Xt = A(θt)Xt−1 +B(θt)Ut. (46)

B.1 Filtering and smoothing

We can rewrite the model in equation (46) into a state-space representation. The

measurement equation can be posted as

Yt = HXt. (47)

Yt are the observable variables with size O × 1, H is the observation matrix with size

O×M . The state equation linking the current state of the state variables with its own lags

and some exogenous disturbances is given by (46). The disturbances (Ut) are assumed

to be normally distributed with covariance matrix I,7 i.e

7It is assumed that the exogenous disturbances are uncorrelated across time.
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Ut ∼ N(0, I). (48)

Please see Hamilton (1994) Section 13.1, for a more thorough description of the state-

space representation.

B.1.1 Kalman filter

The piecewise linear Kalman filter can be used to get estimates of state variables,

or the unobservable variables, given the observable variables and the initial parameter

values of the model.

Let us start out with some definitions. Xt|t−1 = Et−1[Xt] is the expectation of Xt given

information on the observed variables up until time t− 1, θt|t = Et[θt] is the expectation

of θt given information on the observed variables up until time t 8, while Xt|t = Et[Xt] is

the expectation of Xt given information on the observed variables up until time t. The

associated variance of the observation equation is then

Ft = E[(Yt − Yt|t−1)(Yt − Yt|t−1)′]

= HPt|t−1H
′.

(49)

where Pt|t−1 = E[(Xt − Xt|t−1)(Xt − Xt|t−1)
′] is the error when forecasting Xt given

information on the observed variables up until time t − 1. We need Ft as we want to

update the projection of Xt|t−1 given the new information on Yt

Xt|t = Xt|t−1 + Pt|t−1H
′F−1t (Yt −HXt|t−1) (50)

The associated variance is given by

Pt|t = E[(Xt −Xt|t)(Xt −Xt|t)
′]

= Pt|t−1 − Pt|t−1H ′F−1t HPt|t−1

(51)

Before starting the same filtering step for t+1 we must produce the one-step ahead forecast

of the different measures. This is done by first updating θt|t according to F (θt|t−1, Xt|t),

8Be aware that we do a simplification and ignore the uncertainty in the estimate of θt.
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and resolve the model at these parameter values, and applying the following

Xt+1|t = A(θt|t)Xt|t, (52)

Pt+1|t = A(θt|t)Pt|tA(θt|t)
′ +B(θt|t)B(θt|t)

′, (53)

To initialize the steps of the filter we use X1|0 = 0 and the solution to the fixed point

problem

P1|0 = A(θ0)P1|0A(θ0)
′ +B(θ0)B(θ0)

′, (54)

The full likelihood for the model M over T periods given the initial values of the param-

eters θ0 can be calculated as

L(Y |θ0,M) =
TOlog(2π)

2
+

∑T
t=1 `t
2

, (55)

where

`t = (2π)O/2|Ft|−1/2e−
1
2
(Yt−HXt|t−1)

′F−1
t (Yt−HXt|t−1), (56)

and where Y is constructed by stacking Yt over all time periods.

B.1.2 Kalman smoother

In contrast to the piecewise linear Kalman filter, the piecewise linear Kalman smoother

uses all the information in the observable variables to estimate the unobservable variables,

i.e. Xt|T = ET [Xt]. The first part of the smoother is to run through the filter. Let us

initialize RT+1 = 0, then by a backward recursion, starting with t = T , on the following

equations you will get the smoothed estimates

Rt = A(θt|t)
′Rt+1, (57)

Ri
t−1 = Ri

t + F−1t (Yt −HXt|t−1)−K ′tRt, (58)

where Ri
t refers to the elements of rt that are restricted to the observed variables only

21



and Kt = A(θt+1)Pt|t−1H
′F−1t . Then finally, given Rt we can get the smoothed estimate

of Xt from

Xt|T = Xt|t−1 + Pt|t−1Rt. (59)

Smoothed estimate of Ut can be found from

ut|T = B(θt|t)
−1(Xt|T − A(θt|t)Xt−1|T ) (60)

for t > 1, while for t = 1 we get

u1|T = B(θ1|1)
−1(X1|T −X1|0). (61)

