A discussion of¹ "Search and Recruiting Intensities over the Business Cycle," by Leduc and Liu

Stefano Gnocchi

Bank of Canada

New Developments in Business Cycle Analysis: The Role of Labor Markets and International Linkages Oslo, June 2014

¹The views expressed in this presentation are my own. No responsibility for them should be attributed to the Bank of Canada.

- ▶ This paper aims at establishing a link between two facts:
 - Significant outward shift of the Beveridge curve following the Great Recession
 - ▶ Varying search and recruiting intensity over the business cycle
- ▶ Assume a matching function

$$m_t = \mu_t (\mathbf{s}_t u_t)^{\alpha} (\mathbf{a}_t v_t)^{(1-\alpha)}$$

• If s_t and a_t mistakenly assumed to be constant, measured shifts in the Beveridge curve might be mistakenly attributed to μ_t

Available evidence on cyclicality of intensities

- ▶ Search intensity is pro-cyclical (Krueger and Muller (2011) and Davis (2011))
 - ▶ Individual time devoted to search falls in unemployment duration;
 - Unemployment duration falls in booms;
 - \Rightarrow Aggregate search intensity rises in booms and falls in recessions
- Recruiting intensity is pro-cyclial (Davis, Faberman, Haltiwanger (2013))
 - $\Rightarrow\,$ advertising expenditures, screening methods and compensation packages are varied over the cycle, in addition to vacancies

- How much variation in μ_t is required to explain the behaviour of finding rates, after taking into account changes in s_t and a_t ?
- ► To the extent that intensities co-move with matching efficiency, a simple accounting exercise might be misleading
- ▶ A structural interpretation of the data is needed

Overview: The importance of intensities

- Introduce endogenous intensities in otherwise standard DSGE model with matching frictions and four shocks: productivity, government spending, preference and matching efficiency shocks
- ► Estimate the model by using data on (i) industrial production; (ii) the unemployment rate; (iii) the vacancy rate; (iv) recruiting intensity
- Perform a counterfactual exercise that abstracts from matching efficiency shocks
- ► The model still predicts significant shifts of the Beveridge curve, because of endogenous intensities

- 1. Cyclicality of search intensity
- 2. Identification
- 3. Opportunity cost of employment
- 4. Model fit

Comment 1: Cyclicality of search intensity (1)

- ▶ What matters for the aggregate job finding rate is aggregate search intensity
- Krueger and Muller (2011) documents a relation between individual unemployment duration and search intensity
- ▶ Davis (2011) extends this individual relation to the aggregate
- Implicit assumption: no significant composition effects due to heterogeneity

Might changes in the composition of the unemployment pool reverse the individual relation?

- ▶ In booms, only the less skilled (and less attached) workers remain in the unemployment pool
- ▶ In downturns, the unemployment pool is relatively more skilled and more attached
 - $\Rightarrow\,$ in booms aggregate effort might be lower, even if the same individual exerts more effort in booms

Comment 1: Cyclicality of search intensity (3)

More research is needed on measuring aggregate search intensity

- Mukoyama, Patterson and Sahin (2013): Job Search Behavior over the Business Cycle
- ▶ ATUS measures minutes per day devoted to search: 10.2 temporary layoffs; 30.6 searchers; 2.3 non-searchers (but willing to accept a job if offered).
- ▶ CPS contains information about search method, rather than time (e.g.: attending training programs, contacting employers directly, contacting employment agency, etc.)
- ▶ Link ATUS and CPS by imputing time to methods
- Search intensity is countercyclical at both the intensive and the extensive margin

It would be helpful to have a sense of the identifying assumptions embedded in the model

- ▶ All shocks produce the same theoretical conditional correlations. We need to look somewhere else. (But impulses to matching efficiency are not reported)
- ▶ What is the relative importance of each shock in driving the volatility of each variable?
- ▶ Why is the series of search intensity not included in the model? Any intuition about the moments that are identifying the parameters of the search cost function?

The role of the preference shock

- ▶ The preference shock is by far the most volatile
- ► Two effects of a positive preference shocks: (i) the household is more willing to work, and then to search; (ii) the change in the outside option makes hiring less costly, partially fixing the typical low unemployment volatility problem in DMP.
- ▶ Some variance decomposition would be helpful
- Are endogenous intensities important through the preference shock? Reasonable to see this explanation as more structural than a shock to matching efficiency?

Comment 3: Cyclicality of the outside option

How much, if any, of the unemployment rate volatility is due to the (counter-) cyclicality of the outside option? Is it plausible?

- Changes in search intensity seem to be relatively less important than changes in recruiting intensity
- ▶ Hence, the preference shock seems to work through the cyclicality of the outside option
- ▶ Chodorow-Reich and Karabarbounis (2013) use PSID data to discipline the preference parameter in order to match a 20% drop in consumption, upon entering unemployment
 - \Rightarrow the resulting outside option is strongly pro-cyclical and worsens the unemployment volatility puzzle
- A similar exercise in this context might be helpful

- Additional exercises documenting the fit of the model might be useful to validate the mechanism
- Does the model fit the search intensity series, which is not used in the estimation?
- ▶ Why not comparing theoretical impulse responses with empirical responses to shocks identified in a SVAR?