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Abstract

We use Bayesian methods to estimate a multi-factor linear asset pricing model characterized

by structural instability in factor loadings, idiosyncratic variances, and factor risk premia. We

use such a framework to investigate the key differences in the pricing mechanism that applies to

residential vs. non-residential (such as office space, industrial buildings, retail property) real estate

investment trusts (REITs). Under the assumption that the subprime crisis has had its epicentre in

the housing/residential sector, we interpret any differential dynamics as indicative of the propagation

mechanism of the crisis towards business-oriented segments of the US real estate market. We find

important differences in the structure as well as the dynamic evolution of risk factor exposures

across residential vs. non-residential REITs. An analysis of cross-sectional mispricings reveals that

only retail, residential, and mortgage-specialized REITs were over-priced over the initial part of our

sample, i.e., 1999-2006. Moreover, residential-driven real estate has structural properties that make

it different from non-residential assets.

Key words: Multi-factor models, real estate, mispricing, real estate investment trusts.

JEL codes: G11, C53.

1. Introduction

Most macroeconomic and policy commentaries between 2007 and 2010 have been dominated by one

obsessively worrisome news item: the U.S. real estate sector was in the middle of a convulsive bust

characterized by downward spiralling prices and transaction volumes. As Gleaser (2013) has recently

emphasized, such a bust was not the first and possibly not even the largest among those recorded in

the history of the United States, but what he calls the “Great Convulsion” was sufficiently strong to
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produce one of the deepest and longest recessions of the last two centuries and a full-blown financial

crisis. A number of authors (see e.g., Arce and Lopez-Salido, 2011; Case and Shiller, 2003; Smith and

Smith, 2006, Wheaton and Nechayev, 2008) and commentators reached a simple conclusion: the big

bust was simply the epilogue of an enormous housing bubble that would have been caused by rational

(see e.g., Chu, 2013; Favilukis et al., 2010) as well irrational (see e.g., Case and Shiller, 2003; Gleaser,

2013 and references therein) behaviors by households and banks. This emphasis is less than surprising

because a vast literature has pointed out that, within the real estate asset class, housing would be more

prone to bubbles because of an often reported psychological overconfidence bias (see e.g., Gyourko,

2009).1 This is also consistent with a number of macroeconomic models, like Arce and Lopez-Salido’s

(2011), in which a rational expectations equilibrium exists in which homeowners, who extract utility

from their houses, coexist with investors, who hold houses only for resale purposes and do not expect

to receive any rents or direct utility from occupancy. Leveraging on specific features of the housing

market, a literature has discussed the specific causes of the Great Convulsion, for instance the fact

that the bubble seems to have been triggered by irrational or themselves bubbly mortgage markets

(see e.g., Demyanyk and Van Hemert, 2011; Dell’Ariccia et al., 2011; Hendershott et al., 2010).

In this paper, we use state-of-the art time series methods applied to well established and flexible

multi-factor asset pricing models to ask two simple questions that appear to have been neglected so

far. First, we investigate whether the dominant view (often, an instinctive reflection of the ways events

have unfolded and news has been broadcast during the 2007-2008 subprime crisis, see e.g., Cecchetti,

2009; Gorton, 2009; Mian and Sufi, 2009) of the 2007-2010 real estate bust as predominantly consist-

ing of a house price deflation phenomenon has any foundations from a rational pricing perspective.

Equivalently, we ask whether asset market transaction data are compatible with the hypothesis of

any abnormal or exceptional dynamics having affected either the housing/residential or the mortgage

financing sectors, differentially from other, non-residential segments of the U.S. real estate market. As

a result, our first testable hypothesis is whether–assuming the literature has correctly identified the

subprime sector as the origin of the real estate bust –residential REITs were affected by the subprime

crisis earlier and more strongly than other categories.2 The second panel of Figure 1 supports our

development of formal tests of this hypothesis: the valuations of residential and mortgage real estate

led other sectors between early 2007 and Summer 2008; yet, they also recovered before most other

sectors after 2009 and appear to display dynamics that is different from business-related real estate

indices.

1Using the words by Case and Shiller (2003, p. 321), “Expectations of future appreciation of the home are a motive

for buying that deflects consideration from how much one is paying for housing services. That is what a bubble is all

about: buying for the future price increases, rather than simply for the pleasure of occupying the home.” Clearly, these

two complementary motives to invest in real estate are largely absent in categories that differ from housing, when the

pleasure of occupying (say) a factory building, a parcel of land, or an empty shop are generally absent. Mian and Sufi

(2011) find that a large fraction of the home equity loans that were taken during the housing boom were used to finance

consumption, which also appears to be a phenomenon specific to the housing choice.
2While residential (in particular, apartment-investing) REITs represent commercial property, the key distinction in

this paper is between real estate assets that are directly related to business activities (industrial buildings, offices, shopping

malls, and free-standing shops) vs. residential equity REITs that invest inmanufactured homes and apartments, as well

as mortgage REITs that are involved with purchasing housing-related loans and mortgage-backed securities.
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Our second question is whether the tumble in real estate prices derived from either a correction of a

previous large mispricing of real estate (or parts of it) as an asset class or whether it was an irrationally

precipitated event, that is difficult to rationalize using standard but flexibly implemented asset pricing

models. The two perspectives show of course an interesting intersection as in this paper we also study

whether any differential dynamics between the residential and the non-residential, business-specialized

sectors of the U.S. real estate market may derive from a heterogeneous evolution of risk exposures and

whether these implied any correction of a mispricing that had endogenously emerged in the residential

sector but that had not occurred in the non-residential segment of the market.

In methodological terms, we make two key choices. First, supported by a recent real estate finance

literature (see, e.g., Cotter and Roll, 2011; Gyourko, 2009) that establishes robust links between

publicly traded securities and underlying real assets, we use closing market price data at monthly

frequency of real estate investment trusts (REITs) to measure real estate valuations ensuring sufficient

liquidity and homogeneity over time (see the discussion in Himmelberg et al., 2005).3 Because REITs

offer abundant, high-quality data for a variety of subsectors, they give us the chance to perform

tests that distinguish among portfolios of residential (hence, housing-related), of mortgage, and of

nonresidential real estate investments, as required by our first question. Such tests would be impossible

should one use appraisal-based or repeat-sale data that are subject to upward biases and quality

homogeneity issues, respectively (see e.g., Rappoport, 2007), and generally available for houses only.

Moreover, the 2007-2010 downturn in REIT valuations also represents the largest bust in publicly

traded real estate values in history (see Gyourko, 2009). Second, we analyze the pricing of U.S. real

estate assets in an encompassing no-arbitrage multi-factor framework by training a model to jointly

price stocks, government bonds, corporate bonds, as well as REITs, using driving macroeconomic

forces that are capable of pricing the cross-section of U.S. securities, with or without real estate (see

e.g., Bianchi et al., 2013). Because the implementation of such an APT-style framework requires data

on liquid assets traded in a frictionless market, proxying real estate valuations with REITs seems

natural. The model emphasizes the existence of no-arbitrage conditions between real estate and other

financial assets, in the tradition of Case and Shiller (1989). As discussed by Smith and Smith (2006),

to gauge the existence of misspricings in the real estate sector, it is fundamental to incorporate also

cross-sectional data on the way other assets are priced.

Our estimation approach based on Bayesian Monte Carlo Markov Chain techniques allows us to

entertain flexible multi-factor APT-style models in which many macroeconomic risk variables can be

accommodated, risk exposures (the so-called “betas”) are time-varying, idiosyncratic non-diversifiable

risk follows a stochastic process (i.e., it is heteroskedastic), and also risk premia are themselves subject

to instabilities. When the framework is specified to include a number of standard macroeconomic

factors (the return on the market portfolio; the credit risk premium; the riskless term premium; un-

3The Real Estate Investment Trust Act of 1960 authorized the creation of closed-end, exhange listed funds that allow

small investors to pool their holdings of commercial real estate in order to obtain the same economic benefits as might

be obtained by direct ownership. REITs offer investors tax advantages but are subject to the obligation to distribute at

least 90% of their taxable income to shareholders annually in the form of dividends.
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expected inflation; the rate of growth of industrial production, IP; the rate of growth of real personal

consumption; the 1-month real T-bill rate; one aggregate liquidity factor) that are assumed to drive

the stochastic discount factor in a linear fashion, we find evidence that the model is not misspecified, in

the sense that for most portfolios of equities and bonds there is no evidence of structural and persistent

mispricing. A rich literature (see e.g., Iacoviello, 2005; Iacoviello and Neri, 2010) has recently endoge-

nized the linkages between real estate prices and business cycle shocks in general equilibrium models

that our empirical framework simply aims at approximating. In fact, a number of the macroeconomic

factors are precisely priced in the cross-section of excess returns, with sensibly sized and signed pre-

mia. Such a flexible, empirical model captures the intuition of a number of carefully built, but tightly

parameterized models (see e.g., Favilukis et al., 2010) that support a story in which gyrations in risk

premia (caused by exogenous shocks) would explain the recent boom-bust pattern.

We report two novel findings. First, we find differences in the structure as well the dynamics of

risk factor exposures across residential vs. industrial, office, and retail REITs. This means that indeed

residential REITs, most related to housing, were “special” during our sample, and in particular during

the years in which the alleged housing bubble built up. Residential REITs are characterized by negative

but mildly increasing exposures to market risk, by quickly retreating exposures to business cycle risk,

and by massive and quickly increasing betas vs. unexpected inflation. In fact, by 2007 residential REITs

came to practically carry only unexpected inflation risk, a powerful sign of disconnect–especially at

the time of stable and predictable inflation rates–from any other underlying macroeconomic forces.

REITs that specialize in industrial and office investments carry instead negative exposure to real output

growth risks, and positive exposure to inflation and bond market risks, as measured by Cochrane and

Piazzesi’s (2005) factor. Retail-specialized REITs display a negative, significant and relatively stable

exposure to market risk and positive and large exposures to unexpected inflation and real interest rate

risks.

Second, an analysis of cross-sectional mispricing reveals that all the indicators (Jensen’s alphas)

implied by REITs were positive and relatively large. Ex-post, we obtain evidence that the entire real

estate asset class has been long and persistently over-priced in the U.S. Realized excess returns have

been (on average) between 0.5 and 2 percent higher than what would have been justified by their

exposure to standard risk factors between 1999 and 2011. Additionally, and with the partial exception

of mortgage investments, all sector REITs describe a homogeneous dynamics over time: the alphas

start out relatively low between 1999 and 2004. Between 2005 and late 2007, all alphas climb up, in

some cases going from a few basis points per month in late 2004 to as high as 2.2 percent per month.

This was the great U.S. real estate bubble, with trading volumes, borrowing, and prices all exploding

at the same time. However, the alphas slowly decline between 2008 and 2011, settling to levels below

1% per month and often returning to zero, when macro factors perfectly explain average returns.

Our multi-factor pricing exercise reports no evidence of a pure housing/residential real estate bubble

inflating between 2004 and 2007, to subsequently burst. All REIT subsectors record a climb-up in

alphas during this period. In fact, it is the alpha of the three retail/distribution-investing REIT
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portfolios that shows the steepest ascent. On the one hand, U.S. real estate would have been grossly

and systematically over-priced between 2004 and 2007. Over-pricing is indicated by the fact that the

posterior estimates of the real estate alphas are positive, increasing, and precisely estimated; large and

positive alphas signal that after taking into account the risk exposures and premia captured by the

nine factors entertained in our paper, real estate yielded “too high” a return that cannot be justified.

This contradicts the occasionally reported conclusions that financial models would be able to justify

the real estate valuations that were witnessed between 2004 and 2007 (see e.g., Glaeser et al., 2013,

Smith and Smith, 2006). In this sense, the real estate fad has been pervasive. Also the claim that the

great real estate bubble would have been a debt/mortgage-fueled one is consistent with the fact that

between 2001 and 2004 mortgage REITs implied the largest, positive median alphas. In fact, alongside

the residential one, an even bigger real estate over-pricing occurred instead–and in the perspective of

our model was potentially still under way as late as the end of 2011–in the industrial and retail real

estate sectors.

The paper is structured as follows. Section 2 describes the methodology. Section 3 presents the

data. Section 4 presents Bayesian posterior estimates of time-varying factor exposures and of unit

risk premia. Section 5 represents the heart of the paper and contains our findings on heterogeneous

mispricing across different segments of the real estate universe, with special emphasis on the dichotomy

residential vs. business REITs. Section 6 performs a few robustness checks. Section 7 concludes.

2. Research design and methodology

2.1. The asset pricing framework

Our research design is based on an extension of the time-varying beta multi-factor models introduced

by Ferson and Harvey (1991) that in our application reflect Case and Shiller’s (1989)-style financial no-

arbitrage approach, where investors earn equal risk-adjusted returns by investing across assets (see e.g.,

Karolyi and Sanders, 1998). A multi-factor asset pricing model (MFAPM) posits a linear relationship

between asset returns and a set of macroeconomic factors that are assumed to capture business cycle

effects on beliefs and/or preferences, as summarized by a pricing kernel with time-varying properties.

These macroeconomic factors are typically identified with the market portfolio (i.e., aggregate wealth)

returns, the credit quality spread on corporate bonds, the term spread in the riskless yield curve, the

rowth of industrial production, and inflation shocks (see, e.g., Chen et al., 1986). If we define the

macroeconomic factors as  ( = 1 ) and  to be the excess return on portfolio  = 1   ,

then a MFAPM is

 = 0 +

X
=1

 +  (1)

where [] = [] = 0 for all  = 1   and  = 1 . The  are returns in excess of

the risk-free rate proxied by the 1-month T-bill. Favilukis et al. (2010) discuss the importance of

focusing on risk premia instead of long-term riskless rate to characterize the recent real estate bust.
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The advantage of MFAPMs such as (1) is that a number of systematic factors well below the number

of test assets,    , may capture large portions of the variability in returns. Importantly, even

though the notation  implies that the factor loadings are allowed to be time-varying, such patterns

of variation are in general left unspecified.