B.2 Estimation

We follow Andrle and Benes (2013)) and estimate DORY with system priors. In

the model we allow for time-varying parameters, which means that we are interested in

estimating the initial value of the process θt, i.e θ0. As normal in this literature we first

formulate a set of marginal independent priors

p(θ0|M) = p(θ10)× · · · × p(θ
Q
0 ), (62)

where M indicates that the prior is set under the condition of knowing the model. In

additional we want to apply priors to some properties of the model. These properties will

be a function of the model and the parameters of the model, i.e. Z = H(M, θ0). These

properties will themselves form a probabilistic model Z ∼ h(S), where h is a distribution

function with parameters S. This will result in the system prior on the form p(S|θ0,M),

and the joint prior is then given by

p(θ0|M, S) = p(S|θ0,M)× p(θ0|M). (63)

A Bayesian approach constitutes of estimating the parameters θ0 by maximization of

the posterior distribution given by

p(θ0|Y,M, S) =
L(Y |θ0,M)× p(θ0|M, S)

p(Y |M)
∝ L(Y |θ0,M)× p(θ0|M, S). (64)
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D Priors

Table 2: Marginal priors

Parameter Mean Standard deviation Distribution Lower bound Upper bound Posterior Mode
std of s∗ 3 5 inverse gamma 0 5 3.95
std of zr∗ 3 5 inverse gamma 0 5 2.06
std of ẽy 1 10 inverse gamma 0 5 0.37
std of ey∗ 1 10 inverse gamma 0 5 0.45
std of eŷ 2 10 inverse gamma 0 5 1.89
std of ẽw 3 5 inverse gamma 0 5 0.73
std of ew∗ 2 10 inverse gamma 0 5 0.6
std of eŵ 1 10 inverse gamma 0 5 0.25
std of eu∗ 2 10 inverse gamma 0 5 1.91
std of eû 1 10 inverse gamma 0 5 0.32
std of ẽrp 3 5 inverse gamma 0 5 2.11
std of er̂ 3 5 inverse gamma 0 5 0.92
std of ẽPH

3 5 inverse gamma 0 10 1.11
std of eP ∗H 1 10 inverse gamma 0 10 1.92
std of eP̂H

5 10 inverse gamma 0 10 1.19

std of eop∗ 3 5 inverse gamma 0 5 4.85
std of eôp 3 5 inverse gamma 0 5 4.94
std of eπ̂ 3 5 inverse gamma 0 5 0.55
std of ẽC 4 10 inverse gamma 0 8 3.3
std of eC∗ 4 10 inverse gamma 0 12 4.58
std of eĈ 4 10 inverse gamma 0 12 1.07
std of ẽIO 4 10 inverse gamma 0 8 7.18
std of eI∗O 4 10 inverse gamma 0 12 6.19
std of eÎO 4 10 inverse gamma 0 12 10.17

std of ẽIH 4 10 inverse gamma 0 8 1.77
std of eI∗H 4 10 inverse gamma 0 12 1.24
std of eÎH 4 10 inverse gamma 0 12 5.2

std of ẽIC 4 10 inverse gamma 0 8 5.95
std of eI∗C 4 10 inverse gamma 0 12 1.42
std of eÎC 4 10 inverse gamma 0 12 6.71

std of ẽIM Calibrated 1.2
std of eI∗M Calibrated 0.7
std of eÎM Calibrated 2.1

std of ẽG 4 10 inverse gamma 0 8 1.38
std of eG∗ 4 10 inverse gamma 0 12 2.03
std of eĝ 4 10 inverse gamma 0 12 1.24
std of ẽEXO

4 10 inverse gamma 0 8 1.41
std of eEX∗O 4 10 inverse gamma 0 12 1.33
std of e

ÊXO
4 10 inverse gamma 0 12 8.19

std of ẽEX 4 10 inverse gamma 0 8 1.55
std of eEX∗ 4 10 inverse gamma 0 12 0.83
std of eÊX 4 10 inverse gamma 0 12 2.14
std of ew∗d 1 2 inverse gamma 0 3 0.42
std of ẽwd

