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Abstract

There are two main approaches to modelling monetary policy; simple in-
strument rules and optimal policy. We propose an alternative that combines
the two by extending the loss function with a term penalizing deviations from
a simple rule. We analyze the properties of the modi�ed loss function by con-
sidering three di¤erent models for the US economy. The choice of the weight
on the simple rule determines the trade-o¤ between optimality and robust-
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the loss function, one can prevent disastrous outcomes if the model is not a
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1 Introduction

There are two main approaches to specifying monetary policy in the literature; opti-

mal policy and simple instrument rules. By �optimal policy�we here mean minimiz-

ing a speci�c loss function using all information embedded in the model.1 �Simple

instrument rules�, on the other hand, specify how the monetary policy instrument

- the key interest rate - should respond to a subset of the information available to

the policy maker. The original Taylor (1993) rule is an example of a simple rule

where the central bank responds to a subset of the information set, i.e., the rate of

in�ation and the output gap. By construction, simple rules lead to higher loss than

optimal policy when evaluated in a given model, but the excess loss depends both

on how restricted the simple rule is and on the model.

In addition to providing a rough description of actual policy, simple rules have a

normative motivation; they are considered more robust to model uncertainty than

optimal policy. Taylor and Wieland (2012) provide a survey and discussion of the

literature on simple robust rules. In the literature, the model simulations are com-

monly based on the assumption that the central bank commits to the simple rule

in a mechanical way. However, as pointed out by Svensson (2003), full commitment

to a simple rule like the Taylor rule is unrealistic, and no central bank does this in

practice. Svensson therefore rejects simple rules, both from a positive and from a

normative perspective. He advocates instead optimal policy (or �targeting rules�)

and argues that this is a more reasonable description of monetary policy, as the

central bank is treated as an optimizing agent in the same way as households and

�rms, and that optimal policy leads to better outcomes than simple rules.

Although Svensson�s critique may be justi�ed, the fact that central banks do

not commit to following simple instrument rules like the Taylor rule mechanically,

does not imply that monetary policy is not in�uenced by such rules at all. On the

1The term �optimal policy�is not restricted to policies that maximize the utility of the repre-
sentative household, but includes also minimization of ad hoc loss functions, which, for example,
could represent the objectives for monetary policy as de�ned by the government.
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contrary, we �nd it reasonable to assume that monetary policy in practice has, at

least to some extent, been in�uenced by the vast literature on simple robust rules.

Indeed, Kahn (2012) provides a thorough documentation on how simple Taylor-type

rules have in�uenced the FOMC decisions and how they are used as cross-checks

to the interest rate decisions in many central banks. An illustrative example is the

FOMC meeting in January 31-February 1 1995, where the Greenbook suggested a

150 basis points increase of the federal funds rate to 7 percent. FOMC member

Janet Yellen expressed the following concern: �I do not disagree with the Greenbook

strategy. But the Taylor rule and other rules. . . call for a rate in the 5 percent range,

which is where we already are. Therefore, I am not imagining another 150 basis

points�.2 Similar references to the Taylor rule can also be found from policy meetings

in other central banks.3 We will therefore argue that a realistic description of the

monetary policy process is optimal policy using all available information, but where

simple rules are used as cross-checks (or guidelines). This approach seems consistent

with how policymakers form their interest rate decisions in practice. For example,

Yellen (2012) describes the assessments as follows: �One approach I �nd helpful in

judging an appropriate path for policy is based on optimal control techniques. [...].

An alternative approach that I �nd helpful [...] is to consult prescriptions from simple

policy rules.�

While the existing literature on robustness assumes either optimal policy or full

commitment to a simple robust rule, we take an intermediate approach. We in-

troduce a modi�ed loss function extended with a term penalizing deviations of the

interest rate from the level implied by a simple rule.4 Our approach is inspired

2Kahn notes that, �[a]s it turned out at the meeting, the federal funds rate target was raised
50 basis points to 6 percent, where it stayed until July 1995 when it was cut to 5 3

4 percent.�
3For example, Deputy Governor at the Riksbank, Svante Öberg, expressed on the monetary

policy meeting December 14, 2010: �With GDP growth of over 5 per cent, more or less normal
resource utilisation, and in�ation and in�ation expectations at around 2 per cent, it feels slightly
uncomfortable to have a repo rate of 1.25 per cent. A traditional Taylor rule would in the present
situation result in a repo rate of 3 to 4 per cent� (Riksbank, 2011, p. 8).

