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Abstract

This paper presents a framework for empirical analysis of dynamic macroeconomic models
using Bayesian filtering, with a specific focus on the state-space formulation of Dynamic Sto-
chastic General Equilibrium (DSGE) models with multiple regimes. We outline the theoretical
foundations of model estimation, provide the details of two families of powerful multiple-regime
filters, IMM and GPB, and construct corresponding multiple-regime smoothers. A simulation
exercise, based on a prototypical New Keynesian DSGE model, is used to demonstrate the
computational robustness of the proposed filters and smoothers and evaluate their accuracy
and speed for a selection of filters from each family. We show that the canonical IMM filter
is faster and is no less, and often more, accurate than its competitors within IMM and GPB
families, the latter including the commonly used Kim and Nelson (1999) filter. Using it with
the matching smoother improves the precision in recovering unobserved variables by about
25%. Furthermore, applying it to the U.S. 1947-2023 macroeconomic time series, we success-
fully identify significant past policy shifts including those related to the post-Covid-19 period.
Our results demonstrate the practical applicability and potential of the proposed routines in
macroeconomic analysis.
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1 Introduction

In the evolving landscape of macroeconomic analysis, the empirical examination of dynamic

models has become increasingly sophisticated and computationally demanding. This paper con-

tributes to this area by presenting a comprehensive framework for empirical analysis of state

space models with multiple regimes using Bayesian filtering. Our work introduces enhanced filter

and smoother algorithms, crucial for accurate macroeconomic modelling and estimation.

Our study is motivated by the increasing popularity of Bayesian methods in macroeconomic

time series analysis in the Dynamic Stochastic General Equilibrium (DSGE) framework, usually

presented in the state-space form. These methods have gained traction due to their ability to

effectively handle complex models with latent variables and structural changes. Bayesian perspec-

tive is invaluable for disentangling convoluted macroeconomic phenomena, such as differentiating

between external shocks and policy-driven economic patterns.

Despite significant advancements in the literature, the field continues to face various chal-

lenges, especially when estimating macroeconomic dynamic models with multiple regimes. One

such challenge is selecting an effi cient and accurate filter for likelihood computation. Another

challenge is the task of reconstructing latent variables through the smoothing of estimated state

variables and regime probabilities.

The prevalent use of the Kim and Nelson (Kim, 1994, Kim and Nelson, 1999) filter in macro-

economic applications (see, inter alia, Davig and Doh, 2014, Chang, Maih, and Tan, 2021, Chen,

Leeper, and Leith, 2022) suggests limited exploration of alternative methods in this field. Despite

its unquestionable power, Kim and Nelson filter is known to have certain flaws. Namely, it is

computationally intensive and, when extended to smoothing algorithms, computationally unsta-

ble. Perhaps, the latter is the reason for scant use of smoothing for more accurate recovery of

latent variables in multiple regime models in the existing economic literature.

Our paper makes both theoretical and empirical contributions in this domain. First, we

introduce and extend the Interactive Multiple Model (IMM) filter, originally developed by Bar-

Shalom (Blom and Bar-Shalom, 1988). Despite its recognition in the engineering literature, the

IMM filter remains underutilised in economic applications. In addition, we claim that the Kim

and Nelson filter belongs to the family of Generalised Pseudo-Bayesian (GPB) filters and present

it in a general form that accommodates different orders of approximation. Finally, we develop a

computationally stable and easily implementable smoothing algorithm that can be conveniently

adapted to a wide range of filters in multiple regime setting. Empirically, we apply these methods
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to a prototypical New Keynesian DSGE model and the U.S. macroeconomic time series spanning

from 1947 to 2023. This exercise succeeds in identifying significant policy shifts, particularly in

the post-Covid-19 era, and thus demonstrates the practical relevance of our methods.

We validate the superiority of the proposed filter-smoother algorithm using rigorous simulation

exercises. Our findings indicate that the IMM filter outperforms the Kim and Nelson filter in terms

of computational speed while maintaining comparable accuracy. Moreover, the implementation

of our proposed smoother significantly enhances the precision in the recovery of latent variables,

with an approximate 25% reduction in estimation errors. These empirical insights reveal the

importance of smoothing in this framework, overlooked in the existing literature.

One should note that while the Kim and Nelson filter has dominated the analysis of multiple-

regime macroeconomic models, there have been a few exceptions. Liu, Wang, and Zha (2013)

apparently applied IMM to study the role of land-price dynamics in macroeconomy. Binning and

Maih (2015) used IMM to show how certain non-linear filters can be adapted to the multiple

regime setting. Bjørnland, Larsen, and Maih (2018) applied it to study the interplay between

oil price shocks and macroeconomic instability. More recently, Leith, Kirsanova, Machado, and

Ribeiro (2024) used IMM in a study of monetary and fiscal policy changes in the United States.

We are unaware of other IMM applications in macroeconomics to date.

All computations presented in this paper were implemented in the RISE c© toolbox (Maih,

2015).1

The paper is organised as follows. The next section presents theoretical foundations. We

derive two families of filters, one of which encompasses the Kim and Nelson filter and the other

one encompasses the canonical IMM. We derive a Markov-switching smoother adapted to the

appropriate filter family. Section 3 tests the effi cacy of the proposed filter and smoother algorithms

on artificial data. An empirical investigation is presented in Section 4. Section 5 concludes.

1RISE stands for ‘Rationality in Switching Environments’. The codes and documentation are available at
https://github.com/jmaih/RISE_toolbox
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2 Switching Filters and Smoothers

2.1 The Filtering Problem

We start with a general multiple-regime state-space representation of a linear discrete-time dy-

namic model consisting of a measurement equation (1) and a transition equation (2),

yt = cy,st + Zstαt + gstεt, (1)

αt = cα,st + Tstαt−1 +Rstηt, (2)

where yt a p× 1 vector of observations, αt is a m× 1 vector of unobserved state variables, and εt

and ηt are independent standard Gaussian random variables, t = 1, . . . , n. All model parameters,

{cy,st , cα,st ;Zst , Tst ; gst , Rst}, depend on regime st, which is an outcome of a Markov process with
h ≥ 1 discrete regimes. This process is described by the transition probability matrix with the

generic element Q(st−1, st) = Pr [st | st−1], so that
∑h

st=1Q(st−1, st) = 1 for every regime st−1

and every time t.

The information available at time t is fully contained in the vector of observations Yt :=

{y1, ..., yt}. The object of interest is an estimate of the unobserved state vector αt, for which
three estimators, αt|t−1, αt|t and αt|n are available in Bayesian framework. The first estimator is

the forecast of αt based on information Yt−1,

αt|t−1 := E [αt | Yt−1] .

Its mean square error (MSE) is defined as

Pt|t−1 := E
[(
αt − αt|t−1

) (
αt − αt|t−1

)′ | Yt−1

]
.

In the linear single-regime setting with Gaussian shocks these objects and the associated

likelihood f (yt | Yt−1) are computed by the well-established technique of the standard Kalman

filter (KF), which in this case is exact and optimal (Kalman, 1960). Working in a multiple-regime

environment is more challenging because of the explosive dimensionality of the problem.

Specifically, in a multiple-regime environment, exact estimation is infeasible because the num-

ber of histories that a Kalman-type filter needs to take into account increases exponentially with

every time period. At any given time t, a multiple-regime dynamic system can be in one of

h possible regimes, each corresponding to a realisation of h mutually exclusive and exhaustive

random events. Denote the sequence of realised regimes from the beginning of observations up

to time t by Jt:
Jt = {s1, s2, ..., st−1, st} ∈ Ht,t
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where HN,t is the set of all possible histories of length N that end at period t. There are ht

possible mutually exclusive and exhaustive histories up to time t. Using the total probability

theorem, the conditional pdf at time t is obtained as a Gaussian mixture with the number of

terms equal to ht:

f (yt+1 | Yt) =
∑
Jt

f (yt+1 | Jt, Yt) Pr [Jt | Yt] .

The probability of a given regime history is computed using Bayes formula:

Pr [Jt | Yt] = Pr [Jt | yt, Yt−1] =
f (yt | Jt, Yt−1) Pr [Jt | Yt−1]

f (yt | Yt−1)

=
f (yt | Jt, Yt−1) Pr [st,Jt−1 | Yt−1]

f (yt | Yt−1)

=
f (yt | Jt, Yt−1) Pr [st | Jt−1, Yt−1]

f (yt | Yt−1)
Pr [Jt−1 | Yt−1]

When the regime switches have Markov property, Pr [st | Jt−1, Yt−1] ' Pr [st | st−1] = Q(st−1, st),

which simplifies the second term in the numerator. However, conditioning on the entire past

history is still needed for the last term even if the regimes follow a Markov process.

In practice, one has to resort to some approximation. In this sense, all practical multiple-

regime filters are approximate and, therefore, suboptimal. One popular approach involves merging

two or more histories into one. A version of this approach is well known in economic applications

as the Kim and Nelson filter. We focus on this framework and study two families of filters with

different mechanisms of approximation.

In the next section, we present the Generalised Pseudo-Bayesian (GPB) filters, and Interacting

Multiple Models (IMM) filters of arbitrary order (length of tracked histories) N.

2.2 Two Practical Families of Filters

We begin with the GPB(N) family. It includes the Kim and Nelson filter as a special case of

GPB(2), as one can see from comparison of the expositions in Kim (1994) and Bar-Shalom et al.

(2001). Following commonly used notations, the GPB(N) filter uses information from the previous

N periods, including the current one. Thus, GPB(1) ignores past history and uses current period

information only, GPB(2) incorporates information from the current period and one immediately

preceding period, and so on. The IMM algorithm is conceptually different from the GPB in the

way it combines past histories. The version of IMM developed in Blom and Bar-Shalom (1988)

corresponds to IMM(1); we refer to it as canonical IMM.

One would expect that a higher N leads to increased accuracy at the cost of a larger amount

of computations. We investigate relative accuracy and speed for different N within each family.
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Another interesting question is whether the canonical IMM outperforms the KN filter in accuracy

and speed in a prototypical macroeconomic application.

In this section, we present the GPB(N) and the IMM(N) algorithms in turn, using uniform

notations. Where relevant, we will remind the reader that KN is the same as GPB(2).

2.2.1 Preliminaries

Let Ht denote the history of regimes in N consecutive periods ending with period t,

Ht := {st−N+1, ..., st−1, st} ∈ HN,t,

and let Ct be the ‘collapsed’history, defined as

Ct := {st−N+2, ..., st} ∈ HN−1,t.

Hence

Ht = {Ct−1, st} = {st−N+1, Ct},

and

Ht−1 = {st−N , ..., st−2, st−1} ∈ HN,t−1,

Ht−1 ∪Ht = {st−N , ..., st−2, st−1, st} ∈ HN+1,t.

Let

µ
(Ht)
t|t := Pr [Ht | Yt]

be the probability of realisation of a particular history Ht conditional on information at time t.

