Corporate Cash and Employment

Philippe Bacchetta Kenza Benhima U. Lausanne Swiss Finance Institute CEPR

U. Lausanne CEPR

Céline Poilly U. Lausanne

June 2014

Corporate Cash and Employment

Motivation

Figure: A financial crisis?

Source : Flow of Funds

Motivation

- During the recent financial crisis:
 - decline in employment
 - strong increase in cash in corporate balance sheets
- Raises two questions about the relationship between corporate employment and cash holding:
 - is the negative relationship specific to the crisis?
 - how to analyze employment and corporate cash decisions in a macro model?
 - what does it tell us about the source of the crisis?

Corporate Cash and Employment

Aim

- The contribution is twofold:
 - Show systematic negative correlation between employment and corporate cash ratio in the US
 wo both at aggregate and firm level.
 - Build a theoretical framework with heterogeneous firms which incorporates employment and corporate cash management.

→ Argue that the negative correlation can be explained by **liquidity** shocks and **productivity** shocks (not by **"standard"** credit shocks)

Corporate Cash and Employment

Strategy

- 1. Empirical analysis, US data:
 - Aggregate data (Flow of Funds)
 - Firm-level data (Compustat)
- 2. Tractable macro model:
 - Continuum of heterogenous firms
 - Liquidity needs to pay wage bills
 - Hit by aggregate and idiosyncratic shocks
- 3. Simple **parametrization** procedure to assess model's ability to generate empirical stylized facts

Related literature

- Liquidity needs have been analyzed in the literature:
 - In the spirit of Woodford (1990) and Holmstrom and Tirole (2011): Aghion et al. (2010), Kyiotaki and Moore (2012), Bacchetta and Benhima (2013)
 → No link with employment fluctuations
 - Christiano and Eichenbaum (1995), model with working capital but full access to external liquidity
- Role of financial frictions on labor market:
 - Benchmelech et al. (2011): focus on firm's cash flow; Chodorow-Reich (2012): banking sector frictions; Pagano and Pica (2012): financial frictions and labor reallocation; Boeri et al. (2012): focus on leveraged sectors; Monacelli et al. (2011): credit frictions and unemployment
 - \rightsquigarrow No clear focus on corporate cash holding

Related literature

- The corporate finance literature is vast.... Some papers looking at corporate cash holding:
 - Bolton et al. (2013); Hugonnier et al. (2013): worsening external funding conditions increase cash holding and depresses investment
 - Eisfeld and Muir (2013): focus on cash accumulation (and external finance)
 - ▶ Boileau and Moyen (2012): funding risk on liquidity
 - Falato et al. (2013); Gao (2013): explain upward trend in corporate cash

Stylized Facts

Aggregate evidence (Flow of Funds and BLS)

ata 🔪 🕨 robust 🔪 🕨 level

 \Rightarrow On average, cross section correlation is -0.29Note: individual linear trend has been removed. robust to OLS with year-fixed effects and standard control variables \checkmark data Corporate Cash and Employment

Potential puzzle

Cash is used, at least in part, to pay for wages.

- Firms with higher labor share hold more cash on average.
 more
- More cash should allow for a higher wage bill and more employment. Not the case!

Model

Modeling cash and employment

- Employment decisions modelled in a very simple way: labor demand from standard production function
- But we introduce a demand for cash
 - ▶ We consider a model with two subperiods, as in Christiano and Eichenbaum (1995)
 - Need for short-term liquidity in the second sub-period: wage bill
 - Internal source of liquidity
 - e.g., could come from early payment by customers, credit lines, late wage payment
 - But constraint on internal liquidity may create demand for external liquidity (cash)

Model overview

- Single good economy, infinitively-lived heterogenous entrepreneurs and a representative household
- Entrepreneurs are credit-constrained
- Shocks to productivity, credit, and liquidity, revealed at the beginning-of-period
- ► In partial equilibrium, model can be solved analytically
- In general equilibrium wages adjust, but interest rate is constant

► Continuum of entrepreneurs indexed by i ∈ [0, 1]. Entrepreneur i maximizes

$$E_t \sum_{s=0}^{\infty} \beta^s u(c_{it+s})$$

Produces Y_{it} using capital and labor

$$Y_{it} = F(K_{it}, A_{it}I_{it})$$

where A_{it} is the TFP shock

$$A_{it}=A_t+\epsilon^{\mathcal{A}}_{it}$$
 $A_t=
ho A_{t-1}+arepsilon_{\mathcal{A},t}$, $\epsilon^{\mathcal{A}}_{it}$ \sim Markov process.