One problem with (1) is the difficulty with interpreting 0 (often called “Jensen’s alpha”) when

some (or all) the risk factors are not themselves traded portfolios, i.e., returns: unless all the factors are

themselves tradable portfolios, it is impossible to interpret any non-zero 0 as an abnormal return on

portfolio  “left on the table” after all risks and risk exposures have been taken into account. If some

of the factors are not replicated by traded portfolios (i.e., their values cannot be written as portfolio

returns), there may be an important difference between the theoretical alpha that the model uncovers,

and the actual alpha that an investor may achieve by trading assets on the basis of the MFAPM. To

eliminate such a possibility, we follow the literature (see e.g., Ferson and Korajczyk, 1995; Lamont

2001; Vassalou 2003) and proceed as follows. When an economic risk factor is measured or can be easily

deterministically converted in the form of an excess return, such as the U.S. market portfolio, real T-bill

rates, term structure spreads, and default spread variables, we use the corresponding excess returns

directly as a mimicking portfolio; Shanken (1992) shows that under some conditions, such an approach

delivers the most efficient estimates of the risk premia. When a factor is not an excess return, such

as industrial production growth, unexpected inflation, and real consumption growth, we construct

the corresponding  0 ≤  mimicking portfolios by estimating time-series regressions of individual

portfolio returns on  economic variables and lagged instruments that are known to forecast future

investment opportunities (see Section 3 for details on the choice of instruments). Using the residuals of

such regressions to form a (time-varying) estimate of the  × (conditional) idiosyncratic covariance

matrix, V, we then form on each month of our sample the factor-mimicking portfolios for each of the

 0 factors by finding a vector of weights w ( = 1 
0) that solves

min
w

w0Vw s.t. (i) w0B[] = 0; (ii) w
0
1 = 1,

where B[] is the  × ( − 1) matrix that excludes the th row from the  × matrix of slope

coefficient estimates B obtained by regressing returns data on the  portfolios on the instruments.

The th mimicking portfolio is then formed from the individual base assets/portfolios, using the time

series of portfolio weights w,  = 1 2   .
4

Under the framework above, in the conditional version of Merton’s (1973) intertemporal CAPM

(ICAPM), the expected excess return (risk premium) on asset  over the interval [− 1 ] may then be
related to its “betas”, i.e., factor loadings measuring the exposure of asset  to each of the systematic

4The conditional beta of the th mimicking portfolio on the th factor may change as B and V change. However,

such mimicking portfolios are adjusted to have constant factor betas by combining them with T-bills so that the combined

portfolio has a beta equal to the time-series average of the betas from the constrained optimizations.
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risk factors and the associated unit risk premia (i.e., average compensations for unit risk exposure)

[|Z−1] = 0(Z−1) +
X
=1

|−1(Z−1) (2)

where both the betas and the risk premia are conditional on the information at time  − 1, here
summarized by the  × 1 vector of “instruments” Z−1, that capture any effects of the state of
the economy on the risk premia. The framework in (1)-(2) describes a general conditional pricing

framework that is known to hold under a variety of alternative assumptions (see e.g., Cochrane, 2005).

2.2. A Bayesian state-space approach

Stochastic, time-varying betas have been recently found to be crucial ingredients of conditional asset

pricing because there is a growing evidence that careful modelling the dynamics in factor exposures

may provide a decisive contribution to solve the typical anomalies associated with unconditional im-

plementations of multi-factor models. For instance, Ang and Chen (2007) and Jostova and Philipov

(2005) find that in a Fama and MacBeth’s style exercise (see Section 6.1 and Appendix A), the CAPM

is rejected when using rolling OLS beta estimates while the opposite verdict emerges when they allow

for stochastic variation (in the form of a simple AR(1) process) in the conditional CAPM betas. More-

over, a recent macroeconomic literature tends to fine discrete instability in the elasticities that connect

real estate valuations to business cycle shocks (see e.g., Iacoviello and Neri, 2010). Therefore, in this

paper we propose a flexible parametric model that may capture both any instability in risk exposures

and in residual variances. In this section, we provide some details to allow the Reader to appreciate

the key features of our methodology. Additional details appear in Appendix B.

We specify the relationship between excess returns and factors and the time-varying dynamics in

factor loadings and idiosyncratic volatility in a state-space (henceforth, Bayesian time-varying stochas-

tic volatility-with breaks, BTVSVB) form where the observation equation is the standard linear model

(1),

 = 0 +

X
=1

 + , (3)

where ² ≡ [1 2  ]
0 ∼ (0 I) and [] = [] = 0 for all  = 1  and  = 1 .

The time varying parameters  and  are described by the state equations

 = −1 +   = 0  (4)

ln(2) = ln(
2
−1) +   = 1   (5)

where ² ≡ (1 2  )
0 ∼ (0 {21 22  2}), η ≡ (0 1   )

0 ∼ (0Q)

with Q a diagonal matrix characterized by the parameters 
2
0 

2
1  

2
  

2
. Stochastic variations

(breaks) in the level of both the beta coefficients and of the idiosyncratic variance 2 are introduced
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and modelled through a mixture innovation approach as in Ravazzolo et al. (2007) and Giordani and

Kohn (2008). The latent binary random variables  and  are used to capture the presence of

random shifts in betas and/or idiosyncratic variance and, for the sake of simplicity, these are assumed

to be independent of one another (i.e., across assets and factors) and over time.

Pr [ = 1] =  Pr [ = 1] =   = 1   = 0  (6)

Note that even though we allow breaks to occur independently across assets, empirically we are not

restraining breaks from occurring contemporaneously across assets and/or factor exposures.

This specification is very flexible as it allows for both constant and time-varying parameters. When

 =  = 0 for some  =   then (4) reduces to (1) when the factor loadings and the quantity

of idiosyncratic risk are assumed to be constant, as  = −1 and ln2 = ln2−1. However,

when  = 1 and/or  = 1 then a break hits either beta or idiosyncratic variance or both,

according to the random walk dynamics  = −1 + and ln(2 ) = ln(2−1) +  (or

2 = 2−1 exp( )). Note that because when a break affects the betas and/or variances, the

random shift is measured by variables collected in η, we can also interpret Q not only as a standard,

“cold” measure of the covariance matrix of the random breaks in η, but also of the “size” of such

breaks: a large 2 means for instance that whenever  is hit by a break, such a shift is more likely

to be large (in absolute value). The same applies to the interpretation of 2 as the size of breaks

in idiosyncratic variance. Importantly, nothing forces the changepoint indicators,  and  for

 = 1   and  = 1 , to ever imply breaks. Equivalently, the data may suggest  =  = 0

∀ thus implying constant betas, idiosyncratic risk (and, as we shall see, risk premia).
The cross-sectional equilibrium restrictions derived from (2) are then imposed as

 = 0 +

X
=1

|−1 +   = 1   (7)

where  ∼ (0 2) and |−1 represents a draw from the predictive distribution in the state

dynamics (4). This is obtained by integrating out both the probability of having a structural break

as well as the uncertainty about the size of the break itself. This is the exact analog of the logic

emphasized by Ferson and Harvey (1991), namely, that the time  excess return on asset  can be

determined by investors with reference only to information available up to time − 1. Moreover, even
though the time-varying betas, |−1, clearly depend only on the information up to time  − 1 so
that the spirit of (2) applies, (7) avoids any parameterization of the dependence of the betas from

the instruments in Z−1 which may be advantageous. For instance, Ghysels (1998) has noted that the

estimates of factor loadings obtained from the explicit use of instrumental variables are very sensitive

to the specific variables considered.

Following McCulloch and Rossi (1991) and Geweke and Zhou (1996) the risk premia λ ≡ (0 1...
)

0 are estimated jointly with the loadings B ≡
©


ª 

=1 =0
the idiosyncratic variances σ2 ≡
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¡
21 

2
2 ... 

2


¢0
, as well as the other parameters Θ = {θ}=1 with θ ≡ (q2 π), where q

2
 ≡

(20 
2
1... 

2
  

2
)

0 is the vector of conditional volatilities of the factor loadings and the idiosyncratic

risks. By fully characterizing the joint posterior distribution of both betas and risk premia we avoid

the “error in variables” problem that otherwise affects the standard two-step estimation procedure (see

Section 6.1).

2.3. Posterior simulation

We estimate (4) using a Bayesian approach, which probably represents the only feasible estimation

method for a model with the features of the BTVSVB framework.5 Such a Bayesian setting also

allows us to account for parameter uncertainty when estimating both states and parameters. This

is particularly relevant because this implies that we can characterize the posterior probabilities for

the unobserved binary states  and  for  = 1   . These can then be used to incorporate

uncertainty regarding the timing of the structural breaks in the joint posterior of the state dynamics.

For the Bayesian algorithm illustrated in Appendix B to work, we need to specify the prior distributions

of each of the parameters. Appendix A illustrates such priors.

Posteriors are then characterized through the Gibbs sampler algorithm developed in Geman and

Geman (1984), in combination with the data augmentation technique by Tanner and Wong (1987). The

latent variables , 
2
 and ,  for each of the  = 1   assets, each of the  = 1  factors

and at each time  = 1   , are simulated alongside the model parameters θ and the equilibrium

risk premia λ. One can think of the latent variables as nuisance parameters that are “integrated out”

by the Gibbs sampler. However, to apply the Gibbs sampler we need to write down the complete

likelihood function, the joint density of data and state variables. Defining θ ≡ {θ}=1, B≡ {β}=1,
B ≡ {B}=1, R ≡ {} 

=1 =1  F ≡{F }=1 λ ≡ {λ}=1, K≡ {}  
=1 =1 =1

, K≡ {} 
=1 =1

,

Σ =
©
σ2
ª 

=1 =1
, the likelihood is

(RBKΣλ|θF) =
Y
=1

(
Y
=1

(|Fβ 
2
)(

2
|2−1  2) (1− )

1−× (8)

×
⎡⎣ Y
=0

(|−1  2)× 

 (1− )

1−

⎤⎦  ¡λ 2|BR

¢⎫⎬⎭ 

where K≡(KK) and F  = (1 2  )
0. Combining the prior specifications (21)-(23) with the

complete likelihood, we obtain the posterior density (θBKΣλ|RF) ∝ (θ)(RBKΣλ|θF).
Our Gibbs sampler is a combination of the Forward Filtering Backward Sampling of Carter and Kohn

(1994), Omori et al. (2007) and the efficient sampling algorithm for the random breaks proposed in

Gerlach et al. (2000). At each iteration of the sampler we sequentially cycle through the following

steps:

5 In a frequentist framework it would be hard to separately identify the stochastic shifts represented by the variables

 and  from the continuous shocks in  and  without specifying some ad-hoc parametric process for 
and .

9



1. Draw K conditional on ΣKθ, R and F.

2. Draw B conditional on ΣKθ, R and F.

3. Draw K conditional on BKθ, R and F.

4. Draw R conditional on BKθ R and F.

5. Draw λ conditional on BKθ R and Σ.

6. Draw θ conditional on BK, R and F.

We use a burn-in period of 1,000 and draw 5,000 observations storing every second observation to

simulate the posterior of parameters and latent variables. The autocorrelations of the draws are low.

2.4. Restricted models

The BTVSVB model presented in (3)-(6) is the most general specification we consider in this paper.

However, such a framework is richly parameterized and we cannot rule out that issues related to over-

parameterization may arise. Therefore, for benchmarking purposes, we also estimated models derived

by imposing a number of restrictions on the dynamics of the state equation:

1.  = 0 ∀ , i.e. a constant idiosyncratic volatility model:

 = 0 +

X
=1

 +   = 1  

 = −1 +   = 0  (9)

under the same distributional assumption as (3)-(7). We will call this model a Bayesian ho-

moskedastic time-varying betas model, i.e., BTVB.

2.  = 1 ∀   and  = 1 ∀ , a time-varying parameter model (TVPM) in which both the be-
tas and idiosyncratic risk follow random walk specifications common to the applied econometrics

literature (Koop and Potter, 2007):

 = 0 +

X
=1

 + 

 = −1 +   = 0  ln(2) = ln(
2
−1) +   = 1   (10)

The TVPM assumes a unit probability of breaks (even though these are of a small size) in the

dynamics of the states  and 
2
 at each point in time. This is indeed a fairly strict assumption

which is not necessarily supported by the data, as we will document in our empirical analysis.

Note that even though we simply name the model TVPM, it still features stochastic volatility as

 = 0 is not imposed.
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3. Trivially, the symmetric case of  =  = 0 ∀ implies that  = −1 =  and

ln(2) = ln(2−1) = ln(2 ) and consists of the classical case with constant betas and idio-

syncratic variances. Section 6.1 shows how such a model may be simply estimated using OLS,

according a the two-step Fama-MacBeth approach.

The constant volatility BTVB specification is used to highlight the effects of instabilities in residual

variances. The TVPM is used as a competing specification to show the benefits of considering the

parsimony of occasionally large breaks in (4)-(6) as opposed to small, frequent breaks. For all these

restricted specifications, the choice of priors and the MCMC methods are the same as in Sections

2.3-2.4, with suitable adaptations required by the simpler structure of the constrained models.