2.2.2 Family of GPB Filters

The GPB algorithm of order N , denoted GPB(N), takes into account all hN possible histories

of the fixed length N , finishing at the current time period. It is implemented as follows.

Define

µ
(Ct)
t|t := Pr [Ct | Yt] =

h∑
st−N+1=1

µ
(Ht)
t|t

as the probability of the collapsed history, Ct, conditional on information at time t.

Algorithm 1 GPB(N) Algorithm
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Step 0. Start at t = 1. Initialise hN−1 versions of the state vector α(Ct−1)
t−1|t−1, the MSE matrix

P
(Ct−1)
t−1|t−1, and probabilities µ

(Ct−1)
t−1|t−1, Ct−1 ∈ HN−1,t−1.

Step 1. Compute hN standard KF forecasts to obtain

GPB(N) Forecast GPB(N) Update

α
(Ht)
t|t−1 = cα,st + Tstα

(Ct−1)
t−1|t−1, α

(Ht)
t|t = α

(Ht)
t|t−1 + P

(Ht)
t|t−1Z

′
st

[
F

(Ht)
t|t−1

]−1
v

(Ht)
t|t−1,

P
(Ht)
t|t−1 = TstP

(Ct−1)
t−1|t−1T

′
st +RstR

′
st , P

(Ht)
t|t =

(
I − P (Ht)

t|t−1Z
′
st

[
F

(Ht)
t|t−1

]−1
Zst

)
P

(Ht)
t|t−1,

where

v
(Ht)
t|t−1 = yt − Zstα

(Ht)
t|t−1 − cy,st , F

(Ht)
t|t−1 = ZstP

(Ht)
t|t−1Z

′
st +Hst , Hst = gstg

′
st .

Compute the associated likelihood

Λ
(Ht)
t = f (yt | Ht, Yt−1) = (2π)−p/2

∣∣∣F (Ht)
t|t−1

∣∣∣−1/2
exp

(
−1

2
v

(Ht)′
t|t−1

[
F

(Ht)
t|t−1

]−1
v

(Ht)
t|t−1

)
.

Step 2. Compute probabilities µ(Ht)
t according to2

µ
(Ht)
t|t = Pr [Ht | Yt] = Pr [Ht | Yt−1, yt]

=
f (yt,Ht | Yt−1)

f (yt | Yt−1)
=
f (yt | Ht, Yt−1) Pr [Ht | Yt−1]

f (yt | Yt−1)

=
f (yt | Ht, Yt−1) Pr [st | Ct−1, Yt−1]

f (yt | Yt−1)
Pr [Ct−1 | Yt−1]

' Λ
(Ht)
t Q (st−1, st)∑

Ht Λ
(Ht)
t Q (st−1, st)µ

(Ct−1)
t−1|t−1

µ
(Ct−1)
t−1|t−1,

where in the last line we used approximation

Pr [st | Ct−1, Yt−1] ' Pr [st | st−1] = Q (st−1, st) , (3)

and

f (yt | Yt−1) =
∑
Ht

f (yt | Yt−1,Ht) Pr [Ht | Yt−1]

=
∑
Ht

f (yt | Yt−1,Ht) Pr [st | Ct−1, Yt−1] Pr [Ct−1 | Yt−1]

'
∑
Ht

Λ
(Ht)
t Q (st−1, st)µ

(Ct−1)
t−1|t−1. (4)

2This procedure is a generalised version of the Hamilton (1989) filter.
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where the sum is taken over all possible realisations of Ht.
Step 3. Next, hN KF outputs are merged into hN−1 using conditional probabilities

Pr[st−N+1|Yt, Ct] computed as:

Pr[st−N+1|Yt, Ct] =
Pr (st−N+1, Ct|Yt)

Pr (Ct|Yt)
=

Pr (Ht|Yt)
Pr (Ct|Yt)

=
µ

(Ht)
t|t∑h

st+1−N=1 µ
(Ht)
t|t

.

Thus,

α
(Ct)
t|t =

h∑
st−N+1=1

Pr[st−N+1|Yt, Ct]α(Ht)
t|t , (5)

P
(Ct)
t|t =

h∑
st−N+1=1

Pr[st−N+1|Yt, Ct]
{
P

(Ht)
t|t +

(
α

(Ct)
t|t − α

(Ht)
t|t

)(
α

(Ct)
t|t − α

(Ht)
t|t

)′}
(6)

µ
(Ct)
t|t = Pr [Ct | Yt] =

h∑
st−N+1=1

Pr [Ht | Yt] =
h∑

st−N+1=1

µ
(Ht)
t|t . (7)

Updated α(Ct)
t|t , P

(Ct)
t|t and µ(Ct)

t|t serve as initialisations for the next time period (t = 2, 3, ..., n)

in a recursion at Step 1.

The t-increment likelihood

Lt = log f (yt | Yt−1) ,

is computed using (4) as part of the filter algorithm.

To continue the recursion to the end of the sample we only need to compute{
α

(Ct)
t|t , P

(Ct)
t|t , µ

(Ct)
t|t

}
(Ct)∈HN−1,t

at each step of the algorithm. These quantities are also used to com-

pute the (averaged over regime sequences) state vectors and the MSE matrices
{
αt|t, Pt|t

}
t=1:n

for

each time t, and the probability µ(st)
t of the system being in regime st conditional on information

at time t:

αt|t =
∑
Ct

Pr [Ct | Yt]α(Ct)
t|t =

∑
Ct

µ
(Ct)
t|t α

(Ct)
t|t , (8)

Pt|t =
∑
Ct

Pr [Ct | Yt]
{
P

(Ct)
t|t +

(
αt|t − α

(Ct)
t|t

)(
αt|t − α

(Ct)
t|t

)′}
(9)

=
∑
Ct

µ
(Ct)
t|t

{
P

(Ct)
t|t +

(
αt|t − α

(Ct)
t|t

)(
αt|t − α

(Ct)
t|t

)′}
,

µ
(st)
t|t = Pr[st | Yt] =

∑
Ct−1

Pr[Ht | Yt] =
∑
Ct−1

µ
(Ht)
t|t . (10)
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These objects can be computed outside of the recursion.

This algorithm works for any N ≥ 1. Note that for N = 1 we have Ct = ∅,Ht = st. This

implies that the GPB(1) algorithm considers possible regime histories only at their latest instant

and merges all preceding regime sequences into one, using common initial conditions αt−1|t−1 at

each time step.

2.2.3 Family of IMM Filters

IMM(N) maintains the dimensionality of histories at hN at every time period. This is achieved

by mixing histories in every recursion of the algorithm immediately after making a step forward

in time, which would otherwise result in an increase of dimension to hN+1. Effectively, at every

t, mixing replaces hN+1 extended ‘exact’histories by hN reduced approximate histories weighted

by probabilities of transition from the earliest state, st−N , into the sequence of most recent states,

{st−N+1, ..., st}. These hN histories are then filtered and updated in the usual way.

A comparison of the IMM and the GPB shows that the dimension reduction is performed

at the different stages of the algorithms.3 In the IMM, mixing is done after the state update

and before the measurement update, and in the GPB, collapsing is done after the state and

measurement updates.4

Let Qt|t−1 := Qt|t−1⊗Qt−1|t−2⊗ ...⊗Qt−N+1|t−N denote the grand transition matrix of format

hN × hN , where ⊗ denotes the Kronecker product.

Algorithm 2 IMM(N) Algorithm.

Step 0. Initialise hN versions of the state vector α(Ht−1)
t−1|t−1, the MSE matrix P

(Ht−1)
t−1|t−1, and

regime probabilities µ(Ht−1)
t−1|t−1, Ht−1 ∈ HN,t−1. Compute Qt|t−1.

Step 1. Compute the mixing probabilities defined as

µ
(Ht−1|Ht)
t−1|t−1 := Pr [Ht−1 | Yt−1,Ht] .

Note that

Pr[Ht−1 ∪Ht | Yt−1] = Pr [Ht−1 | Yt−1,Ht] Pr[Ht | Yt−1]

= Pr [Ht | Ht−1, Yt−1] Pr[Ht−1 | Yt−1],

3See Tables A1 and A2 in Appendix A.
4We use mixing in the description of the IMM and collapsing in the description of the GPB following the

convention in the literature.
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and

Pr[Ht | Yt−1] =
∑
Ht−1

Pr [Ht | Ht−1, Yt−1] Pr [Ht−1 | Yt−1] .

Therefore,

µ
(Ht−1|Ht)
t−1|t−1 = Pr [Ht−1 | Yt−1,Ht] =

Pr [Ht | Ht−1, Yt−1] Pr[Ht−1 | Yt−1]

Pr[Ht | Yt−1]

=
Pr [Ht | Ht−1, Yt−1] Pr[Ht−1 | Yt−1]∑
Ht−1 Pr [Ht | Ht−1, Yt−1] Pr [Ht−1 | Yt−1]

'
Qt|t−1(Ht−1,Ht)µ(Ht−1)

t−1|t−1∑
Ht−1 Qt|t−1(Ht−1,Ht)µ(Ht−1)

t−1|t−1

Step 2. Compute the mixed state vectors and MSE matrices for each history:

α̂
(∗,Ht)
t−1|t−1 =

∑
Ht−1

Pr [Ht−1 | Yt−1,Ht]α(Ht−1)
t−1|t−1 =

∑
Ht−1

µ
(Ht−1|Ht)
t−1|t−1 α

(Ht−1)
t−1|t−1, (11)

P̂
(∗,Ht)
t−1|t−1 =

∑
Ht−1

Pr [Ht−1 | Yt−1,Ht] (12)

×
{
P

(st−1)
t−1|t−1 +

(
α

(Ht−1)
t−1|t−1 − α̂

(∗,Ht−1)
t−1|t−1

)(
α

(Ht−1)
t−1|t−1 − α̂

(∗,Ht−1)
t−1|t−1

)′}
=

∑
Ht−1

µ
(Ht−1|Ht)
t−1|t−1

{
P

(Ht−1)
t−1|t−1 +

(
α

(Ht−1)
t−1|t−1 − α̂

(∗,Ht−1)
t−1|t−1

)(
α

(Ht−1)
t−1|t−1 − α̂

(∗,Ht−1)
t−1|t−1

)′}
.

Here, α̂(∗,Ht)
t−1|t−1 is conditional on a particular sequence of regimes, and it is computed for all

possible sequences, or histories, in HN,t. When computing P̂
(∗,Ht)
t−1|t−1 in (12) we take the sum over

all possible sequences Ht−1 of length N ending at t− 1 such that they overlap with Ht between
times t − N + 1 and t − 1. Note that once states and MSEs are mixed, the memory of st−N is

‘cleared’, so we put an asterisk in place of the now non-existent index st−N = Ht−1\(Ht ∩Ht−1).

This reduces the dimensionality from hN+1 to hN .