At beginning-of-period ('bop'), the budget constraint is

$$\underbrace{Y_{it-1} + \widetilde{M}_{it-1} - r_{t-1}D_{it-1} - \psi L_{it-1}}_{\Omega_{it}} + D_{it} \ge c_{it} + K_{it} + M_{it}$$

 D_{it} : one-period illiquid bonds with a gross return r_t L_{it-1} : external liquid funds with cost ψ M_{it} : cash or internal liquid funds, bearing no interest \widetilde{M}_{it-1} : unused cash, typically $\widetilde{M}_{it} = 0$

The entrepreneur faces the borrowing constraint

$$r_t D_{it} \leq \phi_{it} Y_{it}$$

where $\phi_{it} = \phi_t + \epsilon^{\phi}_i$ and $\phi_t = \rho \phi_{t-1} + \varepsilon_{\phi,t}$

At end-of-period ('eop'), pay wages using internal and external liquid funds

$$M_{it} + L_{it} \ge w_t I_{it}$$

where w_t is the wage rate

External liquid funds, L_{it}, are assumed to be a proportion κ_{it} of current output:

$$L_{it} = \kappa_{it} Y_{it}$$

- External liquid funds can be provided by:
 - Customers: early sales or early payment
 - Financial intermediaries: credit lines with binding constraint
 - Workers: some wages paid later

Liquidity shocks

- E.g., credit line shocks or early sale shock
- We assume that

$$\kappa_{it} = \kappa_t + \epsilon_{it}^{\kappa} \quad \kappa_t = \rho \kappa_{t-1} + \varepsilon_{\kappa,t} \quad \epsilon_{it}^{\kappa} \ \sim \text{Markov process.}$$

 \Rightarrow The demand for cash holdings is directly affected by liquidity shock

• The optimization program of the type-i entrepreneur is given by

$$\begin{aligned} \max_{c_{it}, K_{it}, l_{it}, D_{it}, M_{it}} & E_t \sum_{s=0} \beta^s u(c_{it+s}) \\ \text{st} \quad Y_{it-1} + \widetilde{M}_{it-1} - r_{t-1} D_{it-1} - \psi L_{it-1} + D_{it} \geq c_{it} + K_{it} + M_{it} \\ & M_{it} + L_{it} \geq w_t l_{it} \\ & r_t D_{it} \leq \phi_{it} Y_{it} \qquad L_{it} \leq \kappa_{it} Y_{it} \end{aligned}$$

 ∞

- We consider the case with:
 - Binding credit constraint: return of labor (w^{*}_{it} ≡ w(A_{it}, κ_{it})) larger than the wage paid by firms (w_t)
 - log utility \Rightarrow consumption is $c_{it} = (1 \beta)\Omega_{it}$.

Partial equilibrium analysis

- Focus on cash ratio $m_t \equiv M_t/(M_t + K_t)$ and employment:
- The liquidity constraint can be rewritten as

$$\frac{M_{it}}{K_{it}} = \frac{1}{k_t} \left[w_t - \kappa_{it} A_{it} f(k_t) \right]$$

- ► \Rightarrow Lower κ_{it} and A_{it} increase cash intensity in production (*portfolio effect*) and therefore the cash ratio
- Labor demand is characterized by

$$I_{it} = Z_{it}\Omega_{it}$$
 where $Z_{it} = rac{eta r_t}{r_t[k_t + w_t] - (\kappa_{it}r_t + \phi_{it})A_{it}f(k_t)}$

• \Rightarrow Lower κ_{it} and A_{it} reduce the scale of production through the financial multiplier (*size effect*)

Other policy functions

Relationship cash ratio-employment

- Ceteris paribus, firms with lower liquidity κ_{it} or lower productivity A_{it} have lower employment l_{it} and a higher cash ratio m_{it} . Moreover, ϕ_{it} affects negatively employment l_{it} but has no effect on the cash ratio m_{it}
- Intuition:
 - Smaller κ_{it} = less available external liquid funds at 'eop' t ⇒ more internal liquidity
 - Smaller κ_{it} = smaller financial multiplier \Rightarrow less labor demand
 - Same intuition for a reduction in A_{it}
 - ► Negative credit shock (φ_{it}) affects long-term credit (D_{it}) but not the liquidity needs