1 2 inverse gamma 0 3 0.42
std of eŵd

1 2 inverse gamma 0 3 0.51
std of ẽbH 1 10 inverse gamma 0 5 0.29
std of eb∗H 0.50 10 inverse gamma 0 5 0.77
std of eb̂h 1 10 inverse gamma 0 5 0.28

std of ẽbe 1 10 inverse gamma 0 5 0.39
std of eb∗e 1 10 inverse gamma 0 5 0.39
std of eb̂e 1 10 inverse gamma 0 5 1
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Parameter Mean Standard deviation Distribution Lower bound Upper bound Posterior Mode
σ 1 2 normal 0.90 1.10 0.97
λz 0.50 0.20 beta 0 1 0.52
λy∗ 0.90 0.10 gamma 0 1 0.83
λŷ Calibrated 0.66
λw∗ 0.50 0.20 beta 0 1 0.45
λŵ 0.50 0.20 beta 0 1 0.56
λu∗ 0.50 0.20 beta 0 1 0.51
λû 0.50 0.20 beta 0 1 0.57
λs∗ 0.50 0.20 beta 0 1 0.77
λrp 0.50 0.20 beta 0 1 0.66
λr̂ 0.50 0.20 beta 0 1 0.31
λP ∗H 0.90 0.10 gamma 0 1 0.82
λop∗ 0.50 0.20 beta 0 1 0.97
λôp 0.50 0.20 beta 0 1 0.35
λπ̂ 0.50 0.20 beta 0 1 0.71
λC∗ 0.90 0.20 gamma 0 1 0.81
λĈ 0 0.10 normal -1 0.25 0.01
λI∗O 0.90 0.10 gamma 0 1 0.83
λÎO 0 0.10 normal -1 0.25 -0.94

λjh∗ 0.90 0.05 gamma 0 1 0.87
λÎH 0 0.10 normal -1 0.25 0.09

λIC∗ 0.90 0.05 gamma 0 1 0.89
λÎC 0 0.10 normal -1 0.25 0

λIM∗ 0.90 0.20 gamma 0 1 0.74
λÎM 0 0.20 normal -1 0.25 -0.09
λG∗ 0.90 0.10 gamma 0 1 0.53
λĜ 0 0.10 normal -1 0.25 0.03
λEX∗O 0.90 0.10 gamma 0 1 0.86
λ
ÊXO

0 0.20 normal -1 0.25 0.08

λEX∗ 0.90 0.10 gamma 0 1 0.82
λÊX 0 0.20 normal -1 0.25 -0.15
λbh∗ 0.80 0.10 gamma 0 1 0.85
λb̂h 0.85 0.05 gamma 0 1 0.87

λb∗ 0.80 0.10 gamma 0 1 0.68
λb̂e 0.80 0.10 gamma 0 1 0.81
γr 0 5 uniform 0 5 0.15
γ Calibrated 0.29
βrp,op 0 1 uniform 0 1 0.04
βPH ,IH 0 0.30 normal -1 2 0.48
βop,IO 0 1 uniform 0 1 0.9
βwd

0.10 0.20 gamma 0 1 0.1
αŷ 1 0.30 normal 0 2 0.83
αr̂ 0.15 0.50 normal 0 2 0.93
αPH

0.50 0.20 beta 0 1 0.38
αP̂ 0 2 uniform 0 2 0.36
αIC 0.50 0.20 beta 0 1 0.5
αWd

0 1 uniform 0 1 0.41
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Table 3: System priors

Moment prior on the
standard deviation of variable:

Prior distribution Prior mean Prior std Posterior mean

ÎH Normal 6 0.7 6.7

b̂h Normal 10 1 8.9

b̂e Normal 10 1 12.1

P̂h Normal 7 2 4.5

Moment prior on FEVDa: Prior distribution Lower bound Upper bound

Uniform 0 0.5

aRestricting the share that noise can explain of the forward error variance decomposition (FEVD) for
the following variables: ∆y,∆w,∆c,∆IH ,∆IC ,∆IO,∆G,∆EXO,∆EX,∆IM,∆bh,∆be,∆PH ,∆wd.
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