4Since we �rst circulated our paper there have been other contributions using our combined
approach. See Tillmann (2011) and Bursian and Roth (2012).

3



by Rogo¤�s (1985) seminal paper on the optimal degree of commitment to an in-

termediate target, in which he argues that �it is not generally optimal to legally

constrain the central bank to hit its intermediate target (or follow its rule) exactly�

(p.1169). While Rogo¤�s proposal was aimed to reduce the in�ationary bias under

discretion, we consider partial commitment to rules aimed to make policy more ro-

bust. In other words, we analyze whether the loss across di¤erent models tends to

be lower if the central bank minimizes a modi�ed loss function with weight on a

simple rule. The idea of extending the loss function with a term with a simple inter-

est rate rule is novel, but the idea of robustifying optimal policy through modi�ed

loss functions is not new. Orphanides and Williams (2008) show that a loss func-

tion with reduced weight on the unemployment gap and on interest rate stability

is more robust to wrong assumptions about private agents�expectations formation

(i.e., rational expectations vs. learning). Our approach of using cross-checks in the

modi�ed loss function is also related to Beck and Wieland (2009). They consider

a policy where the central bank conducts optimal policy in "normal" times, but

extends the loss function with a money growth term when money growth is outside

a critical range. Our speci�cation di¤ers in using simple interest rate rules, rather

than money growth, as cross-check and by letting the simple rule always enter the

operational loss function and not only when the deviation is outside a critical range.

The novelty of our modi�ed loss function is that it builds a bridge between the

two alternative monetary policy approaches; optimal policy and simple robust rules,

making it possible to analyze intermediate solutions.

To analyze the robustness properties of the modi�ed loss function, we consider

three alternative models for the US economy: The Smets and Wouters (2007) model,

the Rudebusch and Svensson (1999) model, and the Fuhrer and Moore (1995) model.

We assume that the Smets-Wouters model is the central bank�s reference model due

to its in�uence on models used for policy simulations among central banks in prac-

tice. We have re-estimated the other two models on the data set from Smets and

Wouters (2007) to get comparable estimates of the variances of the shocks and
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thereby losses in the di¤erent models. The two alternative models have been thor-

oughly investigated in the robustness literature, which makes it easier to compare

our results to those obtained earlier. Moreover, and importantly, these models rep-

resent very di¤erent views on issues such as in�ation persistence and expectation

formation. The Rudebusch-Svensson model is completely backward looking, while

the Fuhrer-Moore model is partly forward looking and partly backward looking.

As we will show, backward looking models imply very di¤erent monetary policy as

far as inertia is concerned and they therefore represent a natural alternative to the

largely forward looking reference model.

We consider di¤erent simple rules, including the classical Taylor rule, an optimal

simple Bayesian rule, which minimizes the (weighted) average of the losses in the

di¤erent alternative models, and a minimax rule, which minimizes the maximum

loss in the alternative models. We �nd that placing a weight on either of the rules,

the central bank can insure against very bad outcomes if the reference model is

wrong. Even if the simple Bayesian rule and the minimax rule are derived optimally

using the alternative models, the classical Taylor rule, with the coe¢ cients of 1:5 on

in�ation and :5 on the output gap, does surprisingly well and not signi�cantly worse

than the simple optimized rules. Another interesting �nding is that the weight on

a simple rule is always strictly smaller than one. Thus, a robust monetary policy is

to lean towards simple rules, but not follow them mechanically. We therefore �nd

support for the common view among proponents of simple rules, that they should

be used as guidelines, but not as mechanical formulas for the interest setting.

The paper is organized as follows. Section 2 presents the reference model and

the two alternative models. Section 3 describes the approach of optimal monetary

policy with cross-checking and Section 4 presents the results. Section 5 concludes.
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2 A reference model and two alternative models

The analysis uses three distinct estimated macroeconomic models for the US econ-

omy. The models are taken from the new model data base described in Taylor and

Wieland (2012). The three models are: the Smets and Wouters (2007) model, the

Rudebusch and Svensson (1999) model, and the Fuhrer andMoore (1995) model. We

brie�y discuss each of them in turn. Since the original estimations of the models are

based on somewhat di¤erent time periods, we re-estimate the Rudebusch-Svensson

model and the Fuhrer-Moore model on the same data as the Smets-Wouters model.