Step 3. For each history compute the standard KF to obtain

IMM(N) Forecast IMM(N) Update

α
(Ht)
t|t−1 = cα,st + Tstα̂

(∗,Ht)
t−1|t−1, α

(Ht)
t|t = α

(Ht)
t|t−1 + P

(Ht)
t|t−1Z

′
st

[
F

(Ht)
t|t−1

]−1
v

(Ht)
t|−1 ,

P
(Ht)
t|t−1 = TstP̂

(∗,Ht)
t−1|t−1T

′
st +RstR

′
st , P

(Ht)
t|t =

(
I − P (Ht)

t|t−1Z
′
st

[
F

(Ht)
t|t−1

]−1
Zst

)
P

(Ht)
t|t−1,

where

v
(Ht)
t|t−1 = yt − Zstα

(Ht)
t|t−1 − cy,st , F

(Ht)
t|t−1 = ZstP

(Ht)
t|t−1Z

′
st +Hst , Hst = gstg

′
st .
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Compute the associated likelihood:

Λ
(Ht)
t = f (yt | Ht, Yt−1)

= (2π)−p/2
∣∣∣F (Ht)
t|t−1

∣∣∣−1/2
exp

(
−1

2
v

(Ht)′
t|t−1

[
F

(Ht)
t|t−1

]−1
v

(Ht)
t|t−1

)
.

Step 4. Update the probabilities µ(Ht)
t|t ,

µ
(Ht)
t|t = Pr [Ht | Yt] = Pr [Ht | Yt−1, yt]

=
f (yt,Ht | Yt−1)

f (yt | Yt−1)
=
f (yt | Ht, Yt−1) Pr [Ht | Yt−1]

f (yt | Yt−1)

=
f (yt | Ht, Yt−1)

∑
Ht−1 Pr [Ht | Ht−1, Yt−1] Pr [Ht−1 | Yt−1]

f (yt | Yt−1)

'
Λ

(Ht)
t

∑
Ht−1 Qt|t−1(Ht−1,Ht)µ(Ht−1)

t−1|t−1∑
Ht Λ

(Ht)
t

∑
Ht−1 Qt|t−1(Ht−1,Ht)µ(Ht−1)

t−1|t−1

,

where in the last line we used

f (yt | Yt−1) =
∑
Ht

f (yt | Yt−1,Ht) Pr [Ht | Yt−1]

=
∑
Ht

f (yt | Yt−1,Ht)

×
∑
Ht−1

(Pr [Ht | Ht−1, Yt−1] Pr [Ht−1 | Yt−1])

'
∑
sHt

Λ
(Ht)
t

∑
Ht−1

Qt|t−1(Ht−1,Ht)µ(Ht−1)
t−1|t−1 (13)

The KF outputs and the updated probabilities,
{
α

(Ht)
t|t , P

(Ht)
t|t , µ

(Ht)
t|t

}
, serve as initialisations

for the next time step in a recursion. The t-increment likelihood is

Lt = log f (yt | Yt−1)

and it is computed using formula (13) as part of the filtering algorithm. The state vectors,

the MSE matrices, and updated regime probabilities
{
αt|t, Pt|t, µ

(st)
t|t

}
t=1:n

for each time t are

computed using the same formulae (8)-(10) as in the GPB algorithm.

2.3 Smoothing

After estimating the states and regime probabilities through forward recursion, we can improve

the inference on st and αt using the information from the entire sample. This process, known as

smoothing, is usually conducted by backward recursion.
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A practical algorithm for computing smoothed probabilities for a KN-GPB(2) filter is detailed

in Kim (1994). In this paper we generalise it for arbitrary length of history to make it applicable

to filters of higher order.

However, it is well known that smoothing state vectors, even in single-regime models, can

be challenging, and is even more so in models with multiple regimes. Kim (1994) introduces

an algorithm specifically designed to work with the KN-GPB(2) filter. Unfortunately, this al-

gorithm is computationally unstable as it requires inverting large auxiliary matrices. Existing

smoothers developed for engineering applications typically exploit measurement errors and re-

quire the invertibility of matrix Hst = gstg
′
st , a condition often not met in economic applications.

In this section, we adapt a single-regime smoothing algorithm proposed by Durbin and Koopman

(2012), based on De Jong (1988), for use in a Markov-switching multiple-regime model with ar-

bitrary history lengths. This adapted algorithm requires only matrix inversions that are part of

the corresponding filter and would have been computed at the filtering stage.

2.3.1 Smoothed Probabilities

Smoothed probabilities are computed using the total probability theorem. The probability of

history Ht conditional on the information contained in the full sample, Yn, can be written as

µ
(Ht)
t|n := Pr[Ht | Yn] =

∑
st+1

Pr[Ht, st+1 | Yn].

To compute Pr[Ht, st+1 | Yn], we use the following approximation:

Pr[Ht, st+1 | Yn] = Pr [st+1 | Yn] Pr [Ht | st+1, Yn]

' Pr [st+1 | Yn] Pr [Ht | st+1, Yt]

= Pr [st+1 | Yn]
Pr [Ht, st+1 | Yt]

Pr [st+1 | Yt]

= Pr [st+1 | Yn]
Pr [Ht | Yt] Pr [st+1 | Ht, Yt]∑
Ht (Pr [st+1 | Ht, Yt] Pr [Ht | Yt])

= µ
(st+1)
t+1|n

µ
(Ht)
t|t Q (st, st+1)∑
Ht Q (st, st+1)µ

(Ht)
t|t

Upon substitution, we get

µ
(Ht)
t|n '

∑
st+1

µ
(st+1)
t+1|n

µ
(Ht)
t Q (st, st+1)∑

Ht Q (st, st+1)µ
(H′t)
t|t

(14)

The smoothing algorithm is implemented by backward recursion as follows.
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Algorithm 3 Smoothed Probabilities

Step 0. Initialise µ(sn)
n|n = Pr [sn | Yn] , sn = 1, ..., h.

Step 1. For t = n− 1 use (14) to compute the smoothed probability of µ(Ht)
t|n for history Ht .

Step 2. Compute smoothed probabilities of each regime:

µ
(st)
t|n = Pr [st | Yn] =

∑
Ct−1

Pr [Ht | Yn] =
∑
Ct−1

µ
(Ht)
t|n

Use µ(st)
t|n to initialise the algorithm for t = n− 2.

2.3.2 Smoothed Variables

The smoother is based on the properties of the joint Gaussian distribution of the forecast errors

of the vector of latent state variables and the estimation errors of the vector of observations

produced by the filter.

By definition, smoothed state vectors and MSE matrices are:

α
(Ht)
t|n = E

[
α

(Ht)
t | Yn,Ht

]
, (15)

P
(Ht)
t|n = E

[(
α

(Ht)
t − α(Ht)

t|t−1

)(
α

(Ht)
t − α(Ht)

t|t−1

)′
| Yn,Ht

]
. (16)

Define the forecast error of the state vector at time t with history Ht as

ξ
(Ht)
t|t−1 := αt − α(Ht)

t|t−1 (17)

Then,

P
(Ht)
t|t−1 = E

[
ξ

(Ht)
t|t−1ξ

(Ht)′
t|t−1 | Yt−1,Ht

]
. (18)

Define the Kalman gain matrix:

K
(Ht)
t|t−1 = P

(Ht)
t|t−1Z

′
st

[
F

(Ht)
t|t−1

]−1
. (19)

To calculate α(Ht)
t|n defined in (15), we split the history into two components at t− 1 and use

the formula for the conditional mean of multivariate Gaussian distribution:

α
(Ht)
t|n = E [αt | Ht, Yn] = E

[
αt | Ht, Yt−1, {vk|k−1}k=t:n

]
= α

(Ht)
t|t−1 +

n∑
k=t

E
[
αtv
′
k|k−1 | Yt−1,Ht

]
F−1
k|k−1vk|k−1

= α
(Ht)
t|t−1 +

n∑
k=t

E
[(
ξ

(Ht)
t|t−1 + α

(Ht)
t|t−1

)(
ξ′k|k−1Z

′
sk

+ [gskεk]
′
)
| Yt−1,Ht

]
F−1
k|k−1vk|k−1
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where we used

v
(Ht)
t|t−1 = yt − Zstα

(Ht)
t|t−1 − cy,st = yt − Zst

(
αt − ξ(Ht)

t|t−1

)
− cy,st = gstεt + Zstξ

(Ht)
t|t−1.

So, finally,

α
(Ht)
t|n = α

(Ht)
t|t−1 +

n∑
k=t

E
[
ξ

(Ht)
t|t−1ξ

′
k|k−1 | Yt−1,Ht

]
Z ′skF

−1
k|k−1vk|k−1. (20)

Similarly, the formula for conditional variance of multivariate Gaussian distribution applied

to (16) yields:

P
(Ht)
t|n = P

(Ht)
t|t−1 −

n∑
k=t

E
[
αtv
′
k|k−1 | Yt−1,Ht

]
F−1
k|k−1E

[
vk|k−1α

′
t | Yt−1,Ht

]
= P

(Ht)
t|t−1 −

n∑
k=t

E
[(
ξ

(Ht)
t|t−1 + α

(Ht)
t|t−1

)(
ξ′k|k−1Z

′
sk

+ [gskεk]
′
)
| Yt−1,Ht

]
F−1
k|k−1

×E
[(
Zskξk|k−1 + [gskεk]

)(
ξ

(Ht)′
t|t−1 + α

(Ht)′
t|t−1

)
| Yt−1,Ht

]
,

so that

P
(Ht)
t|n = P

(Ht)
t|t−1 −

n∑
k=t

E
[
ξ

(Ht)
t|t−1ξ

′
k|k−1 | Yt−1,Ht

]
Z ′skF

−1
k|k−1ZskE

[
ξk|k−1ξ

(Ht)′
t|t−1 | Yt−1

]
(21)

In expressions (20) and (21) we do not specify the future regime sequences starting from st

under the summation. We introduce them in the calculations of expectations E [· | ·] for every
step going backward, as shown later.

For now, we will need the following recursion for ξ(Ht)
t|t−1. The recursion is slightly different for

the two families of filters.

Lemma 1 1. For GPB(N) filter

ξ
(Ht)
t|t−1 = Tst

h∑
st−N=1

Pr[st−N |Yt−1, Ct−1]
(
I −K(Ht−1)

t−1|t−2Zst−1

)
ξ

(Ht−1)
t−1|t−2 + ωt−1, (22)

where

ωt−1 = Rstηt − Tst
h∑

st−N=1

Pr[st−N |Yt−1, Ct−1]K
(Ht−1)
t−1|t−2gst−1εt−1.

2. For IMM filter

ξ
(Ht)
t|t−1 = Tst

∑
Ht−1

Pr [Ht−1 | Yt−1,Ht]
(
I −K(Ht−1)

t−1|t−2Zst−1

)
ξ

(Ht−1)
t−1|t−2 + ωt−1, (23)
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where

ωt−1 = Rstηt − Tst
∑
Ht−1

Pr [Ht−1 | Yt−1,Ht]K(st−1)
t−1|t−2gst−1εt−1.