Households

- Identical households with linear utility function in consumption and in cash
- Receive wages at 'eop' t and consume at 'bop' t + 1
- Labor supply $l^{s}(w_{t})$ depends positively on the wage rate

$$I^{s}(w_{t}) = (w_{t}/\bar{w})^{\eta}$$

• Wage, w_t , is determined such that $I^s(w_t) = \int_0^1 I_{it} di$

asset supply

Aggregate Shocks

Corporate Cash and Employment LAggregate Shocks

Shocks

Assume that firms only face aggregate shocks:

- liquidity shock (κ_t)
- ▶ TFP shock (A_t)
- credit shock (ϕ_t)

▶ calibration

Liquidity shock

Negative liquidity shock:

- \searrow external liquid funds to pay $w_t I_t$ at 'eop' $\Rightarrow \nearrow M_t$ and m_t
- Financing conditions deteriorate $\Rightarrow \searrow$ demand for labor \Rightarrow $\searrow l_t$ and w_t
- \Rightarrow negative co-movement between m_t and l_t

Technology shock

- Negative technology shock:
 - \searrow external liquid funds to pay $w_t I_t$ at 'eop' $\Rightarrow \nearrow M_t$ and m_t
 - \searrow production $\Rightarrow \searrow$ demand for labor \Rightarrow $\searrow l_t$ and w_t
 - \Rightarrow negative co-movement between m_t and l_t

Corporate Cash and Employment LAggregate Shocks

Credit shock

Negative credit shock:

- ➤ borrowing ⇒ ↘ capital and labor demand
- \searrow wage to finance \Rightarrow \searrow M_t and m_t
- \Rightarrow *Positive* co-movement between m_t and l_t

Summary

- Negative co-movement between employment and cash ratio can be driven by liquidity shocks and technology shocks
- This result goes in favor of a liquidity supply tightening during the Great Recession
- A credit shock generates a positive co-movement between cash ratio and employment: its recessionary effect reduces liquidity needs

Cross-firms correlation

Calibration strategy

- Heterogenous firms that are hit by idiosyncratic ϵ_{it}^A and ϵ_{it}^{κ} :
 - 10 equidistant possible realizations, independent first-order Markov process with transition probability of 0.25 o
 - $\kappa_i \in [0.55; 0.635]$ and $A_i \in [0.988; 1]$
- Targeted moments

	Data	Model
m _{25%}	0.02	0.04
m _{75%}	0.15	0.15
$\frac{Y_{75\%}}{Y_{25\%}}$	17	17

Results

► low κ_{it} ⇒ large m_{it} and low l_{it} , for a given Ω_{it}

► low A_{it} ⇒ large m_{it} and low l_{it} , for a given Ω_{it}

Results

Simulated moments

Benchmark Calibration	Data	Model
(m) _{average}	0.11	0.10
$(m)_{std}$	0.13	0.23
$\frac{\ell_{75\%}}{\ell_{25\%}}$	15.75	17.36
$corr(m, \ell)$	-0.29	-0.18

Credit-Constrained Firms			Data	Model
	$\frac{D}{Y}$			
$corr(m, \ell)$	bottom 25%	$\operatorname{Corr}(m; I)_{\phi_{low}}$	-0.24	-0.08
	top 25%	$\operatorname{Corr}(m; l)_{\phi_{high}}$	-0.35	-0.20

Results

- What are the effects of credit constraints on the cross-firms correlation?
 - Financially constrained firms (low value of φ_i) exhibit a correlation closer to zero.
 - Larger financial multiplier for less financially-constrained firms (more resources through their level of borrowing)
 ⇒ more sensitive labor to shocks, while m_t not affected by φ_i

Extensions

Extensions

- Consider various extensions:
 - ▶ Partial capital depreciation and CES production function: imperfect substitutability between capital and labor \Rightarrow labor is less volatile \Rightarrow cross-firms correlation by -0.10
 - ► Unconstrained firms: Cash and labor are more disconnected than in the benchmark constrained case
 - Liquidity uncertainty: Higher uncertainty increases cash demand. But impact of shocks is similar to benchmark if labor is predetermined: firms choose to hold amount of cash for the worse state (low κ) to ensure that their revenue is sufficient
 - Unanticipated productivity shocks: on impact, unused cash is an adjustment variable $(\tilde{M}_t \ge 0)$, but if the shock is persistent then the dynamics becomes similar to an anticipated shock.