2.1 The Smets and Wouters (2007) model

The Smets and Wouters model (SW hereafter) is a medium scale closed-economy

dynamic stochastic general equilibrium (DSGE) model estimated on US data from

1966:1 to 2004:4 using a Bayesian estimation methodology. The model is based on

Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2003). House-

holds in the model maximize a nonseparable utility function with goods and labor

e¤orts as arguments. Labor is di¤erentiated by a union, which has monopoly power

over wages, and �rms use capital and labor to produce di¤erentiated goods. Both

prices and wages are sticky and based on the Calvo model, but extended with partial

indexation.

Medium scale DSGE models have had a great in�uence on the model develop-

ment both in academia and policy institutions, and many central banks use such

models as the core model for forecasting and policy analysis. The main advantage of

these models is that they combine the property of being structural, which facilitates

interpretation and story telling, and having forecasting properties comparable with

VARs. Given the in�uence of these models on monetary policymaking in practice,

we let the reference model of the policymaker be represented by SW.
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2.2 The Rudebusch and Svensson (1999) model

The model by Rudebusch and Svensson model (RS hereafter) is a small closed-

economy model with a Phillips-curve and an IS-curve. The original model was

estimated by single-equation OLS on US data from 1961:1 to 1996:2. The model

is purely backward-looking, and one may interpret the model as summarizing the

traditional Keynesian view on the monetary policy transmission mechanism. The

model is summarized by the following two equations:

�t+1 = a�1�t + a�2�t�1 + a�3�t�2 + (1� a�1 � a�2 � a�3)�t�3 + ayyt + "t+1(1)

yt+1 = byyt + by1yt�1 � br (�{t � ��t) + �t+1; (2)

where yt and �t denote the output gap in period t and the rate of in�ation, respec-

tively. The nominal interest rate is denoted it, "t is a cost-push shock and �t is a

demand shock. The variables with bars are de�ned as four-quarter averages. We

have re-estimated the model over the same sample as the Smets-Wouters model, i.e.,

1966:1 to 2004:4, where we used the original parameter estimates as priors. Table 1

shows the new parameter estimates.

[Table 1 about here]

2.3 The Fuhrer and Moore (1995) model

The Fuhrer and Moore model (FM hereafter) is a small, closed-economy model

with partly forward-looking and partly backward-looking expectations and is often

claimed to provide a good description of in�ation persistence. The model assumes

overlapping wage contracts, where the price level today, pt, re�ects the contract

wages, xt, negotiated in quarter t� 1, i.e.,

pt =
3X
i=0

fixt�i; (3)
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where fi � 0 and
P
fi = 1. The weights on each contract weight is a downward-

sloping linear function of contract length according to:

fi = 0:25 + (1; 5� i)s; 0 < s � 1=6: (4)

The index of real wage contracts that were negotiated on the contracts currently in

e¤ect is given by

�� =
3X
i=0

fi(xt�i � pt�i): (5)

Agents set nominal wage contracts so that the current real contract wage equals the

average real contract wage index expected to prevail over the life of the contract,

but where the degree of pressure in the economy, captured by the output gap yt,

a¤ects the negotiated wage:

xt � pt =
3X
i=0

fiEt(��+i + 
yt+i) + "p;t; (6)

where 
 > 0 and "t is a white noise shock. Aggregate demand (the output gap) is

given by

yt = a1yt�1 + a2yt�1 + a��t�1 + "y;t;

where �t =
D
1+D

Et�t+1 +
1

1+D
(it � Et�t+1) is the long-term real interest rate and D

is a constant approximation to Macaulay�s duration

The model is re-estimated using the original parameter values as priors, and the

results are reported in Table 2.

[Table 2 about here]

3 Monetary policy

In this section we start by describing optimal policy and the objectives of the central

bank. We then describe the simple interest rate rules used in the analysis below and
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proceed with a description of optimal monetary policy with cross-checking by simple

rules. This set-up modi�es the objective of the central bank to include a penalty for

deviations from a simple interest rate rule. We end the section with a description

of the simulation set-up.