2.5. Pricing errors

We follow Geweke and Zhou (1996) and measure the closeness of the pricing approximation provided

by (7), −1[] ' 0+
P

=1 |−1, by computing at each time  the average squared recursive

pricing error across all the  test assets/portfolios,

2 =
1



h
β00

³
I −B

¡
B0B

¢−1
B0
´
β0

i
 = 1   (11)

where β0 is the  × 1 vector of intercepts, I is an  -dimensional identity matrix, and B ≡
(ι β1... β) is a  × matrix collecting vectors of time  betas of all the assets/portfolios vs.

each of the  risk factors, with β ≡
¡
1 ... 

¢0
a  × 1 vector of factor loadings on the th

risk factor. These pricing errors are recursive because at each point in time they are obtained using

only information available up to that point. Because our Gibbs sampling scheme derives posteriors

for all the objects that enter β0 and B we compute the posterior density of the average (squared)

pricing error statistic.

2.6. Decomposition tests

Independently of the estimation methods employed, we use the estimated time series of posterior factor

loadings and risk premia to perform a number of “economic” tests. We use (7) to decompose excess asset

returns on each time period in a component related to risk, represented by the term
P

=1 |−1
plus a residual 0+. In principle, a multi-factor model is as good as the implied percentage of total

variation in excess returns explained by the first component,
P

=1 |−1. However, we should

emphasize that even though (7) refers to excess returns, these are simply statistical implementations

of the asset pricing framework in (1). This implies that in practice it may be excessive to expect thatP
=1 |−1 is able to explain most (or even much) of the variability in excess returns. A more

sensible goal seems that
P

=1 |−1 ought to at least explain the predictable variation in excess

returns (see the discussion in Ferson and Korajczyk, 1995)

We therefore adopt the following approach. First, the excess return on each asset is regressed onto
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a set of  instrumental variables that proxy for available information at time − 1, Z−1,

 = 0 +

X
=1

−1 + , (12)

to compute the sample variance of the resulting fitted values,

 [ (|Z−1)] ≡  

"
̂0 +

X
=1

̂−1

#
 (13)

where the notation  (|Z−1) means “linear projection” of  on a set of instruments, Z−1. Second,
for each asset  = 1  , a time series of fitted risk compensations,

P
=1 |−1, is derived and

regressed onto the instrumental variables,

X
=1

|−1 = 00 +
X
=1

0−1 + 0 (14)

to compute the sample variance of fitted risk compensations:

 

⎡⎣
⎛⎝ X

=1

|−1|Z−1

⎞⎠⎤⎦ ≡  

"
̂
0
0 +

X
=1

̂
0
−1

#
 (15)

The predictable component of excess returns in (12) not captured by the model is then the sample

variance of the fitted values from the regression of the residuals ̂ on the instruments,  [ ( −P
=1 |−1|Z−1)]. At this point, it is informative to compute two variance ratios, commonly

called  1 and  2, after Ferson and Harvey (1991):

 1 ≡
 

h

³P

=1 |−1|Z−1
´i

 [ (|Z−1)]  0 (16)

 2 ≡
 

h

³
 −

P
=1 |−1|Z−1

´i
 [ (|Z−1)]  0 (17)

VR1 should be equal to 1 if the multi-factor model is correctly specified, which means that all the

predictable variation in excess returns ought to be captured by variation in risk compensations; at the

same time, VR2 should be equal to zero if the multi-factor model is correctly specified.6

When these tests are implemented using the estimation outputs obtained from the BTVSVB frame-

work, we preserve complete consistency with our Bayesian framework: drawing from the joint posterior

densities of the factor loadings |−1 and the implied risk premia   = 1   ,  = 1 , and

 = 1   , and holding the instruments fixed over time, it becomes possible to actually compute VR1

6 1 = 1 does not imply that  2 = 0 and viceversa, because  [ (|Z−1)] is not simply

 [ (


=1 |−1|Z−1)]+  [ ( −


=1 |−1|Z−1)] as it also reflects a covariance effect.
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and VR2 in correspondence to each of such draws. This means that any large set  of draws from

the (matching) posterior distributions for the {|−1} and {} generates a posterior distribution
for the statistics  1 and  2. This makes it possible to conduct standard Bayesian “inferences”

concerning the properties of  1 and  2 in our sample.

Finally, the predictable variation of returns due to the MFAPM may be decomposed into compo-

nents imputed to each of the individual systematic risk factors, by factoring as in

 [ (

X
=1

|−1|Z−1)] =

X
=1

 
h

³
|−1|Z−1

´i
+

+

X
=1

X
=1

[
³
|−1|Z−1

´
 
³
|−1|Z−1

´
](18)

and tabulating and reporting  
h

³
|−1|Z−1

´i
for  = 1  as well as the residual termP

=1

P
=1[

³
|−1|Z−1

´
 

³
|−1|Z−1

´
] to measure any interaction terms. Note

that because of the existence of the latter term, the equality

X
=1

 
h

³
|−1|Z−1

´i
 

h

³P

=1 |−1|Z−1
´i = 1 (19)

fails to hold, i.e., the sum of the  risk compensations is not guaranteed to equal the total predictable

variation from the asset pricing model because of the covariance among individual risk compensations.

3. Data and summary statistics

Our paper is based on a large panel of monthly time series (45) sampled over the period 1994:01-2011:12.

Although the choice of portfolios or individual securities in tests of multi-factor models is a researched

topic in the empirical finance literature, in our case it is the economic questions that best advise us to

use portfolios of securities. The 1994:01 starting date derives from the availability of monthly return

series for all the sector REIT total return indices used in this paper. An initial five-year worth of

observations is used to set priors and the analysis is implemented over the remaining 156 observations,

per each series, over the interval 1999:01-2011:12. The series belong to three main categories. The first

group, “Portfolio Returns”, includes several asset classes like stocks, bonds and real estate, organized

in portfolios, a procedure that is useful to tame the contribution of non-diversifiable risk. The stocks

are publicly traded firms listed on the NYSE, AMEX and Nasdaq (from CRSP) and sorted according

to two criteria. First, we form 10 industry portfolios by sorting firms according to their four-digit SIC

code. Second, we form 10 additional portfolios by sorting (at the end of every year, and recursively

updating this sorting at an annual frequency) NYSE, AMEX and Nasdaq stocks according to their

size, as measured by the aggregate market value of the company’s equity. Industry- and size-sorting

criteria are sufficiently unrelated to make it plausible that the corresponding portfolios may contain
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different and non-overlapping information on the underlying factors and risk premia.

Data on long- (10-year) and medium-term (5-year) government bond returns are from Ibbotson and

available from CRSP. Data on 1-month T-bill and 10-year government bond yields are from FREDII
R°

at the Federal Reserve Bank of St. Louis and from CRSP. Data on below investment grade bond

returns are approximated from Moody’s (10-to-20 year maturity) Baa average corporate bond yields

and converted into returns using Shiller’s (1979) approximation formula. The data on sector tax-

qualified REIT total returns come from the North American Real Estate Investment Trust (NAREIT)

Association and consist of data on 8 portfolios, i.e., Industrial, Office, Shopping Centers, Regional

Malls, Free Standing shops, Apartments, Manufactured Homes, and mortgage REITs. Apartments

and Manufactured Homes represent the “Residential” real estate sector. These seven portfolios are

formed when REITs are classified on the basis of their main focus of activity (with “other”, residual

REITs not considered). Mortgage REITs specialize in mortgage-backed security (MBS) investments.

These are breakdowns common in the literature (see e.g., Payne and Waters, 2007). All excess return

series are computed as the difference between total returns and 1-month T-bill returns, as usual.

Finally, we use a range of macroeconomic variables as standard proxies for the systematic, economy-

wide risk factors potentially priced in asset returns. Lagged values of these risk factors (or simple

transformation of the factors) are also used as “instruments” when relevant in our methodology, our

logic being that all these variables belonged to the information set of the investors when they had

made their portfolio decisions. In practice, we employ nine factors: the excess return on a value-

weighted market portfolio that includes all stocks traded on the NYSE, AMEX, and Nasdaq; the

default risk premium measured as the difference between Baa Moody’s yields and yields on 10-year

Treasuries; the change in the term premium, the difference between 10-year and 1-month Treasury

yields; the unexpected inflation rate, computed as the residual of a simple ARIMA(0,1,1) model applied

to (seasonally adjusted) CPI inflation; the rate of growth of (seasonally adjusted) industrial production

(IP); the rate of growth of (seasonally adjusted) real personal consumption growth; the 1-month real

T-bill rate of return computed as the difference between the 1-month T-bill nominal return and realized

CPI inflation rate (not seasonally adjusted); the traded Liquidity factor from Pastor and Stambaugh

(2003); the Bond premium factor from Cochrane and Piazzesi (2005).7 Using a large number of factors

is typical of the literature.8

Table 1 presents summary statistics for the time series under investigation over our overall 1994-

2011 sample. The summary statistics in Table 1 show no unexpected stylized facts. Starting with the

four REIT sectors, the three equity groups imply largely similar sample means, medians, and standard

deviations of returns; these yield comparable monthly Sharpe ratios that fall between 0.12 and 0.15

7The traded liquidity factor consists of value-weighted returns on a high-minus-low exposure portfolio on an aggregate

liquidity risk factor that sorts stocks on the basis of liquidity measures on stocks listed on the NYSE and AMEX. The

bond risk premium factor is constructed as the projection of the equally weighted average of one-year excess holding

period return on bonds with maturities of two, three, four, and five years on a constant, the one-year yield, and the two-

through five-year forward rates. The bond risk factor is the fitted value of this regression.
8For instance Connor and Korajczyk (1988) find there are more than five factors at work in the economy; Ludvigson

and Ng (2009) find evidence in favor of eight latent factors.

14



(here residential REITs display the highest Sharpe ratio of 0.148, as a result of a sample standard

deviation that is slightly smaller than in the case of other sectors). As one would expect, mortgage

REITs are characterized by lower mean and median returns; however, because their volatility is similar

to that of equity REITs, their realized sample Sharpe ratio is relatively low, only 0.06 per month.

The REIT panel of Table 1 reveals few differences between Industrial and Office REITs (but the

former are more volatile than the latter). On the contrary, the realized risk-return performance of

Retail REITs appears to be driven by Free Standing REITs with a monthly Sharpe ratio of 0.18, to be

contrasted to the comparably poor performance of Shopping Center-related REITs, 0.11. Finally, and

in spite of the recent housing bust, the Residential sector reveals a good risk-reward trade-off, mostly

driven by the Apartment-specialized sector, as it is characterized by strong average realized returns

(1.2% per month), in spite of its high volatility (6% per month); Manufactured Home REIT returns

give instead more stable, but lower returns. Most equity Sharpe ratios are in the 0.10-0.15 range. Bond

Sharpe ratios are relatively high, due to the fact that our sample contains the massive flight-to-quality

into Treasuries that has occurred during the financial crisis.

Figure 1 provides a visual summary of the movements of the REIT total return indices under

investigation. As a benchmark, we also plot the total return index for the value-weighted market

portfolio. To favor comparability across different sectors and sectors, all total return indices are

standardized to equal 100 in correspondence with the end of January 2007. This date is chosen because

most of the literature (see e.g., Aït-Sahalia et al., 2009) has dated the onset of the subprime crisis to

early to mid-2007. To limit the number of series plotted, Industrial and Office REITs are aggregated in

a “Industrial and Office” (I&O) sector, Shopping Centers, Regional Malls, Free Standing shops REITs

into a “Retail” sector, and Apartments, Manufactured Homes into a“Residential” one. The top panel

of Figure 1 provides motivation for our analysis because it shows that the residential sector exactly

peaks in correspondence to the end of 2006 and leads the remaining two equity REIT sectors through

all of 2007 and 2008. In fact, the mortgage REIT sector had already boomed between 2003 and 2005,

but had also reached a new, local peak in early 2007 and–consistently with most anecdotal accounts

of the onset of the subprime crisis (see e.g., Mian and Sufi, 2009)–subsequently tumbled starting in

late Spring 2007. Interestingly however, from Fall 2008–approximately after the demise of Lehmann

Brothers–the I&O and retail sectors started to lead (and fall at higher rate than) residential and

mortgage REITs. This is consistent with the policy debate and the financial press accounts of the time

(see e.g., Greenlee, 2009). Starting in Spring 2009, all four sectors recovered somewhat, with their

total return indices approximately returning to the levels of late 2003, but the residential REIT index

displays a “V-shaped” bounce-back that has no equivalent in the case of the other sectors. In fact, a

simple calculation for the period January 2007 - December 2011 reveals that residential REIT is the

only portfolio in Figure 1 for which average returns are positive, albeit small. Our goal in this paper

is to explain these differential dynamics.

The bottom panel of Figure 1 presents similar information with reference to the raw eight REIT

sectors. On the one hand, the picture that emerges is qualitatively similar to the one commented
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already. For instance, both apartments and manufactured homes follow the lead-lag-lead pattern

observed for the aggregated data, even though the recovery of apartment-investing REITs appears to

be slower than for manufactured homes. On the other hand, a few additional patterns are visible. For

instance, REITs specialized in free-standing retail units have been hardly affected by the crisis, while

REITs specialized in industrial buildings seem to have suffered the most, arguably as a result of the

deep recession and of the structural over-capacity accumulated between 2005 and 2007, with the result

that gross valuations as of the end of 2011 still lagged behind the levels last observed in 1999.