Proof. For GPB(N) we have

ξ
(Ht)
t|t−1 = αt − α(Ht)

t|t−1 = Tst

(
αt−1 − α(Ct−1)

t−1|t−1

)
+Rstηt,

and, using α(Ct−1)
t−1|t−1 from equation (5),

ξ
(Ht)
t|t−1 = Tst

αt−1 −
h∑

st−N=1

Pr[st−N | Yt−1, Ct−1]α
(Ht−1)
t−1|t−1

+Rstηt. (24)

Similarly, for IMM(N) we have

ξ
(Ht)
t|t−1 = Tst

(
αt−1 − α̂(Ht−1|Ht)

t−1|t−1

)
+Rstηt

and using α̂(Ht−1|Ht)
t−1|t−1 from (11),

ξ
(Ht)
t|t−1 = Tst

αt−1 −
∑
Ht−1

Pr [Ht−1 | Yt−1,Ht]α(Ht−1)
t−1|t−1

+Rstηt. (25)

Denote

M (ψ) =

{
Pr[ψ | Yt−1, Ct−1], ψ = st−N , for GPB(N),
Pr [ψ | Yt−1,Ht] , ψ = Ht−1, for IMM(N).

Then expressions (24) and (25) can be written in the same form,

ξ
(Ht)
t|t−1 = Tst

αt−1 −
∑
ψ

M (ψ)α
(Ht−1)
t−1|t−1

+Rstηt,

and the rest of the proof is identical for both families of filters.

Use the KF update for α(Ht−1)
t−1|t−1 and the definition of Kalman gain (19) for K

(Ht−1)
t−1|t−2 to rewrite

the last expression as:

ξ
(Ht)
t|t−1 = Tst

αt−1 −
∑
ψ

M (ψ)

×
(
α

(Ht−1)
t−1|t−2 + P

(Ht−1)
t−1|t−2Z

′
st−1

[
F

(Ht−1)
t−1|t−2

]−1
v

(Ht−1)
t−1|t−2

))
+Rstηt

= Tst
∑
ψ

M (ψ)
(
αt−1 − α(Ht−1)

t−1|t−2

)
−Tst

∑
ψ

M (ψ)K
(Ht−1)
t−1|t−2v

(Ht−1)
t−1|t−2 +Rstηt
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Next, use the KF output for v(Ht−1)
t−1|t−2 along with the definition (17) for ξ

(Ht−1)
t−1|t−2 and equation (1)

for yt−1 to obtain the recursions in Lemma 1:

ξ
(HN,t)
t|t−1 = Tst

∑
ψ

M (ψ)
(
αt−1 − α(Ht−1)

t−1|t−2

)
−Tst

∑
ψ

M (ψ)K
(Ht−1)
t−1|t−2

(
yt−1 − Zst−1α

(Ht−1)
t−1|t−2 − cy,st−1

)
+Rstηt

= Tst
∑
ψ

M (ψ) ξ
(Ht−1)
t−1|t−2

−Tst
∑
ψ

M (ψ)K
(Ht−1)
t−1|t−2Zst−1ξ

(Ht−1)
t−1|t−2

+Rstηt − Tst
∑
ψ

M (ψ)K
(Ht−1)
t−1|t−2gst−1εt−1

= Tst
∑
ψ

M (ψ)
(
I −K(Ht−1)

t−1|t−2Zst−1

)
ξ

(Ht−1)
t−1|t−2 + ω

(Ht−1)
t−1

where we used the notation

ωt−1 = Rstηt − Tst
∑
ψ

M (ψ)K
(Ht−1)
t−1|t−2gst−1εt−1.

Note that in this derivation for GPB(N) the sum is taken over all possible regimes at time

t−N when st−N is unknown. If the regime st−N is known, this recursion is given by

ξ
(st−N ,Ht)
t|t−1 = Tst

(
I −K(st−N ,Ht−1)

t−1|t−2 Zst−1

)
ξ

(st−N ,Ht−1)
t−1|t−2 + ωt−1. (26)

Similarly, for IMM, when Ht−1 = H̃t−1 is known, then

ξ
(H̃t−1,Ht)
t|t−1 = Tst

(
I −K(H̃t−1,Ht−1)

t−1|t−2 Zst−1

)
ξ
(H̃t−1,Ht−1)
t−1|t−2 + ωt−1. (27)

The remaining derivations are identical for GPB and IMM.

We apply formulas (20) and (21) recursively, starting from the observation at the final period,

n, in regime sn:

α
(Hn)
n|n = α

(Hn)
n|n−1 + E

[
ξ

(Hn)
n|n−1ξ

(Hn)′
n|n−1 | Yn−1,Hn

]
Z ′sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1

= α
(Hn)
n|n−1 + P

(Hn)
n|n−1Z

′
sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1 = α

(Hn)
n|n−1 + P

(Hn)
n|n−1r

(Hn)
n|n−1
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where

r
(Hn)
n|n−1 = Z ′sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1,

and

P
(Hn)
n|n = P

(Hn)
n|n−1 − E

[
ξ

(Hn)
n|n−1ξ

(Hn)′
n|n−1 | Yn−1,Hn

]
×Z ′sn

[
F

(Hn)
n|n−1

]−1
ZsnE

[
ξn|n−1ξ

(Hn)′
n|n−1 | Yn−1,Hn

]
= P

(Hn)
n|n−1 − P

(Hn)
n|n−1Z

′
sn

[
F

(Hn)
n|n−1

]−1
ZsnP

(Hn)
n|n−1

= P
(Hn)
n|n−1 − P

(Hn)
n|n−1N

(Hn)
n|n−1P

(Hn)
n|n−1,

where

N
(Hn)
n|n−1 = Z ′sn

[
F

(Hn)
n|n−1

]−1
Zsn .

Next, we move one step back to t = n− 1.

α
(Hn−1)
n−1|n = α

(Hn−1)
n−1|n−2 +

n∑
k=n−1

E
[
ξ

(Hn−1)
n−1|n−2ξ

′
k|k−1 | Yn−2,Hn−1

]
Z ′sk

[
Fk|k−1

]−1
vk|k−1

= α
(Hn−1)
n−1|n−2 + P

(Hn−1)
n−1|n−2Z

′
sn−1

[
F

(Hn−1)
n−1|n−2

]−1
v

(Hn−1)
n−1|n−2

+
h∑

sn=1

Pr [sn | Yn−2,Hn−1]

×E
[
ξ

(Hn−1)
n−1|n−2ξ

(sn−N ,Hn−1)′
n|n−1 | Yn−2,Hn−1, sn

]
Z ′sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1

= α
(Hn−1)
n−1|n−2 + P

(Hn−1)
n−1|n−2Z

′
sn−1

[
F

(Hn−1)
n−1|n−2

]−1
v

(Hn−1)
n−1|n−2

+

h∑
sn=1

Pr [sn | Yn−2,Hn−1]E
[
ξ

(Hn−1)
n−1|n−2ξ

(Hn−1)′
n−1|n−2 | Yn−2,Hn−1

]
×
(
I − Z ′sn−1K

(Hn−1)′
n−1|n−2

)
T ′stZ

′
sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1

= α
(Hn−1)
n−1|n−2 + P

(Hn−1)
n−1|n−2Z

′
sn−1

[
F

(Hn−1)
n−1|n−2

]−1
v

(Hn−1)
n−1|n−2 (28)

+P
(Hn−1)
n−1|n−2

h∑
sn=1

Pr [sn | Yn−2,Hn−1]

×
(
I − Z ′sn−1K

(Hn−1)′
n−1|n−2

)
T ′stZ

′
sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1.
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Similar computations yield

P
(Hn−1)
n−1|n = P

(Hn−1)
n−1|n−2 −

n∑
k=n−1

E
[
ξ

(Hn−1)
n−1|n−2ξ

′
k|k−1 | Yn−2,Hn−1

]
Z ′sk

×
[
F

(Hn−1)
n−1|n−2

]−1
ZskE

[
ξk|k−1ξ

(Hn−1)′
n−1|n−2 | Yn−2,Hn−1

]
= P

(Hn−1)
n−1|n−2 − P

(Hn−1)
n−1|n−2Z

′
sn−1

[
F

(Hn−1)
n−1|n−2

]−1
Zsn−1P

(Hn−1)
n−1|n−2 (29)

−P (Hn−1)
n−1|n−2

h∑
sn=1

Pr [sn | Yn−2,Hn−1]
(
I − Z ′sn−1K

(Hn−1)′
n−1|n−2

)
×T ′stZ

′
sn

[
F

(Hn)
n|n−1

]−1
Zsn−1Tst

(
I −K(Hn−1)

n−1|n−2Zsn−1

)
P

(Hn−1)
n−1|n−2.

In these derivations we used P
(Hn−1)
n−1|n−2 = E

[
ξ

(Hn−1)
n−1|n−2ξ

(Hn−1)′
n−1|n−2 | Yn−2,Hn−1, sn

]
=

E
[
ξ

(Hn−1)
n−1|n−2ξ

(Hn−1)′
n−1|n−2 | Yn−2,Hn−1

]
as conditioning on sn becomes irrelevant.

Equations (28) and (29) can be written as:

α
(Hn−1)
n−1|n = α

(Hn−1)
n−1|n−2 + P

(Hn−1)
n−1|n−2r

(Hn−1)
n−1|n−2,

P
(Hn−1)
n−1|n = P

(Hn−1)
n−1|n−2 − P

(Hn−1)
n−1|n−2N

(Hn)
n−1|n−2P

(Hn−1)
n−1|n−2,

where, using approximation Pr [sn | Yn−2,Hn−1] ' Q (sn−1, sn) , we express r(Hn−1)
n−1|n−2 andN

(Hn)
n−1|n−2

recursively:

r
(Hn−1)
n−1|n−2 = Z ′sn−1

[
F

(Hn−1)
n−1|n−2

]−1
v

(Hn−1)
n−1|n−2 +

h∑
sn=1

Q (sn−1, sn)L
(Hn−1)′
n,n−1 r

(Hn)
n|n−1,

N
(Hn−1)
n−1|n−2 = Z ′sn−1

[
F

(Hn−1)
n−1|n−2

]−1
Zsn−1 +

h∑
sn=1

Q (sn−1, sn)L
(Hn−1)′
n,n−1 N

(Hn)
n|n−1L

(Hn−1)
n,n−1 .

Here

L
(Hn−1)
n,n−1 = Tsn

(
I −K(Hn−1)

n−1|n−2Zsn−1

)
.

Continuing in the same way, we can summarise the procedures in the following algorithm.