3.1 Optimal policy

We assume that the central bank minimizes the intertemporal loss function:

Et

1X
h=0

�hLt+h

where � is the time discount factor. The period loss function Lt is a quadratic func-

tion of the variables entering the model. We assume that the central bank has access

to a commitment technology, i.e., monetary policy is conducted under commitment.

The central bank minimizes the intertemporal central bank loss function subject to

the constraints given by the model. The characterization of optimal policy is stan-

dard, and we refer to Svensson (2010) for a description. Generally, optimal policy is

given by a set of �rst-order conditions and the Lagrange multipliers associated with

the constraints.

The objectives of monetary policy are represented by the following (ad hoc)

period loss function:

Lt = �
2
t + �y

2
t + � (it � it�1) : (7)

The parameters � � 0 and � � 0 give the central bank�s weight on stabilizing the

output gap and the change in the interest rate, respectively, relative to stabilizing

in�ation. If there is no model uncertainty, the central bank should minimize the loss

function (7) subject to the constraints given by its reference model. Under imperfect

knowledge of the economy, it might not always be the case that the central bank

should minimize (7). We thus consider modi�ed loss functions that deviate from (7)

with the aim of making optimal policy more robust.
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3.2 Simple rules

It is possible to derive an implied instrument rule from the �rst-order conditions

describing optimal policy. However, such rules are usually complicated and very

model-speci�c. Simple rules, on the other hand, are based on a smaller and more

restricted set of variables. Although not being optimal, simple rules are often consid-

ered more robust than optimal policy. We restrict the attention to the sub-class of

Taylor-type rules considered by Taylor and Wieland (2012). Speci�cally, the simple

rules have the following form (where we disregard constant terms):

ist = aiit�1 + a��t + ayyt + ay�1yt�1; (8)

where parameters ai, a�, ay, ay�1 measure the responsiveness of the nominal interest

rate to changes in the corresponding macroeconomic variable.

We consider three types of simple rules. First, we consider optimal simple rules

from a Bayesian model averaging perspective, i.e.,

min
(ai;a� ;�y ;ay�1 )

MX
m=1

pmLm;

where pm is the weight (probability) attached to a given model m and M is the set

of alternative models. Second, we consider the optimal minimax rule, where the

coe¢ cients are optimized to give the minimum loss in the model that implies the

maximum loss, i.e.,

min
(ai;a� ;�y ;ay�1 )

max
m2M

Lt:

One objection to the minimax rule and the Bayesian rule is that they are opti-

mized within a given set of models and may thus be only robust across the models

within that particular set. One solution is to use rules that are not optimized within

a particular set of models, but have �reasonable�parameter values. One such rule

is the classical Taylor rule, where a� = 1:5, ay = 0:5, ai = ay�1 = 0, which we

therefore include in the set of simple rules.
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3.3 Optimal monetary policy with cross-checking

The two alternative approaches to monetary policy are motivated from two distinct

perspectives. Optimal policy is designed to give the maximum achievement of the

central bank�s objectives given its best knowledge of the functioning of the economy.

Simple (robust) instrument rules are designed to avoid bad policy outcomes. Next,

we show how the two approaches can be combined in a way that makes optimal

policy more robust, or, alternatively, simple rules more optimal. We denote this

optimal policy with cross-checking.

The starting point is the central bank loss function, which is extended with a

term penalizing deviations from a simple interest rate rule:

Lmt = �
2
t + �y

2
t + � (it � it�1)

2 + 
 (it � ist)
2 ; (9)

where 
 is the weight on the deviation from the simple instrument rule. For exposi-

tional reasons, it is useful to re-write the loss function as a weighted average of the

loss function, Lt, and the deviation from the simple rule, i.e.,

L̂t = (1� �)Lt + � (it � ist)
2 ; (10)

where � = 1
1+

.

Our modi�ed loss function could be interpreted as optimal policy with guidance

from simple rules. This seems to be a reasonable description of how simple rules are

used as cross-checks in practice, as described in Kahn (2012). An alternative inter-

pretation is that the central bank uses a simple rule as a benchmark, but deviates

from it when it �nds it appropriate to do so. Our proposal can thus be interpreted

as optimal deviations from a simple rule.