3.1. Can REITs represent valuations in the real estate market?

One crucial assumption that backs our empirical investigation is that REITs may be used to proxy

the valuations in the U.S. real estate market. Even though testing this connection is beyond the scope

of our paper, luckily there is a well developed real estate finance literature that has examined exactly

this research question. The most recent conclusions of this literature are largely consistent with the

claim that REITs are informative of the state of the real estate market in its various components

and disaggregations. While the early literature had reported mixed findings (see e.g., Clayton and

MacKinnon, 2003; Ling and Naranjo, 2003; Seck, 1996; but see Gyourko and Keim, 1992, for early

findings that the public market reliably leads the private market in commercial real estate over the

cycle), recent results support instead the thesis that REITs would accurately reflect, or even forecast,

underlying property values. For instance, Chiang (2009) shows that past returns on public markets

can forecast returns in real, physical markets: This result is consistent with the notion that public

markets are more efficient in processing information than private markets. Moreover, the early litera-

ture had relied almost exclusively on appraisal-based measures of private real estate returns. Recent

research by Boudry et al. (2012) using the novel NCREIF (National Council of Real Estate Investment

Fiduciaries) MIT transaction-based indices (developed by Fisher et al., 2007), show that the relation

between REIT and direct (privately-held properties) real estate returns appears to be strong, at least

at long horizons.9 More specifically, using a cointegration framework, they find robust evidence that

REITs and the underlying real estate are related and that they share a long run equilibrium; both

REITs and direct real estate returns adjust towards this long run relationship. Gyourko (2009) also

finds considerable statistical association in the way housing, residential commercial real estate, and

non-residential income-producing properties behave over time. He also notices a deterioration in un-

derwriting standards similar to what has been reported for the housing sector. These results motivate

our use of residential vs. non-residential REIT valuations in our paper as representative of the general,

aggregate conditions in the U.S. real estate market.

9Additionally, since REITs tend to invest in institutional quality real estate, an ideal index would be constructed based

on a similar set of properties. In this regard, the NCREIF universe of properties would make an excellent match to the

set of REIT properties, since both groups tend to invest in institutional quality real estate.
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4. Empirical results

4.1. Posterior model likelihoods

The first question we ask, as is common in all empirical papers, concerns the model that should be used

in the investigation. We use the marginal likelihood of different models to perform a comparison that

takes into account their overall (in-sample) statistical performance and not only their asset pricing

plausibility, as described in Sections 2.5 and 2.6. The marginal likelihood of a model is known to

take into account both the uncertainty about the size and the presence of structural breaks and the

uncertainty concerning the parameters in (3)- (6). The marginal likelihood of each model is computed

as

(R|F;M) =

Z
...

Z X
K

(R|BKΣλ,θF;M)× (θBKΣλ|RF;M)BΣθΣ, (20)

whereM identifies the th model and the posterior density (RBKΣλ|θF;M) is given by (8).

Following Chib (1995), we compute the marginal likelihood by replacing the unobservable breaks and

parameters in the likelihood of the data generating process defined by (3)- (6) for each draw.

Table 2 reports the marginal log-likelihoods for each of the specifications in Sections 2.2-2.5 as well

as the Bayes factors opposing each of the restricted frameworks to the BTVSVB one. However, because

these are marginal log-likelihoods, one can easily compute Bayes factors comparing the remaining two

models by difference of factors computed with reference to BTVSVB. The BTVSVB model implies the

highest marginal log-likelihood across all of the portfolios under consideration, as well as the highest

overall marginal likelihood, -193 vs. -386 for the homoskedastic BTVB model, -909 for TVPM, and -

1492 for the two-step traditional implementation described in Section 6.1. Surprisingly, the TVP model

ranks second across stocks outperforming the BTVB. This result indicates that fully acknowledging

instability in the idiosyncratic risks plays a relevant role that cannot be simply surrogated by latent

change-point models for the betas, similarly to the findings in Bianchi et al. (2013) and Nardari and

Scruggs (2007) with reference to alternative applications. As one would expect, the classical Fama-

MacBeth procedure ranks last with an overall marginal likelihood around 15 times lower than under

BTVSVB. The Bayes factors, by construction, largely confirm these results: by exceeding 100, all of

them are highly significant (see Kass and Raftery, 1995, for a justification of this scale/threshold).

Interestingly, even the lowest among the asset/portfolio-specific Bayes factors in Table 2 is 125.

4.2. Comparing pricing error performance

Table 2 establishes the superiority of the more flexible BTVSVB model over all other competitors

using a statistical metric. Yet, one would also like to have the comfort of some economic distance

measure. We therefore extend our model comparison in Section 4.1 to include a different criterion,

which is luckily rather straightforward: given our objectives, a model is as good as its realized pricing

performance. In particular, because Section 5 will examine our research questions using a common
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notion of mispricing index (Jensen’s alpha), it is crucial that a model be able to price our test portfolios

as well as possible before any mispricings (i.e., 0s) are estimated.

Table 3 reports time averages of posterior mean pricing error  for each of our four models

(to include the Fama-MacBeth two-step approach) across different sub-samples. The BTVSVB model

yields the lowest average pricing error across the whole sample period (Panel A), with an average

posterior error of 0.61% per month. As one would expect, because pricing financial portfolios in times

of crisis is harder than in “normal” times, the mean pricing error increases towards the end of our

sample (panel C, that refers to the 2007-2011 sub-sample), reaching 0.66%. However, the BTVSVB

model keeps substantially out-performing all other models, often cutting average errors by almost

half (this is for instance the case in panel C vs. the second best model, the homoskedastic BTVB,

with an average of 1.01% per month). The naive two-step Fama-MacBeth approach turns out to be

largely superior to a TVPM, in which random walk dynamics in betas and idiosyncratic variance are

(incorrectly) imposed. For instance, over the full sample, while TVPM yields a mean pricing error

of 1.99% per month (basically, the model has no explanatory power), the two-step approach yields a

1.05%. However, both statistics are grossly inferior to the 0.61% achieved by BTVSVB. Median pricing

error statistics in the rightmost columns of Table 3 confirm our earlier remarks. Given the evidence

in Sections 4.1 and 4.2, in the rest of the paper we exclusively devote our attention to the economic

insights derived from the BTVBSV model, even though Section 6 performs a few robustness checks

concerning the three alternatives introduced in Section 2.5.

4.3. Factor loadings

Figures 2-6 report selected plots of the posterior medians of the factor loadings  for each of the

eight REIT sectors at the heart of our empirical investigation, along with the loadings for other

four portfolios–two equity portfolios for deciles 10 (the largest stocks covered by CRSP) and 1 (the

smallest stocks), and two bond portfolios (10-year Treasuries and long term corporate bonds below the

investment grade threshold)–to be taken as representative of the range of results we have obtained

for stocks and bonds.10 Although we have performed estimation with reference to nine factors, we

have tabulated results for only 5 of them to save space. In each plot, besides the posterior medians

estimated over time, we also show the associated 95 percent Bayesian confidence bands.11 A time ,

the 95% credibility interval is characterized by the 2.5th and 97.5th percentiles of the posterior density

of . In what follows we limit ourselves to two types of comments: a general comparison of the

real estate asset class to stocks and bonds; a comparison within the real estate asset class among

different types of portfolios to answer our key questions concerning the differences between residential

10Our plots never specifically focus on results for the industry portfolios, even though these have been used in estimating

the MFAPM and especially its implied risk premia. Complete results are available upon request. Bianchi et al. (2013)

focusses on related results for stocks and bonds, obtained using similar methods.
11Pinning down the “statistical significance” of coefficients (betas or lambdas) on the basis of 95% credibility intervals

represents a rather stringent criterion because the Bayesian posterior density will reflect not only the uncertainty on the

individual coefficient but also the overall uncertainty on the entire model (e.g., the uncertainty on structural instability

of all the coefficients).
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and retail/industrial REITs.

Figures 2-6 show that the real estate asset class shows particular exposure to risk factors that differ

from those typical of stocks and bonds. For instance, in Figure 2 over our 1999-2011 sample, (most)

REIT portfolios have a market beta that is lower (often close to zero or negative) than stocks have,

similarly to what Cotter and Roll (2011) and Lee et al. (2008) have recently reported. Moreover,

although for most REIT portfolios the general dynamics of the exposures to market risk follows a

similar path over time, residential (in particular manufactured homes) and mortgage REITs show a

marked increase between 2005 and 2007, and the corresponding 95% confidence regions all come to

include zero by 2008. This indicates that while before the collapse of the subprime market, all REITs

offered some partial hedging against aggregate market risk, this property is lost by residential and

mortgage REITs as a result of the boom, making them market-neutral; in the case of equity portfolios

(both reported and unreported), any oscillations tend to occur instead around a stationary but positive

level. However, REITs also display market exposures that are similar to those of bonds, which also

oscillate over our estimation sample.

One may wonder whether Figure 2 can be interpreted to mean that U.S. real estate is not exposed

to business cycle risks, given the small or negative market betas. Figure 3, with reference to IP betas,

shows that this is not the case. Most REIT indices–among them this is especially clear in the case

of apartments, offices, and regional malls–display an upward trending and eventually “significantly”

positive IP beta until 2004-2005. However, starting in 2006, this beta declines for all equity REIT

portfolios at least until late 2008, when the beta resumes an upward trend. Interestingly, this occurs

when exposure to market risk grows. Also in this respect, though fluctuations are more obvious, real

estate shows dynamic properties that are more comparable to bonds (both corporate and Treasuries)

than to stocks that, with few exceptions, tend to display positive and large exposure to real output.

However, the major differences between REITs and stocks and bonds emerge in the context of

one traditional and here important macroecomic factor, unexpected inflation. In Figure 4, all sector

REIT portfolios display a strongly time-varying and statistically significantly positive exposure to

unexpected inflation. By contrast, equities and bonds generally show small, occasionally negative and

often downward trending betas vs. unexpected inflation. This finding is consistent with two traditional

views often discussed in the literature. First, that real estate would represent a “composite” asset class

that inherits mixed features (here, factor exposures) from both stocks and bonds, see e.g., Simpson

et al. (2007) and references therein. The second view is that real estate may correlate strongly with

inflationary shocks (i.e., unexpected inflation, see e.g., Hoesli et al., 2008).12

Figures 5 and 6 show that U.S. real estate is not significantly exposed to either liquidity or short-

term (real) interest rate risks. This is interesting because there is instead a well developed literature that

has related real estate valuations to interest rate levels and monetary policy (see e.g., Iacoviello, 2005;

12Differences across asset classes appear instead to be weaker in the case of the credit risk premium, real consumption

growth, Cochrane and Piazzesi’s bond risk factor, and the riskless yield spread (unreported). This also occurs because

the  posteriors are centered around generally small coefficient values and their 95% confidence bands often include

zero. Complete plots of the beta posteriors are available upon request.
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Iacoviello and Neri, 2010) and that has often emphasized the special character of real estate because of

its illiquidity. However, we should bear in mind that we are investigating REITs, i.e., publicly traded

vehicles that may be seen as derivatives linked to actual properties. In the case of the liquidity factor

(Figure 5), it is evident that the betas are so small that the 95% confidence band tends to include the

zero in more than 80% of our sample. In fact, this type of dynamics characterizes most other portfolios,

including equities, as well. As far as the real rate factor is concerned, important differences across real

estate portfolios emerge. Albeit, on average, all sectors are characterized by modest real rate betas,

industrial, free-standing shops and regional malls-investing REITs are characterized by betas that,

starting from zero or negative exposures, smoothly increase over time to become positive and precisely

estimated by the end of our sample. Manufactured homes imply instead an opposite trend.

Treasury bond portfolios carry essentially nil exposure to market risk once the eight additional

macroeconomic factors are controlled for, but gives negative betas on the credit risk factor, as one

would expect. However, in line with basic principles, the beta of non-investment grade quality bonds

is positive and precisely estimated. All bond portfolios have negative exposures to the slope of the

yield curve; these betas are large with a posterior distribution tilted away from zero, especially in

the case of 10-year Treasuries, which capture flight-to-quality effects, in the sense that Treasuries

command high prices and low risk premia exactly when the riskless yield curve is flat or inverted, as

typical of the early stages of recessions. Treasury bonds, especially long-term ones, have a positive and

precisely estimated exposure to unexpected inflation, which is sensible because government securities

are notoriously exposed to inflationary shocks. Treasury returns have weak exposure to IP growth

and real consumption growth factors. Finally, the BTVSVB model allows us to infer considerable

instability in the betas of all Treasuries with respect to IP growth, credit spread, and liquidity risks,

with rather heterogeneous trends.

Figures 2-6 also show that for most factors and portfolios, including real estate, the BTVSVB model

reveals interesting variation in betas. However, we emphasize that such time variation is not forced

upon the data, in the sense that a casual look at the plots reveals that combinations of test assets

and factors can be found for which the s implies little or no instability. For instance, in the left

column of Figure 6, concerning the exposure of apartment REITs to the real short rate factor, the plot

reveals a posterior median of  that is flat at approximately -1.1 throughout the entire sample

period. Interestingly, for most factors the eight REIT sectors tend to share a common dynamics in

their exposures, even when such betas are characterized by different means. For instance, in Figure

4, the s with respect to unexpected inflation all generally increase (the only exception is mortgage

REITs), but a comparison between the industrial and manufactured homes sectors reveals that while

the former climbs from 0.4 in 1999 to almost 8 at the end of 2011, the latter increases from 0.8 in 1999

to 3.5 at the end of the sample.

The third feature of the factor exposures that deserves comment is that different REITs are charac-

terized by a substantially heterogeneous dynamics in estimated beta posteriors. Moreover, residential

REITs are clearly different from retail and industrial REITs; mortgage REITs have a risk factor struc-
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ture that is very specific and that diverges from equity REITs. In this case it is useful to express

comments on factor exposures across plots, but for each REIT portfolio. Residential, housing-driven

REITs are characterized by negative but mildly increasing exposure to market risk, by quickly re-

treating exposures to industrial production growth, term premium, and real interest rate risks, and

by massive and quickly increasing betas vs. unexpected inflation.13 Interestingly, if one disregards

betas whose confidence region includes a zero exposure, by 2007 residential REITs came to carry only

unexpected inflation risk.