Algorithm 4 State Smoothing

Step 0. Initialise the smoother by setting r
(Hn)
n|n−1 = Z ′sn

[
F

(Hn)
n|n−1

]−1
v

(Hn)
n|n−1, N

(Hn)
n|n−1 =

Z ′sn

[
F

(Hn)
n|n−1

]−1
Zsn , Hn ∈ HN,n. Initialise α(Hn)

n|n and P
(Hn)
n|n by outputs of the corresponding

filter at t = n.
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Step 1. Compute the following auxilliary quantities for each history Ht, using recursion:

L
(Ht)
t+1,t = Tst+1

(
I −K(Ht)

t|t−1Zst

)
r

(Ht)
t|t−1 = Z ′st

[
F

(Ht)
t|t−1

]−1
v

(Ht)
t|t−1 +

h∑
st+1=1

Q (st, st+1)L
(Ht)′
t+1,tr

(Ht+1)
t+1|t ,

N
(Ht)
t|t−1 = Z ′st

[
F

(Ht)
t|t−1

]−1
Zst +

h∑
st+1=1

Q (st, st+1)L
(Ht)′
t+1,tN

(Ht+1)
t+1|t L

(Ht)
t,t+1

for t = n− 1, n− 2, ..., 1.

Step 2. Compute the smoothed estimates of the state vector and the MSE matrix

α
(Ht)
t|n = α

(Ht)
t|t−1 + P

(Ht)
t|t−1r

(Ht)
t|t−1,

P
(Ht)
t|n = P

(Ht)
t|t−1 − P

(Ht)
t|t−1N

(Ht)
t|t−1P

(Ht)
t|t−1,

for t = 1, ..., n− 1.

Use the smoothed probabilities,
{
µ

(Ht)
t|n

}
t=1:n−1

, to compute the smoothed state vectors and

MSE matrices:

xt|n =
∑
Ht

µ
(Ht)
t|n α

(Ht)
t|n ,

Pt|n =
∑
Ht

µ
(Ht)
t|n P

(Ht)
t|n .

3 Validating the Filters

3.1 Model and Parameterisation

To compare the performance of filters and smoothers, we use the model developed in Fernandez-

Villaverde, Guerron-Quintana, and Rubio-Ramirez (2015), hereafter referred to as FGR2015. It is

a relatively standard medium-scale New Keynesian DSGE model, which we modify to investigate

the aspects of good luck and good policy.

The model consists of a household sector, firms, and a monetary authority. Households derive

utility from consumption relative to their habit stock and from leisure. They supply differentiated

labour to monopolistically competitive firms and choose wages subject to Calvo wage-setting

friction. Firms produce differentiated output using capital, labour, and a neutral technology

process. They set prices, also subject to Calvo pricing frictions. The capital stock evolves in

the usual way, except for the inclusion of embodied technology in new investment goods. The
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model is closed by imposing a Taylor-type rule for the monetary authority. We present the full

specification of the model in Appendix B.

We base the structural parameters of the model on the estimates reported in FGR2015; see

column (1) in Table C1 in Appendix B. Our treatment of policy and shock volatilities is different

from FGR2015, who estimated a single-regime nonlinear policy function and a single-regime

stochastic volatility process. We introduce two Markov-switching processes into the model. The

first, SP,t, governs policy parameters in the following monetary policy rule:

rt
rss

=

(
rt−1

rss

)γr(SP,t)(( πt
πtarg

)γπ(SP,t)( Yd,t
λydYd,t−1

)γy(SP,t))1−γr(SP,t)

exp (σξ (SV,t) εξ,t) . (30)

The literature typically categorizes monetary policy approaches into hawkish and dovish modes,

characterized by more and less aggressive responses to inflation, respectively. Accordingly, we

assume that the γ−parameters are high in state SP,t = 1 (hawkish state) and low in state SP,t = 2

(dovish state). We explain below how we chose these values. The second two-state process, SV,t,

governs the shock volatilities for all shocks, including the policy shock in equation (30).

3.2 Monte-Carlo Simulations Design

In our simulations, we aim to differentiate between periods of infrequent large shocks and periods

of more frequent regular shocks. We set the probability of remaining in the low volatility state

to 0.95. This parameterisation implies an average of 20 quarters between high shocks, with a

standard deviation of 19 quarters.5 This probability accurately reflects the fact that recessions

in the US have occurred approximately every 8-10 years since the end of World War II. We set

the probability of staying in the high volatility state to 0.8, resulting in an average duration of

high shock periods of 5 quarters (with a standard deviation of 4.5 quarters). Interpreting periods

of large shocks as recessions suggests that a typical recession lasts slightly for less than a year, a

duration that our parameterisation appropriately captures.

In formulating our policy model, we applied considerations similar to those used in the assump-

tions in the shock volatility experiments. The existing literature tends to report that hawkish

policies have been predominant since the 1980s, spanning approximately 40 years.6 However,

considering the data starting from 1955 and acknowledging the evident dovish tendencies since

2008, we infer that the time split between these regimes is roughly equal. Therefore, we assume

5 If probability to leave one of the two Markov states is q, then the expected length of stay in this state is 1/q
with the standard deviation of

√
1− q/q.

6See e.g. Bianchi and Melosi (2017), Chen, Kirsanova, and Leith (2017).
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symmetric diagonal elements in the transition probability matrix. As the benchmark case, we

calibrate the probability to remain in either of these states at 0.95. This implies an average of

20 quarters between policy changes, allowing for a wide range of durations between policy shifts.

In addition, we consider an alternative calibration, with this probability set to 0.1. All transition

matrices are presented in Table 1.

Table 1: Parameterisation of shock and policy regimes
Transition matrices

Shocks Benchmark Case Alternative Case

Ps =

[
0.95 0.05
0.2 0.8

]
P Ip =

[
0.95 0.05
0.05 0.95

]
P IIp =

[
0.9 0.1
0.1 0.9

]

Parameters of Taylor Rule:

Hawkish Feedback Dovish Feedback
γBaseπ 1.7 0.9
γAltern.π 1.5 0.9

As for the policy coeffi cients that are time-varying (or depend on the state), we describe the

hawkish policy mode with feedback on inflation γBaseπ = 1.7 in the hawkish state and γBaseπ = 0.9

in the dovish state, consistent with findings in other studies7. We also consider an alternative

parameterisation where these two feedbacks are less distinct, as shown in Table 1. In these

simulations, we keep the feedback on output and the interest rate smoothing parameter the same

in both hawkish and dovish states.

As reported in column (1) in Table C1, the standard deviations of all shocks in the low-

volatility state, SV,t = 1, are set to be equal to the mean estimates of corresponding variables in

FGR2015, and they are doubled in the high-volatility state, SV,t = 2.

In order to generate artificial data, we solve and simulate this non-linear model using a

perturbation approach with the functional iteration algorithm developed for RISE c© (Maih,

2015).

We chose to generate 500 samples of 1,000 observations each. We consider output growth,

price inflation, wage inflation, the Federal Funds rate, and the relative price of investment goods

as observable variables. The latent variables are listed in Table 2 and other relevant tables. We

then use the simulation results to investigate the performance of the discussed filters, controlling

for the sample length. Within each sample, we use the initial 300 observations as a proxy for a

7See, e.g. Bianchi (2012), Chang, Kwak, and Qiu (2021), Chen, Leeper, and Leith (2022).
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typical real-life scenario with post-WW2 quarterly data, where the influence of initial conditions

can be substantial. Additionally, we analyze the full sample of 1000 observations, in which we

expect the impact of initial conditions to be significantly diminished.

3.3 Results

3.3.1 Evaluation Criteria

We need some criteria to rank the filters for practical purpose, based on their accuracy and speed.

For accuracy, or goodness-of-fit, in our exercise we cannot use measures linked to the likelihood

Lt = log f (yt | Yt−1) returned by the filters. This is because different filters employ different

approximations when computing the likelihood, and so comparison based on this measure is

not compelling for comparison of the filters. An alternative and, perhaps, more straightforward

approach in our case is to use root mean squared errors (RMSE) for each latent variable αt, given

by the formula

Rϕ =
1

nsim

nsim∑
i=1

√√√√ 1

n

n∑
t=1

(
αt − αϕ
αss

)2

.

We present the comparison of the accuracy of the filters based on the updated variables (ϕ = t | t)
and smoothed variables (ϕ = t | n) in Tables 2-7.8 Here, n is the length of each data sample, and

nsim is the number of simulations.

3.3.2 The Best Performing Filter

Table 2 shows the results for four filters: the IMM(1) and GPB(N) for N = 1, 2, 3, which includes

the KN filter as it is equivalent to GPB(2).9 Our simulations reveal that increasing the order of

the GPB(N) filter beyond N=3 offers no practical value. We do not present results for IMM(2)

as it does not noticeably improve accuracy of the IMM(1).

We focus on the updated variables, as these variables contribute to the likelihood used in

estimation. The average RMSEs (denoted asRt|t) for all 500 draws in the Monte Carlo experiment
are presented in columns (1)-(4) of Table 2. They vary in magnitude, reflecting findings similar

to those in Binning and Maih (2015), where it is observed that highly persistent latent variables,

such as capital, pose greater challenges for reconstruction.

The relative RMSEs in columns (5)-(8) are computed by dividing the RMSE for each variable

by the lowest RMSE for that particular variable across investigated filters. In other words, for
8 In computing RMSEs, we normalise all variables, except state probabilities, by their steady-state levels, as in

this model the steady state is identical for all regimes.
9Appendix A presents selected filtering and smoothing algorithms in a form convenient for implementation.
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Table 2: MRSEs for update variables from four filters
Absolute RMSEs Rt|t Relative RMSEs

IMM(1) GPB(2) GPB(1) GPB(3) IMM(1) GPB(2) GPB(1) GPB(3)
KN KN

variables (1) (2) (3) (4) (5) (6) (7) (8)
consumption 0.032 0.032 0.033 0.032 1.0003 1 1.030 1.0002
capital 0.226 0.226 0.238 0.226 1.0001 1 1.051 1.0006
output 0.030 0.030 0.030 0.030 1.0005 1.00004 1.016 1
real wage 0.002 0.002 0.002 0.002 1.0002 1 1.035 1.0003
Tobin’s Q 0.010 0.010 0.010 0.010 1.0001 1 1.025 1.0001
investment 0.302 0.302 0.321 0.302 1 1.00004 1.065 1.0010
lab supply 0.029 0.029 0.030 0.029 1.0005 1.00004 1.016 1
pref shock 0.043 0.043 0.044 0.043 1.0001 1 1.015 1.00006
lab sup shock 0.070 0.070 0.072 0.070 1.0005 1.0001 1.019 1
tech shock 0.001 0.001 0.001 0.001 1.0004 1 1.066 1.0015
shock reg. probs 0.265 0.265 0.266 0.265 1.00002 1 1.002 1.0004
policy reg. probs 0.335 0.335 0.344 0.335 1 1.00001 1.023 1.00003

the best-performing filter it has the value of one, while for all other filters its value is greater than

one.

Table 2 suggests, as expected, that in terms of accuracy GPB(1) is dominated by two other

filters. While KN-GPB(2) filter performs the best for more variables than IMM(1), the maximal

difference in their performance is only 0.04%. In contrast, GPB(1) is outperformed by about

2-7%. The GPB(3) has shown performance very similar to that of GPB(2) and IMM filters,

without clear dominance over GPB(2).