Monetary policy with cross-checking has also been considered by Beck and

Wieland (2009). They did not, however, consider simple interest rate rules as cross-

checks, but instead analyzed the case where the monetary policymaker conducts op-

timal policy in "normal times", but extends the loss function with a money growth
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term when money growth is outside an estimated critical range.5

The most common rationale for modi�ed loss functions is to improve the discre-

tionary solution when the central bank is not able to commit, as initiated by Rogo¤

(1985). If the central bank is in fact credible and able to commit, this rationale

for modi�ed loss function disappears and the central bank should not aim to mini-

mize a modi�ed loss function. However, as mentioned in the introduction, modi�ed

loss functions have been suggested also as a way to robustify optimal policy, see

Orphanides and Williams (2008). They show that lowering the weight on the un-

employment gap and on interest rate smoothing increases robustness if expectations

are characterized by adaptive learning instead of rational expectation as in the core

model.6

3.4 Simulation setup

In order to study robustness of monetary policy, we proceed as follows. We derive

optimal monetary policy in the reference model, i.e. SW, and use this policy to

compute the implied loss in both the reference model and the alternative models.

Optimal policy is derived using the modi�ed loss function, that is, under the assump-

tion of optimal monetary policy with cross-checking. Our rationale for minimizing a

modi�ed loss function is to provide better achievement of the underlying objectives,

represented by (7), when the reference model is wrong. When we compute the im-

plied losses to assess the robustness of the (modi�ed) optimal policies, we therefore

use the loss function (7).

Since the alternative models do not have the same set of variables, it is not

possible to apply the optimal targeting rule from SW to the other models. We will

therefore follow Orphanides and Williams (2008) and approximate optimal policy

by an interest rate rule based on the three variables which enter all models, namely

5Christiano and Rostagno (2001) also use money growth as a cross-check. They assume that
the central bank sets interest rates according to a Taylor rule in �normal� times, but changes to
money growth targeting if money growth is outside critical range.

6Orphanides and Williams note, however, that their approach can be generalized to include
additional variables in the modi�ed loss function, but leave this for future research.
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in�ation, the output gap, and the interest rate. To capture the possibly complicated

dynamics of optimal policy, we allow for a quite generous lag structure, i.e.,

it =

4X
j=1

hi;jit�j +

4X
j=0

h�;j�t�j +

4X
j=0

hy;jyt�j: (11)

The rule which approximates fully optimal policy under commitment thus has 14

parameters, and this rule gives an expected loss that gets very close to the expected

loss under optimal policy.7

4 Results

The main objective is to analyze robustness of optimal policy with cross-checking.

To this end we compute expected losses in each model using policy derived under

the modi�ed loss function in the reference model with di¤erent weights � attached

to the simple rule. As the benchmark loss function, we use � = 0:5 and � = 0:1.8

4.1 The classical Taylor rule

We consider �rst the case where the policymaker places weight on the classical Taylor

rule. Disregarding the constant terms, the rule is given by

it = 1:5�t + 0:5yt: (12)

The classical Taylor rule is an interesting benchmark for two reasons. First, there

is evidence that monetary policymakers indeed place weight on the Taylor rule, see

Kahn (2012) and Ilbas, Røisland and Sveen (2012). Second, it is interesting to

analyze the extent to which placing a weight on a simple rule that is not optimized

for any of the models considered, still could provide some insurance against model

uncertainty.

7For simulation purposes we use Dynare, which can be downloaded from the website
www.dynare.org. The optimal coe¢ cients are found by a grid search algorithm developed by
Junior Maih. We thank him for providing us with the MatLab code.

8As a robustness check of our results, we also consider alternative weights. Those results are
available upon request.
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[Figure 1 about here]

Figure 1 shows the average loss, measured by the loss function (7), evaluated

in the alternative models, as a function of the weight � on the classical Taylor

rule. Applying the terminology suggested by Levin and Williams (2003), the �gure

illustrates the fault tolerance of each model with respect to the weight on the Taylor

rule. Note that the fault tolerance analysis here is somewhat di¤erent than in Levin

andWilliams, who analyze robustness with respect to parameters in a simple interest

rate rule.