REITs that specialize in I&O investments carry instead negative exposure to real output growth

risk, and positive exposure to inflation and bond market risks, as measured by Cochrane and Piazzesi’s

factor (the plot is unreported); moreover, during the peak of the real estate “bubble” (2003-2006), I&O

portfolios came to display negative and accurately estimated exposures with respect to real consumption

risks, which–with the same caveats used above with reference to market portfolio and IP risks–which

adds to a characterization of this period of intense price growth. Retail- specialized REITs provide

a negative, significant and relatively stable exposure to market risk and positive and large beta vs.

unexpected inflation and short rate risks (increasing in the former case and time-varying with a trough

in 2004-2005 in the latter). A comparison between residential on the one hand, and I&O and retail

REITs on the other, sheds light on one potential cause of the differential behavior in the aftermath

of the 2007-2009 crisis: the residential sector no longer has any exposure to general market dynamics

and its upward swing is then explained by an increasing risk of unexpected inflation that represents a

sensible story in the presence of massive quantitative easing interventions by the Federal Reserve.

REITs that specialize in mortgages have a large, negative and progressively declining exposure

to inflation risk (the corresponding Bayesian confidence bands touch zero around mid-2009), and by

positive beta with respect to the riskless term spread and the bond factor. Given the nature of mortgage

REITs, that systematically invest in mortgage-backed securities, these fixed income-type results are

expected. In this sense, mortgage REITs appear to be different from the equity REIT sectors analyzed

above. However, similarly to all the equity REIT portfolios, mortgage REITs are also exposed to

unexpected inflation risk, which is obviously one of the characterizing features of real estate as an asset

class.

4.4. Risk premia estimates

Table 4 shows results for the posterior densities of the time series of risk premia estimates {̂}
( = 1 ).14 The table reports summary statistics for both the full sample as well as for the

recent, financial crisis subsample, 2007-2011. The table shows results that have to be interpreted with

caution. If one applies standard (but frequentist in nature) statistical inference to the time series

13The apparence of negative betas vs. the market portfolio should not be surprising but one has to keep in mind

that while an expectation of positive market beta is typical of the CAPM where the market is the only factor picking

up aggregate risk, in our extended MFAPM there are in principle another eight factors that may capture business cycle

effects.
14Plots are available from the Authors upon request. However, risk premia are sufficiently variable over time that in

this case plots are particularly revealing, especially because the size of the 95% confidence bands is often volatile.
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of mean posterior estimates of the risk premia {̂} and computes standard t-tests, then we have
evidence in favor of as many as four priced risk factors in the cross-section of excess asset returns:

using a 10% threshold for p-values, the market, IP growth, inflation and liquidity risks appear to be

priced; in three cases, the finding holds with a p-value of 5% or less. Despite the small sample size,

a similar result obtains in the case of the crisis sample. Interestingly, the market factor stops being

precisely estimated–at least as far as the posterior mean reveals–and it is replaced in this role by

Cochrane and Piazzesi’s factor.

In particular, market risk carries a mean posterior price of 0.33% per month with a “frequentist-

type” p-value of 0.009; IP growth implies a risk premium of 0.19% with a p-value of 0.084; liquidity risk

carries a mean posterior price of 0.32%, again with a p-value of 0.046; finally, inflation risk commands

a premium of -0.14% with a p-value of 0.030. While the finding of a significantly priced market factor

may be not surprising, the result that also typical macroeconomic risks be priced is consistent with

earlier evidence centered on real estate data (see e.g., Ling and Naranjo, 1997). Moreover, the evidence

of liquidity being a priced macro-style factor is consistent with the findings in Næs et al. (2011). The

negative sign for the inflation risk factor is consistent with earlier evidence in Chen et al. (1986),

Ferson and Harvey (1991), and Lamont (2001). Finally, the time series mean of the intercept 0–

which should be zero if the assumed MFAPM held–is relatively small (0.19 percent) and not precisely

estimated. In the crisis sub-sample, the posterior mean of 0 gets larger and yet it is imprecisely

estimated.15

4.5. Economic tests

So far our discussion has focused on the statistical performance of the model, with emphasis on

whether there was evidence of either the 0s coefficients being different from zero and whether

there was any evidence that the assumed risk factors were priced in the cross-section of risky portfo-

lios. We have uncovered encouraging evidence that the BTVSVB model may be consistent with the

data. We now discuss the empirical results obtained from variance decomposition tests applied to the

BTVSVB framework. In particular, we compute the VR1 and VR2 ratios and proceed to decompose

 [ (
P

=1 |−1|Z−1)] as the sum of the contributions given by each of the factors.16

Table 5 shows posterior medians and 95% Bayesian confidence intervals derived under all the models

entertained in this paper, including the TVPM and homoskedastic BTVB models introduced in Section

2.5. However, in this Section we focus on columns 3-8 concerning results for the BTVSVB framework

only, while Section 6 performs robustness checks. In particular, columns 3 and 6 of Table 5 show

posterior medians of  1 and  2 for each of the 31 portfolios under examination. Variance ratio

15The evidence turns inconclusive in the full sample if we use (averages over time of) 95% Bayesian credibility intervals

built using posterior densities. The reason is all these densities attach a non-negligible probability to zero or small risk

premia on the different factors. These differences in results derived from means vs. quantiles of the posterior densities of

risk premia are possible because the posterior densities have a highly non-normal, non-symmetric shape.
16 In what follows, the information at time − 1 (Z−1) is proxied by the instrumental variables listed in Section 3, plus

a dummy variable to account for the “January effect” in the cross-section of stock returns, a widely documented calendar

anomaly that investors are likely to take into account.
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results are encouraging, although there is some difference between the  1 vs. the  2 dimensions.

Under a VR1 perspective, approximately 75% of the predictable variation in excess returns is captured

by the MFAPM. Such percentages are in fact high for the sectorial REIT data, still considerable but

more heterogeneous (ranging from 49 to 90 percent) for equity portfolios, and even higher in the case

of bond portfolios.

However, because  1+ 2 = 1 does not hold, the finding of good VR1 ratios fails to imply that

the VR2 ratios are always as close to zero as much as we would like them to be. Even though VR2

is generally at or below 20% only, in Table 5 we occasionally notice portfolios for which more than a

third of total predictable variation cannot be explained by the macroeconomic risk factors assumed in

our MFAPM, so that it is time-varying idiosyncratic variances that pick up the slack. As far as real

estate assets are concerned, these relatively high VR2 ratios characterize only apartment-specialized

REITs, with a VR2 ratio of 45%. However, and consistent with the empirical findings in Bianchi et al.

(2013), some equity portfolios (e.g., high tech, retail and residual, “other” stocks) occasionally spike

up, signalling a less satisfactory fit offered by the BTVSVB framework.

Table 6 disentangles the sources of predictable variation in excess returns that the BTVSVB model

seems apt to capture. Table 6 shows that the predictable variation in excess REIT returns is mostly

explained by exposure to the inflation risk factor (its contribution is 34 percent on average), followed by

market risk (32 percent), and liquidity (22 percent). Also IP growth risk contributes a non-negligible

16 percent.17 Although there is no precise connection between the sign and accuracy of estimation of

the risk premia and the decomposition of risk sources in Table 6, the four factors giving substantial

contributions all imply precisely estimated risk premia. These results contribute to the idea that public

real estate portfolios are mostly priced off pure aggregate real activity, liquidity and inflation shocks,

more than on the basis of typical financial factors such as market or credit default risk (though the

CAPM-style market portfolio retains a role). Moreover, residential real estate remains an asset class

dominated by inflation concerns, not only in terms of (posterior median) exposures and risk premia,

but also in terms of the contribution of these concerns to explain the predictable variation of realized

excess returns.

We also find differences between the percentage contribution of the liquidity and IP growth risks to

explain residential REIT excess returns vs. non-residential REITs: in the former case, the two factors

play a dominant role, with contributions of 26% from liquidity (averaging across manufactured homes

and apartments), and of 20% from IP growth; in the latter case, these two factors provide more modest

contributions, 17% in the case of liquidity and 16% in the case of IP growth. As the financial crisis

has revealed, it is in general the housing sector that is most affected by business cycle downturns (even

though the relationship is clearly endogenous) and may suffer from liquidity dry-ups.18

17The sum of these contributions may exceed 100% because of the negative contributions given by the interaction

effects.
18Because business-related REITs are explained “less” by liquidity and IP growth concerns than residential REITs are,

one may wonder what makes up for the difference. Leaving aside the problematic interaction effects, office and most of

the retail REITs are explained by the inflation factor with above-average contributions.
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Let’s also ask again what makes (if anything) REITs different from other asset classes. Table 6

reveals another simple and yet powerful answer: in the case of stocks, the leading risk factor that

explains the dynamics of asset prices is represented by liquidity and the market factors, with average

contributions to  [ (
P7

=1 |−1|Z−1) of 36 and 31 percent, respectively, and several peaks
well in excess of 50% (40%) in the case of the market portfolio (liquidity) factor. Conversely, stocks are

affected by inflation risk on a scale that is inferior to what we have observed for REITs. One may say

that while in the case of equities, general aggregate risk is mostly represented by the value-weighted

market and liquidity mimicking portfolios, on the contrary, macroeconomic factors play this role in the

case of REITs.

5. Heterogeneous mispricing in REIT sectors

Figure 7 reports (posterior median) estimates of 0. In a ICAPM interpretation of (1), 0 6= 0

represents evidence of non-zero excess returns for a portfolio  with zero exposures to the  risk factors,

which implies the existence of an arbitrage opportunity and it is inconsistent with first principles (e.g.,

non-satiation). Equivalently, the Jensen’s alphas, 0s, are measures of abnormal (excess) returns.

The figure starts by presenting medians of 0 posteriors as well as 95 percent confidence intervals

computed in the usual way, with reference to the eight REIT sectors as well as a few other stock and

bond portfolios representative of the overall universe of 31 portfolios used in the estimation.

If one ignores the considerable uncertainty in the data (both objective and related to parameter

estimation), Figure 7 offers a rather stark view of a number of asset pricing trends that have involved

real estate over the past decade and a half: all the Jensen’s alpha related to REITs are positive and

relatively large (these are monthly mispricing estimates). Ex-post, we have evidence that–even in the

light of a no-arbitrage multi-factor model driven by macroeconomic risks–real estate as an asset class

has been long and persistently over-priced in the U.S., in the sense that realized excess returns have

been (on average) between 0.5 and 2 percent higher than would have been justified by their exposure

to systematic risk between 1999 and 2011. Additionally, and with the partial exception of mortgage

investments, all REIT portfolios describe rather homogeneous dynamics over time: the alphas start

out relatively low (in fact, near zero in the case of retail-investing REITs and manufactured homes)

between 1999 and 2004. Between 2005 and late 2007, all alphas climb up, in some cases (apartments

and manufactured homes) going from a few basis points per month in late 2004 to as high as 2.2

percent per month (which is a massive annualized abnormal performance in excess of 25%). This was

the great U.S. real estate bubble, with trading, borrowing volumes and prices all exploding at the

same time. However, the alphas for most sectors then slowly declined between 2008 and 2011, settling

to levels below 1% per month and often returning to zero percent, when macro factors can perfectly

explain average excess returns. Finally, mortgage REITs show a rather peculiar behavior over time:

although the mispricing of mortgages seems to have been rather large and accurately estimated with

reference to the 2001-2003 period (when the corresponding posterior median 0 touched 3%

per month), since 2004 the mortgage alphas have been declining to reach on average just a few dozen
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basis points above zero between 2005 and 2011.

Figure 7 shows no evidence of a pure housing/residential real estate bubble–as measured by the

mispricing of apartment and manufactured home-investing REITs–inflating between 2004 and 2007,

to subsequently burst. All REIT sectors record a climb-up in alphas during this period. In fact, it is

the alphas of the three retail/distribution-investing REIT sectors that show the steepest ascent, with

an increase in posterior medians between 2004 and 2007 of 1.2, 1.5, and 1.6 percent for regional malls,

free-standing, and apartment REITs, respectively. However, the I&O’s estimated alphas are somewhat

smaller, although they have also never declined below 40 basis points per month in the post-2004

period. Interestingly, all alphas are estimated to have rather tight posterior distributions, even though

the 95% confidence intervals tend to widen towards the very end of our sample (2011), when they

include zero (absence of mispricing) for five REIT sectors out of eight. Yet, Figure 7 shows that two

of out three sectors that were still characterized by some (modest, the lower 2.5% bound is 0.2% at

most) mispricing at the end of our sample, were apartment- and manufactured home-investing REITs,

i.e., again residential REITs whose process of adjustment may have been slowed down, possibly by the

massive interventions in the mortgage-backed securities market by the Federal Reserve between 2009

and 2011.

These structurally high alphas for REITs of all kinds differ from the typical alphas estimated for

stock and bond portfolios, when the posteriors for the 0s tend to yield medians that are small, often

negative, and whose sign changed several times between 1999 and 2011, consistent with the evidence in

Bianchi et al. (2013). For instance, even in the case of small capitalization stocks–that the empirical

finance literature has long characterized as a case of mispricing by standard factor models–their alphas

start out at 3% in the late 1990s to then decline to zero by 2003. Another example is 10-year Treasuries,

for which the estimated alpha has a posterior median that systematically cycles around zero over our

sample, an indication of no persistent mispricing. Moreover, most of the non-REIT alpha posteriors are

estimated with very poor precision, in the sense that for at least 19 of the 23 stock and bond portfolios

under examination, one can always draw a straight horizontal line at zero alpha that is contained in

the 95% Bayesian interval throughout our sample.