Conclusion

Conclusion

Contribution:

- Highlight stylized fact: negative correlation between cash ratio and employment
- Build a tractable model to explain this correlation. Based on cash holding decisions which depend on external liquidity needs

Results:

- Liquidity and technology shocks can generate negative co-movement
- "Standard" credit supply shock cannot
- Model is able to reproduce a sizeable negative cross-firms correlation

Potential extensions:

- upward trend in corporate cash holding
- introduce financial intermediaries
- policy analysis

additional slides

Cash level and employment

\Rightarrow correlation of 0.02 and insignificant

Aggregate evidence

 Data source: Flow of Funds & BLS. Annual data, non-farm non-financial corporate sector, 1980-2011

Data construction:

- Cash ratio: share of corporate liquidity to total assets.
 Liquidity: private foreign deposits + checkable deposits and currency + total time and savings deposits + money market mutual fund shares
- Employment: log of total number of employees
- Data transformation: both cash ratio and employment are HP filtered.

Robustness aggregate results

- Divide cash by last period assets: -0.33
- Divide by financial assets: -0.58
- Quarterly data: -0.44
- Use last period cash ratio with quarterly data: -0.30

▶ Back

Relationship cash level-employment

The policy function of the level of cash is:

$$M_{it} = [w_t - \kappa_{it} A_{it} f(k_t)] Z_{it} \Omega_{it},$$

 \Rightarrow both *size* and *portfolio effects* play a role.

- If $r_t k_t > \phi A_{it} f(k_t)$, then, ceteris paribus, firms with lower liquidity κ_{it} or lower productivity A_{it} have higher cash holdings M_{it} , while firms with lower ϕ_{it} have lower cash holdings.
- Intuition:
 - If φ_{it} is small enough (constrained firm), labor less sensitive to shocks (through financial multiplier), portfolio effect dominates in case of κ_{it} or A_{it} shocks.

Unconstrained Firms

- Baseline framework: firms are always credit-constrained
- Alternative model: firms are not credit-constrained ($r = \frac{1}{\beta}$)
- Result:
 - labor demand is less sensitive to liquidity shock (i.e. decreases by less) since labor productivity is less affected by a reduction in external funding.
 - A technology shock affects (i) directly external liquidity availability, (ii) indirectly the wage. When firms are unconstrained, wages is more sensitive to the shock ⇒ wages (and external liquidity needs) decrease by more which offset the positive effect on (i).

Liquidity Uncertainty

- Baseline framework: κ_{it} known at the beginning of the period t.
- Alternative model: firms only know the distribution of κ_{it} .
- Result:
 - Assume that there are only 2 states for κ : low or high.
 - If labor is predetermined, firms choose to hold amount of cash for the worse case (low κ) to ensure that their revenue is sufficient.

 \Rightarrow firms internalize liquidity shocks' distribution and behave exactly as if their anticipated liquidity shock was κ_t^L .

Unanticipated Productivity Shocks

- Baseline framework: productivity shocks are know at the beginning of period t.
- Alternative model: : productivity shocks are unanticipated
- Result:
 - ► Firms adjust their level of unused cash *M*_t but if the shock is persistent, then the dynamics becomes similar to an anticipated shock.

Simulation strategy

- We compute the **steady-state distribution**:
 - Set initial distribution of wealth Ω_{i0} = {0,0.9}₁₀₀₀ and make an initial guess on w₀.
 - Obtain the optimal decision rule $\Omega_{it+1}(\Omega_{it}, \epsilon_{it}^{\kappa}, \epsilon_{it}^{A}, w_{t})$. Using the policy functions, find the distribution of labor demand l_{it+1} . Aggregate labor demand $l_{t+1} = \sum_{i} \sum_{\kappa,A} l_{it+1} di$, and if $l_{t+1} > l^{s}(w_{t})$, then we update the equilibrium wage w_{t+1} upward.
 - Repeat the step until the equilibrium wage is reached, i.e. when aggregate labor demand is fully satisfied.