Consider �rst the loss evaluated with the reference model, i.e., SW. The policy

that minimizes the modi�ed loss function gives, as expected, a higher loss measured

by Lt, except for the case � = 0. Note, however, that the excess loss is quite low

for values of � up to around 0:6: That is, SW is quite fault tolerant for a relatively

wide range of weights � on the Taylor rule. FM is fault tolerant for all admissible

values of �. Even if the loss in FM is lowest when 0 < � < 1, neither optimal

policy in SW nor full commitment to the Taylor rule lead to very high losses in this

model. This is, however, not the case for RS. With optimal SW policy, RS becomes

dynamically unstable, and hence the expected loss is in�nite. The reason for the

dynamic instability in RS is that the optimal SW policy implies considerable inertia

in policy, which, as shown by Levin and Williams (2003), could lead to dynamic

instability in RS. However, by placing a weight on the Taylor rule of about 0:35 or

above, dynamic stability is ensured. The loss measured by RS reaches its minimum

at � = 0:65. An interesting result is that in both FM and RS the minimum loss is

where 0 < � < 1. This result strongly support Taylor�s (1993) advice that central

banks should not follow simple rules like the Taylor rule mechanically, but use them

as guidelines.

What is the appropriate weight on the Taylor rule? To answer this question

we consider two approaches; minimax and Bayesian. The solid line in Figure 2

represents the maximum loss as a function of the weight on the Taylor rule. For
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values � 2 [0; 0:55], RS gives the highest loss, and for � 2 [0:55; 1], SW gives the

highest loss. FM is not the worst-case model for any values of �. The value of �

which minimizes the maximum loss is � = 0:55.

The dashed line measures the Bayesian loss, where the loss in each model is

weighted together with weight 1=2 on SW and 1=4 on RS and FM, respectively.

An interesting result is that the Bayesian loss has its minimum also at � � 0:55.

Although this depends on the weights attached to the various models, the minimum

loss tends to be achieved for � in the range between 0:4 and 0:6 for any reasonable set

of weights on the models. Thus, given this set of alternative models, an appropriate

weight on the Taylor rule does not depend too much on whether one takes a minimax

or Bayesian perspective. Therefore, the optimal weight on the Taylor rule is in this

set of models independent of the degree of ambiguity aversion.

[Figure 2 about here]

4.2 Optimal simple rules

Next we consider the implications of placing a weight on optimal simple rules. As

explained above, we consider rules derived under both Bayesian model averaging

and minimax policy.

4.2.1 Optimal Bayesian rule

To construct the optimal simple Bayesian rule, we restrict the rule to minimize the

weighted loss over the two alternative models, i.e., RS and FM. One could also

include SW when minimizing the weighted losses, but since SW is the reference

model under which optimal policy is derived, the results become more clear-cut

when the robust simple rule is based on only the two alternative models. Placing

equal weights on the two alternative models, gives the following optimal simple

Bayesian rule:
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iBt = :62it�1 + 2:17�t + 1:89yt � 0:58yt�1

= :62it�1 + (1� :62) [5:71�t + 3:44yt + 0:53�yt] : (13)

The simple Bayesian rule exhibits a moderate degree of inertia, represented by

the coe¢ cients on the lagged interest rate and on the change in the output gap and

a quite aggressive response to in�ation and the level of the output gap.

[Figure 3 about here]

The next step is to �nd the optimal policy in the reference model, using the

simple Bayesian rule as a cross-check. Figure 3 shows the losses in the three models

as a function of the weight on the optimal simple Bayesian rule in the modi�ed

loss function. The loss in RS now becomes �nite for a much smaller weight on the

simple rule than in the case of the classical Taylor rule, which re�ects that the simple

Bayesian rule is more "taylored" for RS. In the limit where the central bank follows

the simple rule mechanically, i.e., � = 1; the loss in RS is lower than in FM. The

reason is that the FM is generally more fault tolerant than the RS for any parameter

values, which implies that on the margin there is more to gain by reducing the loss

in RS than the loss in FM. The average loss in the two models is thus minimized for

a lower loss in RS than the loss in FM. The loss evaluated with the reference model

is, however, high when the central bank follows the Bayesian rule mechanically.