In conclusion, Figure 7 tells us a story that only partially matches the tale of the financial crisis

often reported by the popular press and portions of the literature (see the Introduction). On the one

hand, and ignoring confidence regions for the time being, it is a fact that–differently from most other

portfolios (stocks and bonds)–U.S. real estate would have been grossly and systematically over-priced

between 2004 and 2007. Over-pricing is indicated by the fact that the posterior estimates of the

real estate alphas are positive, climbing, and precisely estimated; large and positive alphas signal that,

after taking into account the risk exposures and premia captured by the rich set of nine macroeconomic

factors entertained in our paper, real estate yielded “too high” a return, which cannot be rationally

justified. In this sense, the real estate fad has been pervasive. Also the claim that the real estate

bubble would have been a debt/mortgage-fueled one (see e.g., Brueckner, Calem and Nakamura, 2012;

Coleman, LaCour-Little and Vandell, 2008; Pavlov and Wachter, 2011) is consistent with the fact that

25



between 2001 and 2004 mortgage REITs implied the largest median alphas among the eight plots

in the figure. On the other hand, there is no evidence of a larger bubble in the residential vs. the

O&I and retail sectors because the alphas of manufactured homes and apartment-investing REITs

are actually estimated to be slightly negative and declining as late as in early 2005; the mispricing

of apartment-investing REITs did turn out to become positive and large (exceeding 2 percent per

month) in 2007, but such alphas were quickly corrected during 2008. The actual real estate over-

pricing occurred instead–and in the perspective of our model is indeed potentially under way–in the

industrial and retail sectors: in particular, the posterior median alphas of industrial and regional malls-

specialized REITs remain persistently at levels around 1 percent per month throughout our sample,

including the 2009-2011 period. In this sense, the 2007-2008 real estate bust did not simply consist

of a temporary residential real estate (housing) and mortgage-driven fad, but occurred as a result of

a large-scale, widespread correction of substantial mispricings of the entire real estate asset class, a

correction partially still under way as of the end of 2011.

As a final note of caution, we emphasize that a finding of positive alphas on any portfolios does not

imply that they would have yielded high or positive realized, observed returns during all or parts of

our sample. From Figure 1, we know this was not the case between 2007 and 2009 for all REIT sectors,

while the recovery in O&I and regional malls valuations over 2010-2011 has also been muted. A positive

alpha simply means that realized excess returns on these REITs should on average have been even lower

than what the data reveal, based on their exposures to priced risk factors.19 Equivalently, particularly

the valuations of industrial and regional malls should have dropped even more than they did. This

ongoing poor pricing of portions of the real estate universe represented by REITs would therefore

concern industrial factory space and large-scale regional mall properties that have been affected by the

deep 2008-2009 recession more severely than other asset types, and with effects that may still linger

to rationally depress their valuations.

6. Robustness checks

What portion of the earlier economic insights is driven by our modelling choices, concerning the

structure and parameterization of the model in (3)-(7)? Sections 6.1 and 6.2 tackle exactly this question

and reach a simple conclusion: using a flexible model that provides a good fit to the cross-section of

asset returns plays a major role. Absent the BTVSVB model from our analysis, there is no ability

to detect real estate mispricings. This means that no evidence of a real estate “fad” could be found,

which would represent a rather finding “orthogonal” to the existing literature and policy commentary.

19This is similar to a point made by Himmelberg et al. (2005), who have emphasized that high price growth is not

evidence per se that housing is overvalued: when price growth is supported by basic economic factors (e.g., low real

long-term interest rates and high income growth), then no misspricing may be detected; conversely, real estate may be

over-valued also in times of falling prices. In fact, Favilukis et al. (2010) have argued that between 2000 and 2006,

a widespread relaxation of collateralized borrowing constraints, declining transaction costs, and a sustained depression

of long-term interest rates that coincided with a vast inflow of foreign capital in the U.S. bond markets would have

contributed to drive real estate risk premia down. In this case, large alphas could derive from dropping betas relative to

macroeconomic risks that leave an increasing portion of average, realized excess returns on real estate unexplained.
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6.1. Traditional two-stage Fama-MacBeth estimation

The framework in (1)-(2) just describes a general conditional pricing framework that is actually known

to hold under a variety of assumptions and conditions. A variety of alternative methodologies have

been proposed to estimate the factor loadings {} and the risk premia . These tasks are logically
distinct from the formulation of the MFAPM and they have an exquisite statistical nature. A number

of papers have pursued a rather simple, one would say “seminonparametric”, rolling window approach

that consists of a two-stage testing procedure ̀ la Fama and Mac Beth (1973) first applied by Ferson

and Harvey (1991) to the estimation of linear multi-factor models. Appendix C summarizes the

methodology.

The rightmost column of plots in Figures 8-10 and the bottom panel in Table 4 report results

from a Fama-MacBeth two-step strategy. To save space, we have been selective when reporting plots

as these refer only to office, regional malls, apartments, and mortgage REITs. A comparison with

earlier findings reveals important differences in the estimates of the loadings produced by the standard

procedure, both in comparison to the BTVSVB and the TVP models. Although such a judgement is

subjective and cannot replace the hard evidence against TVPM and the Fama-MacBeth’s approach

commented in Sections 4.1 and 4.2, the results in Figures 8-10 are implausible. First, in a number

of combinations of test portfolios and factors, Figures 8 and 9 display jagged shapes characterized by

pervasive time variation and wide confidence intervals that not only differ from those in Section 4.3,

but also from the TVPM ones that are plotted in the leftmost column. However, a different dynamics

in factor loadings is by itself hardly problematic, because given our ignorance on the structure of the

data generating process, it is legitimate for alternative estimation strategies to return different results

in small samples.

What is more of a concern is the fact that in Figure 10 and in Table 2 the results of the Fama-

MacBeth strategy are economically implausible. In Figure 10, all the alphas that have been plotted

are strongly gyrating, they repeatedly change sign even though there is little evidence of statistically

significant mispricings and–which is more puzzling–the alphas assume relatively large values that are

hard to justify in economic terms, similarly to what has been observed already by Bianchi et al. (2013)

in a similar two-step application: alphas exceeding 4 or 5 percent per month are frequently inferred for

long subsamples. Such large alphas can only give indications as to the poor specification of the model

and not on the underlying phenomenon.

According to Figure 10 none of the REIT portfolios (residential or non-residential, plotted or

unreported to save space) would have been systematically over- or under-priced during our sample

period. For instance, the plot of the estimated alphas for regional mall-specialized REITs exceeds the

incredible level of 3% per month (i.e., 36 percent in annualized terms) on a few occasions between

2003 and 2004. Such a level is approached again around the end of our sample. However, the same

estimated alpha persistently drops below -1% per month during 2008-2009. Results get even more

difficult to interpret in the second panel of Table 4. Over the full sample, only two factors appear to be

significantly priced, these are the default spread and liquidity with very high risk premia of 0.88 and
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1.18 percent, respectively (p-values are 0.002 and 0.076), while there is evidence of a highly significant

and absurdly large cross-sectional intercept 0, 0.85% per month with a p-value that is essentially nil.

6.2. A TVP model

The leftmost column of plots in Figures 8-10 and the bottom panel in Table 4 report selected estimation

results from the TVPM estimated using Bayesian methods adapted from Sections 2.3-2.4 to this special

case. The results refer again to four REIT sectors only–the ones for which the most interesting

differences had emerged in Section 5–i.e., office, regional malls, apartments, and mortgage-specialized

REITs. A comparison with Figures 2-7 and the qualitative comments expressed in Section 4.3 reveal

important differences in the shape of the posteriors for the factor loadings produced by the BTVSVB

vs. the TVPM. Moreover, confidence regions around median posteriors tend to be narrower than in

the case in which discrete breakpoints in factor loadings were allowed. The downside is that, because

variation in the parameters is a built-in feature deriving from the assumed random walk process

 = −1 +  all the examples in Figures 8 and 9 show pervasive instability in the loadings,

although their variation tends to occur smoothly over time. For instance, in Figure 8, equity REITs

were significantly negatively exposed to IP growth risk between 2006 and 2008, to then swing to a zero

exposure between 2010 and 2011. Such wild swings, implying posterior median s that are often of

large magnitude do not appear to be completely realistic because the real estate and finance literature

offer little in the way of rational justifications for these patterns.20

Interestingly, a TVPM implies precisely estimated but also strongly time-varying posterior densities

for the factor loadings accompanied by rather constant, and spread out posterior estimates for the

Jensen’s alphas, the 0s in Figure 10. Under a TVPM, there is no story to be told about mispricing

in REITs and the recent subprime bust: all REIT categories, both those plotted in Figure 10 and those

that are available on request, imply flat alphas over time and the corresponding Bayesian confidence

regions systematically include zero for most of our sample (always, after 2001). Although the finding of

imprecisely estimated 0s tends to be associated with the idea that a MFAPM should not be rejected,

in this case a number of doubts remain. These are strengthened by the fact that in the bottom panel of

Table 2, with reference to the full sample, most of the risk premia posterior medians are not precisely

estimated, so that only the market and liquidity factors are significant; the default premium factor

yields instead a precisely estimated but negative premium, which is in turn problematic in terms of

interpretation.
20More generally, the finding of s (for instance, with respect to inflation risk in Figure 9) with posterior medians

that all average between 2 and 5 and hence levels that are easily between 50 and 200 percent higher than those found

in Section 4.3 is also unrealistic because in the presence of the type of estimated risk premia reported in Table 2, these

translate into large expected monthly excess returns (in absolute value) that often exceed the very variance of realized

excess returns.

28



7. Conclusions

In this paper we have asked a simple question: can a rational multi-factor asset pricing model in which

macroeconomic factors measure risk shed any light on the actual or alleged differences in the pricing

mechanism underlying residential vs. non-residential real estate? Equivalently, has it been fair to

place most of the burden of the recent real estate bust on over-pricing and misconduct that would have

taken place mainly in the private, residential housing sector? To provide an answer to this question,

we have made two critical choices. First, we have estimated using Bayesian methods a rich multi-factor

stochastic volatility model with time-varying factor loadings and discrete breakpoints. Such a choice

is intended to deal with the widespread evidence that asset pricing relationships are unstable, in the

sense that the exposures of different portfolios to risk variables change over time, and that the price

of such exposures may be unstable too (see Ferson and Harvey, 1991). Second, we have addressed

this question resorting to abundant and detailed data on publicly traded REIT total return indices

for disaggregated sector portfolios to distinguish between residential, business-related (i.e., industrial,

office, and retail) investments, and mortgage specializations.

We uncover two key results. First, there are differences in the structure and dynamic evolution of

risk factor exposures across residential and non-residential REITs. Residential REITs–according to

most of the literature, the area from which the subprime crisis would have originated–are character-

ized by a negative but mildly increasing exposure to market risk, by quickly retreating exposures to

industrial production growth, term premium, and real interest rate risk, and by massive and quickly

increasing beta on unexpected inflation. REITs that specialize in industrial and office investments

carry instead negative exposure to real output growth risks, and positive exposure to inflation and

bond market risk. Retail- (shopping, regional malls and free-standing) specialized REITs display a

negative, significant and stable exposure to market risk and positive and large exposures to unex-

pected inflation and real interest rate risks. A comparison among residential on the one hand, and

I&O and retail REITs on the other hand, sheds light on one potential cause of their diverging behavior

in the aftermath of the 2007-2009 crisis: the residential sector no longer has any exposure to general

market dynamics and its upward swing is then explained by increasing inflationary risk.

Second, an analysis of cross-sectional mispricing reveals that all the Jensen’s alpha implied by

REITs were positive and relatively large over parts of our sample. Additionally, and with the partial

exception of mortgage investments, all sector REITs described a homogeneous dynamics over time: the

alphas start out relatively low between 1999 and 2004. Between 2005 and late 2007, all alphas climb

up, in some cases going from a few basis points per month in late 2004 to as high as 2.2 percent per

month. This was the great U.S. real estate bubble. However, the alphas of most sectors then decline

between 2008 and 2011, settling to levels below 1% per month and often returning to zero percent, when

macro risk factors can perfectly explain average excess returns. Real estate is special among all other

asset classes: none of the equity portfolios appears to have been persistently mispriced. Moreover, the

claim that the real estate “bubble” would have been a debt/mortgage-fueled one is consistent with our
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result that between 2001 and 2004 mortgage REITs implied the largest, positive median alphas. Yet,

there is no evidence of a pure housing/residential real estate bubble inflating between 2004 and 2007,

to subsequently burst. All REIT sectors record a climb-up in alphas during this period. In fact, it

is the alpha of the three retail/distribution-investing REIT portfolios that shows that steepest ascent.

However, the real estate over-pricing occurred across the board and also involved the industry and

office sectors.

This finding of a deeply rooted and persistent overpricing of specific types of commercial real estate

properties, has important policy implications. On the one hand, should the current regime of low

rates of growth in the U.S. economy and of low inflation risk persist, the progressive removal of any

residual mispricing in Figure 7 may translate into future, low, potentially negative realized real estate

returns. On the other hand, in the measure in which–as sometimes discussed in policy circles (see e.g.,

Bernanke, 2012, Greenlee, 2009; Gyourko, 2009)–industrial and regional mall property investments sit

in large amounts on the balance sheets of nationally- and regionally-relevant U.S. banks, their exposure

to macroeconomic and inflation risks may end up hindering the correct transmission of monetary policy

impulses.
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Appendix A: prior specification

We choose a conjugate prior structure to keep the numerical analysis as simple as possible. As far

as the structural break probabilities are concerned, we assume simple Beta distributions:

 ∼ (  )  ∼ (  ) for  = 1   = 1  (21)

The parameters    and    represent the shape hyperparameters and can be set according to

our prior beliefs about the occurrence of structural breaks in  and ln(
2
), respectively.