Table 3: Computational times for filtering 1000 observations
A: IMM(1) vs. GPB(2)-KN B: Relative speed

updating updating and updating
only smoothing only
sec sec ratio ratio

GPB(1) 0.28
IMM(1) 0.27 1.49 GPB(2) 1 IMM(1) 1
GPB(2) 1.38 2.59 GPB(3) 4.21 IMM(2) 5.81

GPB(4) 17.74 IMM(3) 52.70
GPB(5) 79.97 IMM(4) 691.14

These RMSEs are visualised by a red dash-dotted line in Figure 1, illustrating the recovery of

latent variables and probabilities of being in a particular Markov state in one particular simulation.
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Figure 1: Updating and smoothing produced by IMM filter.

The true values are shown by the solid black lines. We plot only the initial 300 observations for

clarity of visualisation.

In terms of computational burden, IMM(1) has an advantage over KN-GPB(2) as it works

with h histories, rather than with h2. Panel A of Table 3 shows indicative computational times

for these two filters, both independently and in conjunction with the corresponding smoother.10

These times serve merely as an indication of computational speed, as all filters implemented in

RISE c© perform additional tasks beyond algorithm computation, which, even if not used, hold

the potential to reduce speed.11 It is important to note that at the estimation stage, where speed

is particularly crucial, smoothing is not applied.

One can see in panel B of Table 3 how quickly the computation burden of IMM rises with

higher orders. This is because the algorithm keeps track of all possible histories of fixed length

where the histories contain all possible combinations of regimes in every time period of recursion.

10These numbers are achieved on a Ryzen 3950X with 64GB RAM using MATLAB c© R2022b.
11This includes checking for and accomodating properties such as time-varying states and parameters, missing

observations, nonstationarity, and occasionally-binding constraints. See Appendix D for further notes on imple-
mentation.
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Therefore, the number of terms containing probabilities of different combinations of regimes is

much bigger in IMM than in GPB.

One can reduce the computational burden in IMM(N) by using approximation similar to (3).

However, because of the repeated use of this approximation the discrepancy accumulates and

leads to lower accuracy, especially for higher N .

On the balance between accuracy and speed, it is clear that IMM(1) dominates the GPB(N)

family of filters. Based on that, we argue that in practical applications, IMM(1) is the best. In

what follows, we use IMM to denote IMM(1).

3.3.3 Updating and Smoothing

To visualize the effect of smoothing, in Figure 1 we plot updated and smoothed probabilities and

latent variables, alongside their true values. When comparing all lines, we see that smoothing

reduces high-frequency noise in the recovered probabilities and often helps to identify the timing

of regime changes more accurately. It is also apparent that the initial gap between the updated

and actual values of latent variables is substantially corrected, although the improvement is not

uniform across the entire sample. There are time periods where smoothing does not improve

these particular variables at all. Notably, while the impact of initial conditions on the filter’s

effectiveness for economic variables is very clear, such an effect is less prominent for probabilities.

Table 4: Accuracy improvement by smoothing, 1− (Rt|T /Rt|t)

vars: IMM GPB(2) GPB(1) GPB(3)
consumption 0.29 0.27 0.31 0.27
capital 0.21 0.21 0.23 0.21
output 0.42 0.37 0.47 0.38
real wage 0.18 0.18 0.18 0.18
Tobin’s Q 0.25 0.25 0.23 0.25
investment 0.30 0.28 0.32 0.28
labour supply 0.42 0.37 0.47 0.38
preference shock 0.14 0.13 0.14 0.13
labour supply shock 0.37 0.33 0.40 0.34
technology shock 0.10 0.10 0.04 0.10
shock state probs 0.15 0.15 0.15 0.15
policy state probs 0.18 0.18 0.16 0.18

Figure 1 illustrates the work of smoothing for the IMM filter. For all considered filters, Table

4 reports the fractions of RMSEs that is removed by smoothing, 1− Rt|TRt|t .
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While the RMSEs for some variables are only improved by 4%, for some others the improve-

ment is as large as 47%, and the average improvement is about 25%. For state probabilities, the

average improvement is 16%. Notably, the less computationally intensive smoothers for IMM and

GPB(1) improve accuracy better than more complex algorithms for higher order of GPB filters.12

3.3.4 Information

The following experiments aim to address the importance of working with longer series of data.

In the first experiment, we use the IMM filter; other filters show very similar results. Column

(1) of Panel A in Table 5 presents RMSEs for updated variables using the first 300 observations

in each simulation. Columns (2) and (3) present RMSEs for smoothed variables for the first

Table 5: Importance of Information. Panel A: RMSE for updated (1) and smoothed (2,3) vari-
ables. Panel B: Accuracy improvement by smoothing.

Panel A Panel B
sample size 300 300 300 300 250 200 100

Rt|t Rt|300 Rt|1000 1-
Rt|300
Rt|t 1-

Rt|250
Rt|t 1-

Rt|200
Rt|t 1-

Rt|100
Rt|t

vars: (1) (2) (3) (1) (2) (3) (4)
consumption 0.051 0.036 0.033 0.30 0.30 0.30 0.26
capital 0.352 0.277 0.266 0.21 0.21 0.20 0.14
output 0.050 0.029 0.026 0.43 0.43 0.42 0.33
real wage 0.003 0.002 0.002 0.17 0.17 0.17 0.11
Tobin’s Q 0.010 0.008 0.008 0.26 0.26 0.26 0.22
investment 0.466 0.317 0.300 0.32 0.32 0.32 0.27
labour supply 0.049 0.028 0.026 0.43 0.42 0.42 0.32
pref. shock 0.051 0.042 0.041 0.18 0.19 0.20 0.19
lab. supp. shock 0.110 0.066 0.061 0.40 0.40 0.40 0.30
techn. shock 0.002 0.001 0.001 0.10 0.10 0.11 0.11
shock state probs 0.265 0.225 0.225 0.15 0.15 0.15 0.15
policy state probs 0.335 0.275 0.275 0.18 0.18 0.18 0.19

300 observations, where smoothing starts from the last of these 300 observations in column (2)

and from the last of all 1000 observations in column (3). The comparison is consistent with the

intuition that more information improves accuracy. However, this intuition is not necessarily true

in our setting because filtering and smoothing procedures involve numerous approximations. It is

remarkable that, despite these approximations, the improvement in accuracy is substantial: close

12 It is worth noting that while the GPB(1) filtering procedure is inferior to IMM(1) and GPB(2) in accuracy,
our smoothing procedure has the potential to improve its accuracy, possibly making it competitive with GPB(2)
when considering its computational speed.
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to 10% for some variables.

Panel B of Table 5 shows an improvement in the RMSEs from smoothing obtained in the

second experiment. Here we explore different sample sizes, n ∈ {300, 250, 200, 100}. We know
that RMSEs of updated variables are larger in shorter samples. One might expect that the effi cacy

of smoothing will also deteriorate in shorter samples. However, Panel B reveals that this is not

the case, except for n = 100. This suggests that the sample size should be in excess of 100 and,

perhaps, at least 200 to ensure that the smoother improves accuracy.

Another important observation is that there is no sample size effect for the smoothing of

state probabilities, as can be seen in the last two rows of Panel B. This is consistent with the

results presented in Figure 1, where the effect of initial conditions is only observed for latent

economic variables: in a shorter sample initial conditions play bigger role, but this not the case

for probabilities.

3.3.5 Policy States

For the next experiment, we simulate artificial data for less and more distinct policy states as

measured by different probabilities of remaining in a given policy state in the next period, and by

larger difference in the feedback coeffi cient γπ in two policy states. Table 6 reports the results.

Table 6: RMSE for Pobability of Hawkish Policy State.
policy description γπ PHH = PDD updated smoothed

more distinct states, less distinct feedback 1.5 0.95 0.366 0.310
less distinct states, less distinct feedback 1.5 0.9 0.412 0.380
more distinct states, more distinct feedback 1.7 0.95 0.335 0.275
less distinct states, more distinct feedback 1.7 0.9 0.386 0.349

We conclude that the greater the difference between the states, the better is their identifica-

tion. This is true for both updated and smoothed policy state probabilities.

3.3.6 Model Misspecification

We investigate several cases of the model misspecification relevant for the Markov-switching

nature of our model. We assume that the true data-generating process contains two Markov-

switching processes as described above, but a researcher only considers one of them, either in

policy or in volatility.

In the first scenario, we assume that the researcher believes in a single policy stance: the
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Figure 2: Model Misspecifications

hawkish state.13 We then execute the filtering and smoothing algorithm with γBaseπ , which is

the correct policy feedback but only for one of the two policy Markov states. Panel A in Figure

2 illustrates the outcomes of updating and smoothing for the same simulation, focusing on the

initial 300 observations. The updated and smoothed variables are shown to accurately identify

the patterns in the data, although with larger errors than in the correctly specified model.

One can get further insights from Table 7 by comparing the RMSEs for updated and smoothed

variables obtained from 500 simulations of the entire sample of 1000 observations in columns (1)

and (2). Despite effectively handling data patterns, RMSEs for smoothed latent variables show

a substantial increase. However, the RMSEs for smoothed heteroskedasticity state probability

show only a small increase, as Figure 2 also demonstrates.

In the second scenario, we assume that the researcher believes the volatility is always low.

Panel B of Figure 2, which shows the results of this scenario, confirms that the filter correctly

identifies the patterns in the data. Column (3) in Table 7 further supports this observation, as it

shows a much smaller increase in RMSEs compared to column (1), and even smaller estimation

errors for some variables. At the same time, the RMSE for smoothed probability of a policy state

13This is the common assumption in constant-parameter DSGE model estimations, see e.g. Chen, Kirsanova,
and Leith (2017)

27



Table 7: MRSEs of smoothed variables Rt|1000.

vars: No Missp-d Missp-d Missp-d
missp-b Policy H Shocks L Shocks H
(1) (2) (3) (4)

consumption 0.023
[0.032]

0.057
[0.070]

0.022
[0.036]

0.021
[0.035]

capital 0.178
[0.226]

1.472
[1.683]

0.186
[0.259]

0.164
[0.239]

output 0.017
[0.030]

0.020
[0.038]

0.012
[0.032]

0.011
[0.031]

real wage 0.002
[0.002]

0.005
[0.005]

0.002
[0.002]

0.002
[0.02]

Tobin’s Q 0.007
[0.010]

0.036
[0.037]

0.011
[0.013]

0.007
[0.010]

investment 0.210
[0.302]

2.151
[2.533]

0.224
[0.349]

0.182
[0.317]

labour supply 0.017
[0.029]

0.019
[0.036]

0.011
[0.031]

0.011
[0.031]

preference shock 0.037
[0.043]

0.112
[0.113]

0.045
[0.051]

0.037
[0.044]

labour supply shock 0.044
[0.070]

0.174
[0.199]

0.045
[0.080]

0.035
[0.073]

technology shock 0.001
[0.001]

0.002
[0.002]

0.001
[0.001]

0.001
[0.001]

shock state probs 0.224
[0.265]

0.247
[0.280]

— —

policy state probs 0.275
[0.335]

— 0.390
[0.408]

0.282
[0.339]

Note: MRSEs of updated variables Rt|t are in square brackets.

is higher than in the correctly specified model. This suggests that incorrectly specifying shock

volatilities significantly worsens the identification of policy states.