[Figure 4 about here]

Figure 4 shows the maximum loss in the three models and the weighted loss as

a function of the weight � on the Bayesian rule in the modi�ed loss function. We

see that the weight � � 0:15 gives the lowest maximum loss, which is the point

where the loss in SW crosses the loss in RS in Figure 3. The minimum weighted

loss occurs at � � 0:2. Depending on the policymakers� aversion against model

uncertainty, the appropriate weight on the Bayesian rule should therefore lie in the
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interval [0:15; 0:2]. Somewhat surprisingly, the maximum loss and the weighted

loss are not signi�cantly lower when the central bank places weight on an optimal

Bayesian rule than if it places weight on the classical Taylor rule. This suggests

that the classical, but in this respect ad hoc, Taylor rule could provide almost as

good insurance as a simple rule that is optimized over the relevant models, given

that the rule has an appropriate weight. Moreover, it is interesting to note that

the appropriate weight on the Bayesian rule is lower than the appropriate weight

on the classical Taylor rule. The reason is as follows. The Bayesian rule implicitly

gives a high weight on RS, since it is the least fault tolerant model. Placing a small

weight on this simple rule is therefore su¢ cient to rule out dynamic instability in

RS. Robustness can hence be achieved by deviating less from optimal policy in SW.

It is also interesting to relate to the robust Bayesian rules identi�ed by Levin

and Williams (2003). They consider RS in addition to the canonical New Keyne-

sian model and the Fuhrer (2000) model, of which RS is the least fault tolerant.

Our results therefore imply that the central bank can achieve a better outcome by

deviating optimally from their robust simple rules.

4.2.2 Optimal minimax rule

The optimal simple minimax rule is given by

iMt = 0:87it�1 + 0:83�t + 1:37yt � 0:86yt�1

= 0:87it�1 + (1� :87)[6:38�t + 3:92yt + 6:62�yt]: (14)

Comparing the optimal minimax rule (14) with the optimal Bayesian rule (13), we

see that there is considerably more policy inertia, represented by the coe¢ cient

coe¢ cients on it�1 and �yt, in the minimax rule than in the Bayesian rule. The

reason is that the Bayesian rule gives a higher loss in FM than in RS. In order to

minimize the maximum loss, the minimax rule implies that the loss in FM is reduced

until the two losses are equal. Since high inertia is bene�cial in FM, but not in RS,

17



the optimal minimax rule implies more inertia than in the Bayesian rule. However,

as the degree of inertia in the minimax rule is only slightly lower than in optimal

policy in SW, a larger weight on the minimax rule than on the Bayesian rule is

required to make the inertia su¢ ciently low to give dynamic stability in RS, as seen

from �gure 5.

[Figure 5 about here]

From �gure 6 we see that depending on the degree of ambiguity aversion, where

the maximum loss and the Bayesian loss represent the extreme cases, an appropriate

weight on the optimal simple minimax rule lies in the range [0:85; 0:95]. Although a

large weight on the simple rule is required, full commitment to the rule, i.e., � = 1,

is still not advantageous.

[Figure 6 about here]

4.2.3 The trade-o¤ between optimality and robustness

To provide insurance against bad outcomes under model uncertainty, the policy-

maker has to accept a higher loss if the reference model is correct. The insurance

premium is determined by the trade-o¤ between the loss in the reference model

and the losses in the alternative models. We compare the trade-o¤s implied by

the three alternative rules that we consider, i.e., the classical Taylor rule, the opti-

mized Bayesian rule and the minimax rule, by varying the weight on the rule in the

modi�ed loss function.

[Figure 7 about here]

Figure 7 shows the trade-o¤ between the loss in the reference model and the

average loss in the alternative models, and Figure 8 shows the trade-o¤ between

the loss in the reference model and the maximum loss in the alternative models.

One striking result is that the trade-o¤ is generally far less e¢ cient when placing
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weight on the minimax rule. Only on the part of the trade-o¤ in which the loss in

the alternative model is close to the minimum level the minimax rule performs well.

For less extreme preferences for robustness, placing weight on either the Taylor rule

or the Bayesian rule gives a better trade-o¤, in the sense that one can achieve both

lower loss in the reference model and lower loss in the alternative models than in

the case with the minimax rule.