21

As for the conditional variance parameters q2 , which reflect our prior beliefs about the size of the

structural breaks, we assume an inverted Gamma prior,

2 ∼ (  ) 2 ∼ (  ) for  = 1   = 1 , (22)

where   0   0 and   2   2 are the scale and degrees of freedom parameters for

the factor loadings and the (log-) variances.22 Finally, the prior distribution for the risk premia λ is

characterized as a standard multivariate normal distribution with independent priors:

λ ∼ (λV) 2 ∼ (0Ψ0) for  = 1  (23)

The parameters λ and V represent the location vector and the scale matrix for the -dimensional

multivariate normal distribution; 0 and Ψ0 are the scale and degrees of freedom of the conditional

variance 2 parameters, respectively, in (7). Because these priors are independent of one another, the

density of the joint prior distribution (Θ) is given by the product of the prior specifications (21)-(23).

Realistic values for the different prior distributions obviously depend on the application. We use

weak priors, excluding the size of the breaks Q and the probabilities Pr( = 1) and Pr( = 1)

for which our priors are informative (see Appendix B). We set the prior hyperparameters to imply, on

average, breaks in  and 
2
 approximately 5% and 2% of the time. Priors are instead uninformative

for breaks with prior mean for the size of the break smaller than 0.3. All other priors are “flat” in the

sense that they imply posteriors that tend to be centered around their maximum likelihood estimates.

Appendix B: the Gibbs sampling algorithm

In this section we derive the full conditional posterior distributions of the latent variables and the

parameters discussed in Section 2.4. For ease of exposition, we report the results for the th asset. We

use a burn-in period of 1,000 and draw 5,000 observations storing every other of them to simulate the

posterior distribution. The resulting autocorrelations of the draws are very low.

21Under a Beta distribution, the unconditional expected prior probability of a structural break for the th asset beta

relative to the th factor is defined as (+) while in the case of idiosyncratic variance, this is equal to (+).
22Under an Inverted Gamma prior, the expected size of a break for, say, the exposure of th asset to the th factor is

( − 2) for   2.
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Step 1. Sampling 

The structural breaks in the conditional dynamics of the factor loadings measured by the latent

binary state 0, are drawn using the algorithm of Gerlach et al. (2000). This algorithm

increases the efficiency of the sampling procedure since allows to generate  = (0), without

conditioning on the relative regression parameters  = (0  ). The conditional posterior

density of ,  = 1    = 1  , for each of th asset/portfolio is defined as


¡
0|K[−]KΣ RF

¢ ∝  (R|KKΣ F) 
¡
0|K[−]KΣ F

¢
∝  (+1 |1KKΣ F) 

¡
|1−1K[1:]KΣ F

¢

¡
0|K[−]KΣ F

¢
(24)

where K[−] =
n
{}=0

o
=16=

, K[1:] =
n
{}=0

o
=1

and K = {}=1. We assume
that each of the  breaks are independent from each other such that the joint density is defined

as
Q

=0 

 (1− )

1− . The remaining densities  (+1 |1KKΣ F) and

 (|1−1KKΣ F) are evaluated as in Gerlach et al. (2000). Notice that, since  is

a binary state the integrating constant is easily evaluated.

Step 2. Sampling the factor loadings B.

The full conditional posterior density for the time-varying factor loadings is computed using a

standard forward filtering backward sampling as in Carter and Kohn (1994). For each of the  = 1  

assets, the prior distribution of the 0   loadings is a multivariate normal with the location

parameters corresponding to OLS estimates and a covariance structure which is diagonal and defined

by the OLS variances. The initial priors are sequentially updated via the Kalman Filtering recursion,

then the parameters are drawn from the posterior distribution which is generated by a standard

backward recursion (see Fruhwirth-Schnatter 1994, Carter and Kohn 1994, and West and Harrison

1997).

Step 3 and 4. Sampling the breaks and the values of the idiosyncratic volatility.

In order to draw the structural breaks K and the idiosyncratic volatilities Σ for each of the ith

portfolios, we follow a similar approach as in step 1. The stochastic breaks K are drawn by using

the Gerlach et al. (2000) algorithm. The conditional variances ln2, does not show a linear structure

even though still preserving the standard properties of state space models. The model is rewritten as

ln

⎛⎝ − 0 −
X
=1



⎞⎠2 = ln2 +  ln2 = ln
2
−1 +  (25)

where  = ln 2 has a ln
2(1). Here we follow Omori et al. (2010) and approximate the ln2(1)

distribution with a finite mixture of ten normal distributions, such that the density of  is given by

() =

10X
=1


1q
2

 2
exp

Ã
−( − )

2

2

!
(26)

with
P10

=1  = 1. The appropriate values for   and 2
 can be found in Omori et al. (2010).
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Mechanically, in each step of the Gibbs Sampler, we simulate at each time  a component of the

mixture. Given the mixture component, we can apply the standard Kalman filter method, such that

K and Σ can be sampled in a similar way as K[] and 0[]  [] in the first and second step.

The initial prior of the log idiosyncratic volatility ln20 is normal with mean -1 and conditional variance

equal to 0.1.

Step 5a. Sampling the time-varying risk premia .

The cross-sectional equilibrium restriction in (2) is satisfied at each time t conditional on the latent

states B|−1 =
½n

|−1
o
=1

¾

=0

and Σ =
©
σ2
ª
=1
. Given an initial normal-inverse gamma prior,

the full conditional of the equilibrium risk premia  = (0  ) at time t, is defined as

(| B|−1Σ ) ∝ |Σ∗ |−
1
2 exp

½
−1
2
( − ∗ )

> (Σ∗ )
−1 ( − ∗ )

¾
(27)

where  = (1) and Σ0, 0 respectively the prior mean and variance of , such that the

conditional (ex-ante time-varying) risk premia can be sampled at each time t by a normal distribution

with ∗ = Σ∗ (Σ
−1
0 0+ −2>

−1) and Σ
∗
 = (Σ

−1
0 + −2>

−1−1)−1, −1 =
£
B|−1

¤
, respectively

as location and scale parameters. The conditional posterior for the variance of the risk premia 2 is

an inverse gamma distribution

(2|B|−1Σ ) ∝ −0 exp
µ
− 0

2

¶
Q
=1

1


exp

⎛⎜⎝−
³
 − 0 −

P
=1 |−1

´2
22

⎞⎟⎠ (28)

such that 2 can be sampled from an inverse-gamma distribution with scale parameter  = 0 +P
=1

³
 − 0 −

P
=1 |−1

´2
and degrees of freedom  = 0 + .

Step 5b. Sampling the stochastic breaks probabilities.

The full conditional posterior densities for the breaks probabilities  = (1) is given by


¡
|2BΣKRF

¢ ∝ Q
=0


−1
 (1− )

−1 Q
=1



 (1− )

1− (29)

and hence the individual  parameter can be sampled from a Beta distribution with shape parameters

 +
P

=1  and  +
P

=1(1 − ) for  = 0 . Likewise the full conditional posterior

distribution for the breaks probabilities in the idiosyncratic volatilities  is given by


¡
 |2BΣKRF

¢ ∝ −1 (1− )
−1 Q

=1

 (1− )
1−

such that the individual  can be sampled from a Beta distribution with shape parameters  +P
=1  and  +

P
=1(1− ) for  = 1   .

Step 5c. Sampling the conditional variance of the states.

The prior distributions for the conditional volatilities of the factor loadings  for  = 0  are
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inverse-gamma


¡
2 |BΣKKRF

¢ ∝ 
−
 exp

Ã
− 

22

!
Q
=1

Ã
1


exp

Ã
− ¡−−1¢2

22

!!

(30)

hence 2 is sampled from an inverse-gamma distribution with scale parameter +
P

=1 
¡
−−1

¢2
and degrees of freedom equal to  +

P
=1 . Likewise the full conditional of the variance for the

idiosyncratic log volatility 2 is defined as


¡
2 |BΣKKRF

¢ ∝ − exp

µ
− 

22

¶
Q
=1

Ã
1


exp

Ã
− ¡ln2 − ln2−1¢2

22

!!

(31)

such that 2 is sampled from an inverted Gamma distribution with scale parameter +
P

=1 (ln
2


− ln2−1)2 and degrees of freedom equal to  +
P

=1 .

Choice of priors

Realistic values for the different prior distributions obviously depend on the problem at hand (see

Groen, Paap and Ravazzolo, 2012). In general, we use weak priors, excluding the size of the breaks Q

and the probabilities Pr(1 = 1) and Pr(2 = 1) for which our priors are quite informative. This

is also important because these priors restrict the maximum number of breaks of maximum magnitude

and therefore help to identify the factor exposures, which is otherwise rather problematic because

linear multifactor models are subject to well-known indeterminacy problems upon rotations of factors

and risk premia (see e.g., McCulloch and Rossi, 1991). The prior shape parameters for the probability

of breaks in the dynamics of the price sensitivities are set to be  = 32 and  = 60. As such,

 [ ] =
32

32 + 60
= 005 and  [ ] =

µ
32× 60

(32 + 60)2(32 + 60 + 1)

¶12
= 003

which means an expected 5% prior probability of a random shock in the dynamics of the loadings.

With respect to idiosyncratic volatility, the shape hyperparameters are  = 1 and  = 99, so that

 [ ] =
1

1 + 99
= 001 and  [ ] =

µ
99

1002 × 101
¶12

= 001

which set the expected prior probability of having a break in the dynamics of idiosyncratic risks to

be equal to 1%. These small prior probabilities make the modelling dynamics more parsimonious,

mitigating the magnitude of prior information, letting the data speak about the likelihood of random

breaks. The marginal (expected) posterior probability of random breaks both in the factor loadings

and idiosyncratic risks are reported in a separate appendix. The prior beliefs on the size of the breaks

are inverse-gamma distributed. The prior scale hyper-parameters    and the    degrees of

freedom are calibrated supporting a prior view for premiums to be normally distributed with zero

mean and variance such that there is 95% probability that annualized premia are smaller in absolute

value than the larger of the absolute value between the minimum and the maximum return observed in

the sample for all the assets. Finally, the prior residual variance is centered at about 10, a value that
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appeared in the higher range of the maximum likelihood estimates. All other priors imply that the

posteriors tend to be centered around their maximum likelihood estimates which eases comparisons

with the existing literature.

Appendix C: traditional two-stage Fama-MacBeth estimation

Here we outline the classical, two-stage procedure ̀ la Fama and MacBeth (1973) also used by

Ferson and Harvey (1991) and very popular in the empirical finance literature. This represents the

standard benchmark for the estimation of the equilibrium asset pricing model shown in (1)-(2).

In the first stage, for each of the assets, the factor betas are estimated using time-series regressions

from historical excess returns on the assets and economic factors. That is, for month , (1) is estimated

using the previous sixty months (ranging from −61 to −1) in order to obtain estimates for the betas,
̂
60

. This time-series regression is updated each month. In this paper–also to preserve asymmetry

with the heteroskedastic modelling choices made in Section 2.2–we model each of the asset specific

variances as following a univariate EGARCH(1,1) process. The choice of a 60-month rolling window

scheme is typical of the literature.23 In the second stage, the equilibrium restriction (2) is estimated for

each of the periods in our sample as a cross-sectional regression using ex-post realized excess returns:

 = 0 +

X
=1

̂
60

 +   = 1    = 61   . (32)

Clearly, these  cross-sectional regressions implement (2) in a nonparametric fashion, in the sense that

any resulting time variation in the 0 and  coefficients fails to be explicitly and parametrically

related to any of the instruments assumed by the researcher. In (32) 0 is the zero-beta (abnormal)

excess return and the s are proxies for the factor risk premiums on each month,  = 1 . This

derives from the fact that if one considers a portfolio  such that ̂
60

 = 0 for all  6=  and ̂
60

 = 1,

then  is simply the conditional mean of −0. Notice that 0 should equal zero ∀ if the model
is correctly specified because in the absence of arbitrage, all zero-beta assets should command a rate

of return that equals the short-term rate. Tests of multi-factor models evaluate the importance of the

economic risk variables by evaluating whether their risk premiums are priced or whether, on average,

the (second-stage, estimated) coefficients ̂ are significantly different from zero.

23 In unreported tests we have attempted to optimize this choice by picking the sliding window that produced the lowest

average information criterion, such as the BIC. We find that a 5-year window gives at all times a BIC which is sensibly

lower than any other window in the range [3, 10] years.
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Figure 1 
Comparing the Dynamics of Sector and Subsector REIT Indices Over Time 
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Figure 8: Selected REIT Loadings under Alternative Model Specifications: Ind. Production

This figure reports the time series of the loadings on the industrial production factor estimated from
two alternative model specifications. The left column shows the posterior medians estimated from a
dynamic Bayesian model with time-varying parameters. The right column shows the median estimates
of the loadings from a naive rolling-window Fama-MacBeth method. The sample period is 1994:01 -
2011:12. The first 60 monthly observations are used respectively as a training sample for the time-
varying parameter model, and as size of the rolling-window for the Fama-MacBeth. The gray areas
on the left surrounding posterior median plots represent 95% confidence intervals. The red lines on
the right represent the confidence intervals under the asymptotic distribution of the betas.
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Figure 9: Selected REIT Loadings under Alternative Model Specifications: Unexpected Inflation

This figure reports the time series of the loadings on the unexpected inflation risk factor estimated
from two alternative model specifications. The left column shows the posterior medians estimated
from a dynamic Bayesian model with time-varying parameters. The right column shows the median
estimates of the loadings from a naive rolling-window Fama-MacBeth method. The sample period is
1994:01 - 2011:12. The first 60 monthly observations are used respectively as a training sample for the
time-varying parameter model, and as size of the rolling-window for the Fama-MacBeth. The gray
areas on the left surrounding posterior median plots represent 95% confidence intervals. The red lines
on the right represent the confidence intervals under the asymptotic distribution of the betas.
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Figure 10: Selected REIT Loadings under Alternative Model Specifications: Jensen’s Alphas

This figure reports the time series of the Jensen’s alphas estimated from two alternative model specifi-
cations. The left column shows the posterior medians estimated from a dynamic Bayesian model with
time-varying parameters. The right column shows the median estimates of the loadings from a naive
rolling-window Fama-MacBeth method. The sample period is 1994:01 - 2011:12. The first 60 monthly
observations are used respectively as a training sample for the time-varying parameter model, and as
size of the rolling-window for the Fama-MacBeth. The gray areas on the left surrounding posterior
median plots represent 95% confidence intervals. The red lines on the right represent the confidence
intervals under the asymptotic distribution of the betas.
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Table 1: Descriptive Statistics

This table reports the descriptive statistics for each of the 31 portfolios used in the empirical analysis
as well as the risk factors and the instrumental variables. Data are monthly and cover the sample
period 1994:01 - 2011:12.