Numerical Method

- We compute the steady-state distribution:
- 1. Choose a grid of Ω_{it} , 1000-value, over [0, 0.9]. Chebychev nodes to make the grid more concentrated on low values of Ω .
- 2. Allocate an initial uniform and independent distribution to the values of Ω_{i0} , κ_{i0} and A_{i0} , and make an initial guess on the equilibrium wage w_0 .
- 3. Given the initial distribution on Ω_{it} , κ_{it} and A_{it} and the initial equilibrium wage w_0 , we use Proposition and the Markov Chain to compute the new distribution of Ω_{it+1} , κ_{it+1} and A_{it+1} . Compute the corresponding distribution of labor demand l_{it+1} . We aggregate this labor demand $l_{t+1} = \sum_i l_{it+1} di$, and if $l_{t+1} > l^s(w_t)$ (if $l_{t+1} < l^s(w_t)$), then we update the equilibrium wage w_{t+1} upward (downward).
- 4. We repeat step 3 until the equilibrium wage is reached, i.e. when aggregate labor demand is fully satisfied.

Firm-level evidence

- Compustat dataset: US non-financial firms, 1980-2011
- Data construction:
 - Cash ratio: ratio between cash and short term investment and total assets
 - Employment: number of employees
- Data selection:
 - Firms active over the whole sample
 - Drop 10% largest firms (Covas and Den Haan, 2011)
 - exclude: firms not incorporated in US market, engaged in major mergers, negative or missing values for total assets, sales, cash and employees
 - Remove firm-specific linear trend

Firm-level data

Table 3. Employment and Cash Ratio

Dependant Variable: log(EMP _{it})				
	(1)	(2)	(3)	(4)
$\left(\frac{\text{CHE}}{\text{AT}}\right)_{it}$	-1.356^{**}	$-1.127^{**}_{(0.147)}$	-1.127 **	-0.984 **
$\log(AT)_{it}$	()	0.656** (0.021)	0.662**	0.566**
CFLOW _{it}		~ /	-0.023*	-0.036
LEV _{it}				-0.017 (0.016)
log(CAPX) _{it}				0.088 ^{**} (0.014)
R-squared	0.09	0.48	0.49	0.51
Firm fixed effects	yes	yes	yes	yes
Time fixed effects	yes	yes	yes	yes
Observations	14 651	14 651	14 627	14 430

Corporate Cash and Employment Additional slides

Firm-level data

Individual policy functions

For w_t < w_t^{*}, log utility, and Cobb-Douglas production function, the policy functions for K_{it}, M_{it}, I_{it}, D_{it}, and Ω_{it+1} satisfy:

• $I_{it} = Z_{it}\Omega_{it}$

•
$$M_{it} = (w_t - \kappa_{it}A_{it}f(k_t))Z_{it}\Omega_{it}$$

$$D_{it} = \phi_{it} A_{it} f(k_t) Z_{it} \Omega_{it} / r_t$$

•
$$K_{it} = k_t Z_{it} \Omega_{it}$$

•
$$\Omega_{it+1} = [(1 - \psi_t \kappa_{it}) - \phi_{it}] A_{it} f(k_t) Z_{it} \Omega_{it}$$

where
$$Z_{it} = \frac{\beta r_t}{r_t [k_t + w_t] - (\kappa_{it} r_t + \phi_{it}) A_{it} f(k_t)}$$
 and $k_{it} = k_t = k(w_t)$

Supply of Assets by Households

- Infinitely elastic supply of illiquid funds D_t at interest rate $r = 1/\beta_h$, where $\beta_h \ge \beta$
- Supply liquid funds L_t at rate ψ at the 'eop'
- Infinitely elastic supply of cash, at rate 1

Back

Calibration

Table	4. Calibration Strategy	
		Value
β	Discount factor	0.97
r	Gross interest rate on bonds	1.02
ψ	Liquidity cost	1.01
η	Frisch parameter	1
α	Elasticity of output wrt capital	0.36
ϕ	Output collateral share for debt	$0.33 \Rightarrow rac{D}{Y} = 0.32$
κ	s.s output collateral share for liquidity	$0.59 \Rightarrow m = 0.11$
Α	Steady-state productivity shock	1.00

▶ Back