[Figure 8 about here]

Another somewhat surprising result is that the Taylor rule does not in general

give a worse trade-o¤ than the Bayesian rule, despite the fact that the Bayesian

rule is optimized for the speci�c models. Placing a weight on a non-sophisticated

rule like the classical Taylor rule as a cross-check, albeit not committing to follow it

mechanically, thus seems to be a good insurance policy for a monetary policymaker.

5 Conclusions

In this paper we propose an approach that constitutes a synthesis of the two alterna-

tive, common ways of modelling monetary policy - optimal policy and simple rules.

Our approach can be summarized as minimizing a loss function that is extended by

a weight on deviations of the interest rate from the rate implied by a simple robust

rule. By varying the weight on the simple rule, one de�nes a continuum between

standard optimal policy and commitment to a simple rule. Moreover, based on sim-

ulations in three di¤erent models of the US economy, we �nd that placing weight on

a simple rule like the Taylor rule provides insurance against very bad outcomes if

the reference model is wrong. Speci�cally, we �nd that a policy that is optimized for

the model by Smets and Wouters (2007) leads to dynamic instability in the model

by Rudebusch and Svensson (1999). By placing some weight on a Taylor rule, the

solution in the Rudebusch-Svensson model becomes dynamically stable at relatively

modest costs in terms of increased loss evaluated in the Smets-Wouters model. An

optimized simple Bayesian rule improves the outcome relative to the classical Taylor
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rule, but the gain from an optimized rule is not very large. Both the optimal simple

Bayesian rule and the classical Taylor rule tend to perform better than the optimal

minimax rule, when used as a cross-check in the loss function.
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Table 1: Esimation results in the RS model
Parameter Prior Distr. Prior Mean Prior St.Dev. Post. Mean

a�1 Normal 0:7 0:5 0:5519
a�2 Normal �0:1 0:5 0:0967
a�3 Normal 0:28 0:5 0:1313
ay Gamma 0:14 0:5 0:2326
by1 Normal 1:161 0:5 1:0894
by2 Normal �0:259 0:5 �0:2506
br Gamma 0:088 0:2 0:0442
�" InvGamma 1:00 10 1:0674
�� InvGamma 1:00 10 0:7456

Note: The table shows the prior distribution, mean and standard errors for the structural
parameters and the shock processes (where the standard errors of the shocks are denoted
by �). The �nal column reports the posterior mean estimates. In addition, we estimated,
but not reported, an extended Taylor type rule as in equation (11), with a corresponding
i.i.d. shock.

Table 2: Esimation results in the FM model
Parameter Prior Distr. Prior Mean Prior St.Dev. Post. Mean

a1 Normal 1:34 1:0 1:1713
a2 Normal �0:37 1:0 �0:2434
a� Normal 0:36 0:5 �0:4483
s Uniform(0; 1=6) (0:083) (0:0481) 0:1110

 Gamma 0:008 0:05 0:0036
�"y InvGamma 1:00 10 0:75
�"p InvGamma 1:00 10 0:2167

Note: The table shows the prior distribution, mean and standard errors for the structural
parameters and the shock processes (where the standard errors of the shocks are denoted
by �). The �nal column reports the posterior mean estimates. In addition, we estimated,
but not reported, an extended Taylor type rule as in equation (11), with a corresponding
i.i.d. shock.
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Figure 1: Expected loss in the alternative models as a function of the weight, �, on

the classical Taylor rule in the modi�ed loss function.
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Figure 2: Maximum and weighted loss as a function of the weight, �, on the

classical Taylor rule in the modi�ed loss function.
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Figure 3: Expected loss in each model as a function of the weight, �, on the simple

Bayesian rule in the loss function.
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Figure 4: Maximum and weighted loss as a function of the weight, �, on Bayesian

simple rule.
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Figure 5: Expected loss in each model as a function of the weight, �, on the simple

min-max rule in the loss function.
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Figure 6: Maximum and weighted loss as a function of the weight, �, on the

min-max simple rule.
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Figure 7: The trade-o¤ betweeen the loss in the reference model, LSW , and the

average loss in the alternative models, mean
�
LRS; LFM

�
.
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Figure 8: The trade-o¤ betweeen the loss in the reference model, LSW , and the

maximum loss in the alternative models, max
�
LRS; LFM
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