In the final experiment, reported in column (4), we revisit the second scenario, but this time

we assume that the researcher believes the volatility is always high. Although the RMSEs for

updated latent variables in column (4) are higher than those in column (1), the RMSEs for

smoothed variables are sometimes lower than in the correctly specified model. The unexpectedly

superior performance of the misspecified model after smoothing can be attributed to the larger

variance of shocks. By allowing for a large variance in the shocks distribution, it accommodates

both large and small shocks. The smoother then revises the estimated values using the complete

sample and adjusts the estimates by factoring in information about the realized shocks.

3.4 Interim Summary

Overall, the findings in this section demonstrate the effectiveness of the canonical IMM filter, par-

ticularly when combined with the appropriate smoother, in enhancing the accuracy and effi ciency
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of Bayesian estimation of state-space models.

The canonical IMM outperforms the Kim and Nelson filter in terms of computational speed

while delivering comparable accuracy. The implementation of the new smoothing algorithm with

the IMM filter substantially enhances precision in estimating latent variables, reducing errors by

approximately 25%. We do not find any substantial improvement in accuracy when using higher

order filters in our example. It is hard to predict whether the same will be true for other models.

Our simulations confirm that, despite approximations, adding more information improves

the performance of the suggested filtering-smoothing procedure. We find that, as long as the

sample length remains above 200 observations, there is no reduction in the smoother’s effi cacy

in reducing RMSEs for updated variables. We find that the filter identifies probabilities of more

distinct policy regimes with higher accuracy.

Finally, we demonstrate that we can still successfully recover latent variables even when the

policy or shock volatility regimes in the model are misspecified.

Having established the superiority of the canonical IMM paired with the matching smoother,

we focus on this filter and smoother in the empirical application.

4 Empirical Application

In this section, we further investigate the practicality of the IMM filter with the corresponding

smoother. We estimate a modified version of the FGR2015 model but using the same data for

1959Q2-2013Q4 as in that paper (see Table C2 in Appendix C). In our estimation we impose

relatively wide priors and use the Artificial Bee Colony algorithm by Karaboga and Basturk

(2007) for global optimisation.

Table 8: Estimation of parameters that govern the two Markov processes
Transition matrices

Shocks Policy

Ps =

[
0.939 05 0.060946
0.04625 0.95375

]
Pp =

[
0.983 96 0.016039
0.043428 0.956 57

]

Parameters of Taylor Rule:

Hawkish Feedback γπ 1.6574
Dovish Feedback γπ 0.93984

Table 8 displays the estimated mode of the distribution of transition probabilities and policy

29



parameters. We present the remaining parameters in Table C1 in Appendix C.

We note that both regime-switching processes are highly persistent, and therefore their iden-

tification is likely to be correct, as suggested by our simulation results. The policy process, in

particular, shows that there is only a 2% probability of leaving the hawkish state.
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Figure 3: Smoothed State Probabilities

Panels A and B in Figure 3 report the smoothed probabilities of being in the dovish state and

the high volatility state. We used the canonical IMM at the estimation stage and six different

filters at the filtering stage.

One can notice that the lines plotted for six filters are very close to one another. The GPB

filters of order 2 to 5 produce nearly identical results and they are also extremely close to those

produced by the canonical IMM. This suggests, first, that using a more computationally intensive

higher-order GPB filter does not necessarily improve regime identification compared to the KN-

GPB(2) filter, and, second, that the canonical IMM and the KN filter are practically identical in

accuracy. While GPB(1) stands out as less accurate, it still identifies all main events similarly to

the other filters.

Panel A shows the probability of being in the dovish policy state. Note that it indicates that

our approach succeded in identifying all major changes in the US post-war policy stance: the
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Great Inflation, the Volcker Disinflation, the Great Moderation, the Great Financial Crisis, and

the subsequent Zero Lower Bound (ZLB) period. We did not assume a special regime for ZLB

monetary policy but identify this period as a dovish state.

Panel B shows the probability of being in the high volatility state. Our approach correctly

identifies most of the recessions and suggests that the pre-1990s period experienced larger shocks

than the more recent past.

For panels C and D the dataset includes the period 1947Q2-2023Q3 (see Appendix C for

details). The extended data covers a longer period, adding observations at the beginning, which

should improve the identification of the Great Inflation episode, and at the end, which includes

the post-Covid period with rising inflation in 2022-23. In these two panels we only show the

results obtained using the IMM filter (with the associated smoother) to this extended dataset.

The message is similar to what is suggested by panels A and B. We identify the dovish state

during the ZLB and a shift to hawkish policy a year after the ZLB lift-off. In addition, we see the

return to the dovish policy during the Covid-19 pandemic which lasted until 2023Q1, at which

time tough measures against inflation were taken. The post-Covid period is also characterised by

relatively large shocks.

5 Conclusions

Our focus in this paper has been on improving multiple-regime Bayesian filtering techniques,

alongside the development of multiple-regime smoothers.

We introduced the family of IMM filters, along with an extension of the Kim and Nelson filter,

to accommodate tracking of longer regime histories. In addition, we developed a robust smoothing

algorithm that can be adapted to these extended filters. Our simulation exercises demonstrate

that the IMM filter with our proposed smoother deliver the best combination of computational

speed and accuracy in a prototypical macroeconomic application of Bayesian filtering.

Our paper provides a comprehensive toolkit for researchers working with complex macroeco-

nomic models. We demonstrate its practical relevance in an empirical application using a NK

DSGE model with long U.S. macroeconomic time series.
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Online Appendix
to

On Bayesian Filtering for Markov Regime Switching Models
by

Nigar Hashimzade Oleg Kirsanov Tatiana Kirsanova Junior Maih

A Selected Algorithms

Let My
j,t = {Zj,t, cy,j,t, Tj,t, cα,j,t, gj,t, Rj,t; yt} be state-space system matrices for regime j and

information at time t. Let K() be a KF operator. The filtering algorithms are summarised in

Tables A1-A2. Smoothing algorithms are summarised in Table A3.

Table A1: GPB Filtering Algorithms

GPB(1) GPB(2)
Regime probabilities

µjt|t := Pr [st = j | Yt] µijt−1|t = Pr [st−1 = i, st = j | Yt]
µjt|t =

∑h
i=1 µ

ij
t−1|t

Initialisation
αt−1|t−1, Pt−1|t−1, µ

j
t−1|t−1 αit−1|t−1, P

i
t−1|t−1, µ

i
t−1|t−1

Filtering and Updating[
αjt|t−1, P

j
t|t−1, v

j
t|t−1, α

j
t|t, P

j
t|t

] [
αijt|t−1, P

ij
t|t−1, v

ij
t|t−1, α

ij
t|t, P

ij
t|t

]
= K

(
My
j,t;αt−1|t−1, Pt−1|t−1

)
= K

(
My
j,t;α

i
t−1|t−1, P

i
t−1|t−1

)
Λjt = (2π)−t/2 |Fj,t|−1/2 e

− 1
2
vj′
t|t−1F

−1
j.t v

j
t|t−1 Λijt = (2π)−t/2 |Fi,j,t|−1/2 e

− 1
2
vij′
t|t−1F

−1
i,j,tv

ij
t|t−1

Collapsing (dimension reduction) and Probabilities update

µjt|t =
Λjt
∑h
i=1Q

ij
t−1,tµ

i
t−1|t−1∑h

k,m=1 Λmt Q
km
t−1,tµ

k
t−1|t−1

µijt−1|t =
Λijt Q

ij
t−1,tµ

i
t−1|t−1∑h

k=1 Λkjt Q
kj
t−1,tµ

k
t−1|t−1

αt|t =
∑h

j=1 µ
j
t|tα

j
t|t αjt|t =

∑h
i=1 µ

ij
t−1|tα

ij
t|t

Pt|t =
∑h

i=1 µ
j
t|t

(
P jt|t P jt|t =

∑h
i=1 µ

ij
t−1|t

(
P ijt|t

+
(
αt|t − αjt|t

)(
αt|t − αjt|t

)′)
+
(
αjt|t − α

ij
t|t

)(
αjt|t − α

ij
t|t

)′)
µjt|t =

∑h
i=1 µ

ij
t−1|t
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Table A2: IMM Filtering Algorithms

IMM(1) IMM(2)
Regime probabilities

µjt|t := Pr [st = j | Yt] µijt−1|t = Pr [st−1 = i, st = j | Yt]
Initialisation

αit−1|t−1, P
i
t−1|t−1, µ

i
t−1|t−1 αkit−1|t−1, P

ki
t−1|t−1, µ

ki
t−1|t−1

Mixing (dimension reduction)

µ
i|j
t−1|t−1 =

Qijt−1,tµ
i
t−1|t−1∑h

k=1Q
kj
t−1,tµ

k
t−1|t−1

µ
ki|ij
t−1|t−1 =

Qk(h−1)+i,i(h−1)+jµkit−2|t−1∑h
m,l=1Qm(h−1)+l,l(h−1)+jµmlt−2|t−1

α0j
t−1|t−1 =

∑h
i=1 µ

i|j
t−1|t−1α

i
t−1|t−1 α0ij

t−1|t−1 =
∑h

k,i=1 µ
ki|ij
t−1|t−1α

ki
t−1|t−1

P 0j
t−1|t−1 =

∑h
i=1 µ

i|j
t−1|t−1

(
P it−1|t−1 P 0ij

t−1|t−1 =
∑h

k,i=1 µ
ki|ij
t−1|t−1

(
P kit−1|t−1

+
(
αit−1|t−1 − α

0i
t−1|t−1

)
+
(
αkit−1|t−1 − α

0ki
t−1|t−1

)
×
(
αit−1|t−1 − α

0i
t−1|t−1

)′)
×
(
αkit−1|t−1 − α

0ki
t−1|t−1

)′)
Filtering and Updating[

αjt|t−1, P
j
t|t−1, v

j
t|t−1, α

j
t|t, P

j
t|t

] [
αijt|t−1, P

ij
t|t−1, v

ij
t|t−1, α

ij
t|t, P

ij
t|t

]
= K

(
My
j,t;α

0j
t−1|t−1, P

0j
t−1|t−1

)
= K

(
My
j,t;α

0ij
t−1|t−1, P

0ij
t−1|t−1

)
Λjt = (2π)−t/2 |Fj,t|−1/2 e

− 1
2
vj′
t|t−1F

−1
j,t v

j
t|t−1 Λijt = (2π)−t/2 |Fij,t|−1/2 e

− 1
2
vij′
t|t−1F

−1
ij,tv

ij
t|t−1

Probabilities update

µjt|t =
Λjt
∑h
i=1Q

ij
t−1,tµ

i
t−1|t−1∑h

k,m=1 Λmt Q
km
t−1,tµ

k
t−1|t−1

µijt−1|t =
Λijt Q

ij
t−1,tµ

i
t−1|t−1∑h

k=1 Λkjt Q
kj
t−1,tµ

k
t−1|t−1

Table A3: Smoothing Algorithms

GPB(1) and IMM(1) GPB(2) and IMM(2)
Smoothed Probabilities

µjt|n =
∑h

k=1 µ
k
t+1|n

µj
t|tQ

jk
t,t+1∑h

m=1Q
mk
t,t+1µ

m
t|t

Smoothed States
Initialisaion

rin|n−1 = Z ′i,nF
−1
i,n v

i
n|n−1 rijn|n−1 = Z ′j,nF

−1
ij,nv

ij
n|n−1

Recursion
Lijt+1,t = Tj,t+1 (I −Ki,tZi,t) Lijkt+1,t = Tk,t+1 (I −Ki,j,tZj,t)