Portfolio/Factor Mean Median Std. Dev. Sharpe Ratio

10 Industry Portfolios, Value-Weighted
Non Durable Goods 0.901 1.220 3.773 0.170
Durable Goods 0.557 0.940 7.520 0.039
Manufacturing 0.983 1.420 5.150 0.140
Energy 1.144 0.890 5.723 0.154
High Tech 1.052 1.420 7.916 0.100
Telecommunications 0.529 1.040 5.651 0.047
Shops and Retail 0.782 1.110 4.693 0.111
Healthcare 0.909 1.140 4.351 0.149
Utilities 0.793 1.290 4.286 0.124
Other 0.644 1.260 5.468 0.070

10 Size-Sorted Portfolios, Value-Weighted
Decile 1 1.002 1.360 6.567 0.113
Decile 2 1.006 1.270 6.864 0.109
Decile 3 0.973 1.590 6.354 0.112
Decile 4 0.891 1.560 6.067 0.104
Decile 5 0.924 1.650 5.991 0.111
Decile 6 0.924 1.560 5.426 0.122
Decile 7 0.991 1.540 5.323 0.137
Decile 8 0.899 1.390 5.330 0.120
Decile 9 0.889 1.660 4.808 0.131
Decile 10 0.702 1.160 4.510 0.098

Bond Returns
10-Year T-Notes 0.554 0.630 2.090 0.141
5-Year T-Notes 0.493 0.556 1.300 0.178
Baa Corporate Bonds (10-20 years) 0.746 0.854 2.717 0.179

Real Estate Returns - Subsectors
NAREIT - Industrial 1.083 1.365 9.428 0.087
NAREIT - Office 1.109 1.584 6.590 0.129
NAREIT - Shopping Centers 0.955 1.304 6.642 0.105
NAREIT - Regional Malls 1.335 1.584 7.970 0.135
NAREIT - Free Standing 1.188 1.607 5.115 0.181
NAREIT - Apartments 1.153 1.331 6.013 0.148
NAREIT - Manufactured Homes 0.883 0.987 5.317 0.117
NAREIT - Mortgage TR 0.638 1.743 6.407 0.059

Economic Risk Variables
Excess Value-Weighted Mkt 0.489 1.070 4.704 0.104
Default Premium 2.373 2.210 0.871
Term Spread -0.004 -0.030 0.254
Industrial Production Growth 0.001 0.004 0.254
Real Per Capita Consumption Growth 0.176 0.218 0.701
Real T-Bill Interest Rate 0.154 0.165 0.247
Unexpected Inflation 0.057 0.061 0.317
Bond Risk Factor 0.525 0.546 1.354 0.195
Liquidity Factor 0.776 0.576 4.063 0.127

Instrumental Variables
Term Yield Spread 1.756 1.720 1.183
Credit Yield Spread 0.970 0.860 0.464
Dividend Yield 1.840 1.810 0.469
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Table 2: Marginal Likelihoods and Bayes Factors Across Alternative Model Specifications

This table reports the values of the marginal log-likelihoods and the relative Bayes Factors for different model spec-
ifications. The values reported are also disaggregated in the contributions coming from each of the portfolios under
investigation. BTVSVB stands for Bayesian time-varying betas, stochastic volatility model, while BTVB and TVPM
are, respectively, the dynamic Bayesian model restricted to have constant volatility and random-walk betas. Fama-
MacBeth is the standard two-step procedure. BF1 is the Bayes Factor of the BTVSVB model vs. the homoskedastic
volatility restriction. Likewise, BF2 and BF3 are the Bayes Factors comparing the BTVSVB model with the TVPM
and the Fama-MacBeth approaches, respectively.

BTVSVB TVPM BTVB Fama-MacBeth BF1 BF2 BF3

10 Industry Portfolios, Value-Weighted

Non Durable Goods -190.57 -926.84 -383.07 -788.55 736.27 192.49 597.98

Durable Goods -268.62 -1028.21 -403.24 -1958.54 759.59 134.61 1689.92

Manufacturing -155.60 -862.27 -378.23 -1746.62 706.67 222.63 1591.02

Energy -280.75 -1018.37 -405.95 -1117.97 737.62 125.21 837.22

High Tech -210.55 -983.32 -388.35 -3323.45 772.77 177.79 3112.89

Telecom -198.17 -961.15 -386.33 -1796.91 762.98 188.15 1598.74

Shops and Retail -182.93 -958.60 -383.97 -1048.66 775.67 201.04 865.73

Health -203.86 -952.85 -384.40 -656.81 748.98 180.54 452.95

Utilities -192.60 -953.47 -389.87 -998.45 760.86 197.27 805.85

Other -148.71 -905.96 -381.15 -1894.60 757.25 232.44 1745.90

10 Size-sorted Portfolios, Value-Weighted

Decile 1 -227.57 -1000.03 -407.44 -1532.34 772.46 179.87 1304.77

Decile 2 -225.66 -974.12 -399.95 -1959.37 748.46 174.29 1733.71

Decile 3 -180.30 -1008.04 -385.80 -2038.83 827.74 205.50 1858.53

Decile 4 -180.16 -950.51 -380.15 -1944.03 770.35 199.98 1763.87

Decile 5 -149.07 -949.84 -375.99 -2203.63 800.77 226.92 2054.56

Decile 6 -136.95 -922.25 -374.22 -1902.32 785.30 237.28 1765.37

Decile 7 -153.80 -801.33 -375.15 -2241.10 647.53 221.35 2087.30

Decile 8 -138.34 -636.46 -374.46 -3401.11 498.12 236.12 3262.76

Decile 9 -109.38 -858.20 -374.72 -2792.95 748.82 265.35 2683.57

Decile 10 -101.85 -505.96 -371.93 -2348.01 442.92 227.75 7718.52

Real Estate (REITs)

NAREIT - Industrial -278.86 -1131.12 -402.02 -1003.97 852.26 123.16 725.12

NAREIT - Office -241.04 -1086.78 -388.99 -1030.04 845.74 147.95 788.99

NAREIT - Shopping Centers -241.13 -1059.56 -392.08 -969.19 818.43 150.95 728.06

NAREIT - Regional Malls -273.79 -1115.65 -400.68 -1122.50 841.86 126.89 848.71

NAREIT - Free Standing -206.28 -1035.04 -384.89 -638.89 828.75 178.60 432.60

NAREIT - Apartments -259.65 -1065.16 -390.85 -849.43 805.51 131.20 589.78

NAREIT - Manufactured Homes -224.30 -1065.24 -389.42 -681.12 840.95 165.13 456.83

NAREIT - Mortgage TR -296.79 -1068.81 -409.77 -821.61 772.02 112.98 524.82

Bond Returns

10 - Year Treasury -115.47 -483.88 -370.87 -401.70 368.41 255.40 286.23

5 - Year Treasury -101.53 -380.29 -371.72 -242.97 278.76 270.19 141.45

Baa Corporate Bonds (10-20 years) -113.72 -528.18 -371.09 -786.38 414.46 257.36 672.66

Overall -193.16 -908.95 -386.35 -1491.68 717.04 191.82 1475.05
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Table 3: Average Pricing Errors from Alternative Models

This table reports the average pricing errors of each of the models developed in Section 2 of the paper
and across different sub-samples as well as in the full sample. BTVSVB stands for Bayesian time-
varying betas, stochastic volatility model, while BTVB and TVPM are, respectively, the dynamic
Bayesian model restricted to have constant conditional volatility and random-walk betas. Fama-
MacBeth is the standard two-step procedure. The table reports the posterior mean (over time), the
posterior standard deviation as well as the confidence interval at the 95% level.

Average Pricing Errors

Mean % Std % 2.5 % 50 % 97.5 %

Panel A: 1999:01 - 2011:12

BTVSVB 0.613 0.119 0.426 0.612 0.803

BTVB 0.954 0.065 0.861 0.943 1.059

TVPM 1.989 0.435 1.200 2.044 2.653

Fama-MacBeth 1.052 0.093 0.954 1.023 1.286

Panel B: 1999:01 - 2007:01

BTVSVB 0.584 0.116 0.417 0.571 0.783

BTVB 0.913 0.037 0.856 0.911 0.982

TVPM 1.882 0.453 1.155 1.902 2.614

Fama-MacBeth 0.996 0.036 0.952 0.991 1.056

Panel C: 2007:01 - 2011:11

BTVSVB 0.658 0.113 0.463 0.671 0.819

BTVB 1.023 0.027 0.987 1.024 1.073

TVPM 2.158 0.345 1.610 2.254 2.660

Fama-MacBeth 1.139 0.088 1.018 1.119 1.320
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Table 5: Variance Decomposition Tests Across Models

This table reports the results of variance decomposition tests across models. The first two columns show the values
for the standard two-step Fama-MacBeth methodology. All rates are in excess of the holding period return on a 1-
month T-Bill. VR1 is the ratio of the variance of a model’s predicted returns and the variance of expected returns
estimated from a projection on a set of instruments. VR2 is the ratio of the variance of the predictable part of returns
not explained by a model and the variance of projected returns. The instrumental variables are the lagged monthly
dividend yield on the NYSE/AMEX calculated as in Campbell and Beeler (2012), the lagged yield of a Baa corporate
bond, and the lagged spread of long- vs. short-term government bond yields. BTVSVB stands for Bayesian time-varying
betas with stochastic volatility, while TVPM and BTVB are, respectively, a random-walk time-varying parameter and
homoskedastic time-varying betas model.

Fama-MacBeth BTVSVB

VR1 VR2 VR1 VR2

2.5% 50% 97.5% 2.5% 50% 97.5%

10 Industry Portfolios, Value-Weighted

Non Durable Goods 0.310 0.775 0.348 0.672 0.822 0.179 0.323 0.634

Durable Goods 0.026 0.915 0.414 0.751 0.901 0.107 0.245 0.549

Manufacturing 0.136 0.806 0.466 0.767 0.845 0.110 0.187 0.530

Energy 0.166 0.827 0.483 0.780 0.972 0.038 0.200 0.531

High Tech 0.131 0.753 0.597 0.844 0.929 0.059 0.165 0.325

Telecommunications 0.122 0.751 0.305 0.488 0.569 0.425 0.498 0.671

Shops and Retail 0.125 0.814 0.274 0.620 0.885 0.143 0.344 0.766

Health 0.235 0.778 0.417 0.754 0.945 0.047 0.270 0.600

Utilities 0.189 0.786 0.519 0.721 0.923 0.054 0.212 0.476

Other 0.125 0.859 0.304 0.646 0.860 0.148 0.348 0.663

10 Size-Sorted Portfolios, Value-Weighted

Decile 1 0.213 0.736 0.607 0.862 0.940 0.069 0.149 0.335

Decile 2 0.089 0.948 0.606 0.898 0.982 0.013 0.126 0.416

Decile 3 0.106 0.834 0.500 0.813 0.985 0.014 0.165 0.513

Decile 4 0.038 0.935 0.532 0.876 0.961 0.033 0.158 0.473

Decile 5 0.195 0.759 0.472 0.769 0.872 0.136 0.262 0.513

Decile 6 0.203 0.749 0.438 0.712 0.854 0.172 0.294 0.540

Decile 7 0.197 0.853 0.504 0.701 0.824 0.159 0.369 0.529

Decile 8 0.125 0.836 0.499 0.734 0.836 0.118 0.266 0.454

Decile 9 0.096 0.933 0.553 0.797 0.848 0.121 0.262 0.485

Decile 10 0.182 0.810 0.452 0.734 0.884 0.127 0.285 0.534

Real Estate (REITs)

NAREIT - Industrial 0.266 0.750 0.502 0.733 0.906 0.101 0.242 0.509

NAREIT - Office 0.165 0.811 0.577 0.715 0.902 0.114 0.201 0.433

NAREIT - Shopping Centers 0.041 0.963 0.777 0.911 0.969 0.030 0.105 0.188

NAREIT - Regional Malls 0.161 0.856 0.430 0.723 0.821 0.179 0.190 0.492

NAREIT - Free Standing 0.174 0.816 0.548 0.705 0.881 0.135 0.205 0.413

NAREIT - Apartments 0.151 0.892 0.322 0.542 0.747 0.255 0.454 0.696

NAREIT - Manufactured Homes 0.218 0.851 0.718 0.810 0.917 0.079 0.151 0.234

NAREIT - Mortgage TR 0.159 0.875 0.422 0.743 0.876 0.126 0.214 0.520

Bond Returns

10 - Year Treasury 0.356 0.705 0.506 0.644 0.889 0.127 0.356 0.505

5 - Year Treasury 0.318 0.686 0.695 0.956 1.029 0.008 0.032 0.275

Baa Corp Bonds (10-20 years) 0.415 0.623 0.594 0.811 0.916 0.076 0.186 0.407
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