rit|t−1 = Z ′i,tF
−1
i,t v

i
t|t−1 rijt|t−1 = Z ′t,jF

−1
i,j,tv

ij
t|t−1

+
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j=1Q
ij
t,t+1L

ij′
t+1,tr

j
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jk
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ijk′
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jk
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αit|n = αit|t−1 + P it|t−1r
i
t|t−1 αijt|n = αijt|t−1 + P ijt|t−1r

ij
t|t−1

Merge states
αjt|n =
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i=1 µ

ij
t−1|tα

ij
t|n

αt|n =
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i=1 µ
i
t|nα

i
t|n αt|n =

∑h
i=1 µ

i
t|nα

i
t|n
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B The Model

This section summarises the model in Fernandez-Villaverde et al. (2015). We present the list of

variables and all the model equations. We then present parameterisation of the model used in

Section 3, and estimated parameters obtained in the empirical investigation discussed in Section

4.

Table B1: List of Variables

dt Shifter to intertemp. preference Ct Consumption
Gt Government consumption Λt Marginal utility of consumption
rt gross nominal interest rate Rkt Rental rate of capital
πt Gross inflation φt Cost of use of capital
Qt Tobin’s Q φ′t derivative of the capital adj. cost
Xt Investment ut capital utilization
st Investment adjustment cost s′t derivative of invest. adj. cost
ft Calvo wage parameter W∗,t Optimal real wage
Wt real wage ld,t labor demand
ϕt labor supply shifter π∗w,t Relative optimal real wage
g1,t Calvo price process 1 π∗,t Relative Price
g2,t Calvo price process 2 mct Real marginal cost
Yd,t Output vp,t Price dispersion
Kt Capital At Neutral technology
Zt Combined technology MUt Investment-specific tech. level
vw,t Wage dispersion lt hours worked/labor supply
εξ,t Monetary policy shock, scale σξ εϕ,t labor supply shock, with scale σϕ
εg,t Government spending shock, scale σg εµ,t Invest.-spec. technology shock, scale σµ
εd,t Preference shock, scale σd εA,t Neutral technology shock, scale σa
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Table B2: Model Equations

Households

Capital accum-n Kt = (1− δ)Kt−1 +MUt

(
1− s

[
Xt
Xt−1

])
Xt

FOC consum-n dt
Ct−hCt−1 − hβEt

dt+1
Ct+1−hCt = Λt

FOC bonds Λt = βEtΛt+1
rt
πt+1

FOC capital util. Rkt = φ′[ut]
MUt

FOC capital Qt = βEt
Λt+1
Λt

(
(1− δ)Qt+1 +Rkt+1ut+1 − φ[ut+1]

MUt+1

)
Capital util-n φ [u] = φ1 (u− 1) + φ2

2 (u− 1)2

its derivative φ′ [u] = φ1 + φ2
2 (u− 1)

FOC investment 1 = QtMUt

(
1− s

[
Xt
Xt−1

]
− s′

[
Xt
Xt−1

]
Xt
Xt−1

)
+βEtQt+1MUt+1

Λt+1
Λt

s′
[
Xt+1
Xt

] (
Xt+1
Xt

)2

Invest. adj. cost s
[
Xt
Xt−1

]
= κ

2

(
Xt
Xt−1

− λx
)2

its derivative s′
[
Xt
Xt−1

]
= κ

(
Xt
Xt−1

− λx
)

Firms

Wage helper 1 ft = η−1
η (W∗,t)

1−η ΛtW
η
t ld,t + βθwEt

(
π
χw
t

πt+1

)1−η (W∗,t+1
W∗,t

)η−1
ft+1

Wage helper 2 ft = ψdtϕtπ
−η(1+ϑ)
∗w,t l

(1+ϑ)
d,t + βθwEt

(
π
χw
t

πt+1

)−η(1+ϑ) (W∗,t+1
W∗,t

)η(1+ϑ)
ft+1

Wage setting π∗w,t =
W∗,t
Wt

Wage dynamics 1 = θw

(
π
χw
t−1
πt

)1−η (
Wt−1
Wt

)1−η
+ (1− θw)π1−η

∗w,t

Wage dispersion vw,t = θw

(
Wt−1
Wt

π
χw
t−1
πt

)−η
vw,t−1 + (1− θw)π−η∗w,t

Price helper 1 g1,t = ΛtmctYd,t + βθpEt

(
πχt
πt+1

)−ε
g1,t+1

Price helper 2 g2,t = Λtπ∗,tYd,t + βθpEt

(
πχt
πt+1

)1−ε ( π∗,t
π∗,t+1

)
g2,t+1

Price setting εg1,t = (ε− 1) g2,t

Price dynamics 1 = θp

(
πχt−1
πt

)1−ε
+ (1− θp)π1−ε

∗,t

Price dispersion vp,t = θp

(
πχt−1
πt

)−ε
vp,t−1 + (1− θp)π−ε∗,t

continued on the next page
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Table B2: Model Equations —continued

Market Clearing and Policy

Production function Yd,t =
At(utKt−1)α(ld,t)

1−α−φyZt
vp,t

Capital-labor ratio utKt−1
ld,t

= α
1−α

Wt
Rkt

Aggregate labour lt = vw,tld,t

Resource constraint Yd,t = Ct +Gt +Xt + φ[ut]
MUt

Kt−1

Marginal costs mct =
(

1
1−α

)1−α (
1
α

)α W 1−α
t Rαkt
At

Taylor rule rt
rss

=
(
rt−1
rss

)γr (( πt
πtarg

)γπ ( Yd,t
λydYd,t−1

)γy)1−γr
exp (σξεξ,t)

Government spending log
(
Gt
Zt

)
=
(
1− ρg

)
log g + ρg log

(
Gt−1
Zt−1

)
+ σgεg,t

Exogenous processes
Intertemporal preference log (dt) = ρd log (dt−1) + σdεd,t
Labor supply log (ϕt) = ρϕ log

(
ϕt−1

)
+ σϕεϕ,t

Investment-spec. technology MUt = MUt−1 exp (λµ + σµεµ,t)
Neutral technology At = At−1 exp (λa + σaεA,t)

Combined technology Zt = A
1

1−α
t MU

α
1−α
t

C Model Parameters and Empirics

Table C1: Model Parameters

Parameters Description FGR2015 Estimated
Values Values
(1) (2)

β Time Preference 0.99 0.9992
h Habit Formation 0.9 0.92747
psi labor supply coeff in utility 8.0
vartheta Disutilty of Labor Scaling 1.17
δ Depreciation Rate 0.025
α Captial Share in Production 0.21 0.14991
κ Weight on Investment Adjustment Costs 9.5 3.7946
ε Elast. of Subst. btw. Differntiated Goods 10
eta Elast. of Subst. btw Diff. Types of Labour 10
phi2 Weight on Adj. Costs for Capital Utilization 0.001
χw Wage Indexation 0.6340
χ Price Indexation 0.6186 0.00011223
θw Probability of not changing wages 0.6869
θp Probability of not changing prices 0.8139 0.8379

continued on the next page
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Table C1: Model Parameters —continued

Parameters Description FGR2015 Estimated
Values Values
(1) (2)

Policy Parameters
γr (SP = 1) Interest rate smoothing 0.7855 0.80302
γr (SP = 2) Interest rate smoothing 0.7855 0.87472
γy (SP = 1) Reaction to output growth exp(-1.4034) 0.41649
γy (SP = 2) Reaction to output growth exp(-1.4034) 0.32918
πtarg Inlfation target 1.0005 1.0057
Persistence of Shocks
ρd Consumption preference 0.1182 0.72554
ρϕ Labor supply 0.9331 0.92016
λa Neutral technology 0.0028
λµ Investment-specific technology 0.0034
ρg Government spending shock 0.75 0.0024123
Standard Deviation of Shocks
σd (SV = 1) Consumption Preference Regime 1 exp(-1.9834) 0.031211
σd (SV = 2)∗ Consumption Preference Regime 2 2*exp(-1.9834) 0.16311
σϕ (SV = 1) Labor Supply Regime 1 exp(-2.4983) 0.29752
σϕ (SV = 2)∗ Labor Supply Regime 2 2*exp(-2.4983) 0.20313
σµ (SV = 1) Investment-specific technology Regime 1 exp(-6.0283) 0.003998
σµ (SV = 2)∗ Investment-specific technology Regime 2 2*exp(-6.0283) 0.0071897
σa (SV = 1) Neutral technology Regime 1 exp(-3.9013) 0.037752
σa (SV = 2)∗ Neutral technology Regime 2 2*exp(-3.9013) 0.048111
σg Government Spending shock exp(-3.9013) 0.0074137
σξ Monetary Policy exp(-6.000) 0.0020286

Note: ∗ denotes a parameter which is calibrated by the authors.
Table C2: Data Sources

Data series Description Units FRED
series

(1) (2)
DY_DATA Output Growth %pa A939RX0Q048SBEA
DP_DATA Inflation rate %pa GDPDEF
R_DATA Federal Funds Rate %pa FEDFUNDS
DW_DATA Wage Inflation %pa COMPRNFB
DMU_DATA Relat. price of invest. goods %pa PIRIC

Note: FRED database https://fred.stlouisfed.org/
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Figure C1: Updated Data

D Notes on Implementation

All computations in this paper were coded in RISE c© (Maih, 2015). RISE toolkit accepts the

model description as a text file containing list of commands and mathematical expressions, con-

verts it into a state-space form, loads the data, and applies filters and smoothers discussed in this

paper.

In panel A of Table 3, the speed results were obtained with implementing IMM(1) and KN-

GPB(2) as stand-alone procedure, with optimisation for speed where possible. As discussed

in the text, their implementation in RISE allows handling various non-linearities and missing

observations.

In panel B of Table 3, for comparison of speed within either GPB or IMM families we em-

ploy single GPB(N) and IMM(N) filters that accept an arbitrary order as input, rather than

separate codes for different orders of filtration. Consequently, the number of nested loops is not

predetermined but is managed throughout the computation.
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