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Abstract

Most theoretical central bank models use short horizons and focus on a single tradeoff.

However, in reality, central banks play complex, long-horizon games and face more than

one tradeoff. We account for these issues in a simple infinite-horizon game with a novel

tradeoff: higher rates deter financial imbalances, but lower rates reduce the likelihood of
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1 Introduction

What does a central bank do if it finds itself in a situation that is ex ante suboptimal for
the banking system? There is a growing literature on optimal central bank policy towards
banking intermediaries. Most of this literature uses three or four period examples of the
tension between central bank and intermediary incentives, which often allows for attractive
optimality results.1 The relevant challenge which we tackle is that most theoretical models
of monetary policy and stability consider short horizons, and only analyze a single tradeoff.
This setting is problematic because real world central banks face multiple tradeoffs with
long horizons. Such multiple tradeoffs are particularly onerous because many central banks
have one main policy tool during normal times, the interbank interest rate. The question we
address is ‘What are the limits of monetary policy for a one-tool central bank which faces
multiple policy tradeoffs that manifest over long horizons?’

Our paper’s main contribution to the literature is that we characterize the tradeoffs between
inflation, investment and fragility that plague monetary policy, in a simple game-theoretic
framework which accounts for long horizons. Moreover, we extend research on central
bank independence, by demonstrating the limits on a central bank that attempts to achieve
both low inflation and financial stability.

We proceed by modelling excessive systemic risk-taking arising from a fire-sale external-
ity, and then summarising the central bank’s tradeoffs. We then model an economy with
production and banking sectors that experience exogenous, correlated shocks, which feed
back to the central bank. Subsequently, we endogenise feedback between the real econ-
omy and banking sector in a static and dynamic game, and demonstrate how a central bank
can credibly support a cooperative equilibrium with minimal fragility. A more detailed
breakdown of our approach is provided in the next subsection.

1.1 Overview of the paper

Since this paper covers a lot of ground, a brief overview to guide the reader is presented
here. To establish a theoretical framework, in Section 2 we present a general form of the
fragility-investment tradeoff, in which banks’ investment decisions affect the likelihood of

1See Freixas et al. (2000); Chapter 7 of Allen and Gale (2007); and Allen et al. (2009).
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systemic events. This negative externality is not internalised by individual banks, and the
resulting excessive aggregate investment in the banking sector increases systemic risk.

We further develop this idea in Section 3 by modeling excessive systemic risk-taking arising
from a fire-sale externality, building on Kashyap and Stein (2012). We proceed in two
steps. First, we describe the basic setup, where banks are financing long term projects with
a mixture of short and long term debt. While short term debt is cheaper, banks are exposed
to liquidity risks when they need to roll over the debt. If creditors refuse to roll over the
debts in the intermediate term, there will be bank failures and banks will have to engage in
fire sales, thereby liquidating premature projects. This fire-sale cost increases with the total
assets on sale in the market, but individual banks do not internalise such costs when they
make their initial investment decisions, which leads to excessive investment. The market
equilibrium thus features excessive financial fragility and inefficiently high social welfare
costs from fire sales. Second, we summarize the central bank’s tradeoff between financial
fragility, output, and price stability. We formalize this scenario with a production sector and
banking sector that experience exogenous output shocks and liquidity shocks, respectively,
where these two shocks are potentially correlated. A social welfare maximizing central
bank therefore faces dual tradeoffs between financial fragility and inflation, when setting
short term rates to stabilize output. The covariance of real and financial shocks reflects
a feedback effect that directly affects the central bank’s expected loss. In Section 3, this
feedback effect is taken as exogenous.

In Section 4 we present an extended model, where we explicitly model feedback between
the real economy and banking sector, accounting for banks’ strategic response to monetary
policy. We proceed in three steps. First, we present the basic framework, with banks that
invest in firms’ capital via short- and long-term debt as before. In this framework, an
intermediate output shock to real economy affects bank returns, making debt refinancing
feasible. When the central bank sets short term interest rates to cushion an output shock,
it affects both output and financial fragility. Second, the changing output level implies a
change in banks’ profit level, affecting their ability to refinance. Moreover, the short-term
interest rate set by the central bank changes banks’ refunding costs, which in turn changes
the probability of bank failure. When there are more bank failures, more firms need to be
liquidated, thus generating a loss in aggregate output. The key insight from Section 4 is
that this feedback effect presents the central bank with a huge dilemma: when the policy
rate needs to be raised due to an overheated economy, the central bank cannot raise the
rate too high because that would increase the number of bank failures. Banks understand
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the central bank’s dilemma, and therefore from the start of the game engage in excessive
investment, which increases equilibrium financial fragility. Third, at the end of Section
4, we analyze the central bank’s problem in an infinitely repeated game. We show in the
longer run how the central bank can restrict banks’ aggregate investment, lower financial
fragility and restore the first best solution by adhering to the socially optimal interest rate.
The deviating banking sector will be punished by the central bank’s best response, and we
characterize the range of central bank discount rates that ensures this cooperative solution.

1.2 A dual policy tradeoff

Modern central banks have tended to focus on one policy tool during normal times, the
interbank interest rate r. However, central banks face a variety of policy objectives. For
the purposes of this paper, we consider three policy objectives–inflation, employment or
investment, and financial stability. Since these objectives often conflict, the central bank
faces a dual policy tradeoff.

The first tradeoff, between inflation and unemployment, is well documented and under-
stood. This basic tradeoff is known as the Phillips curve, first documented by Phillips
(1958), then placed in a micro-founded setting by Lucas (1972) and Woodford (2003). The
Phillips curve’s ramifications for central bank policy are examined by Barro and Gordon
(1983). The second tradeoff, between investment and financial stability, has only been re-
cently analyzed, see Cao and Illing (2012); Chollete and Jaffee (2012); and Kashyap and Stein
(2012). The crux of this tradeoff is that an interest rate policy which encourages investment
has an externality effect of excess credit supply, which in turn increases financial instability.
In this paper we analyze both tradeoffs from the perspective of the central bank.

1.3 Contributions

Our paper contributes to the literature on optimal monetary policy by formalizing the in-
vestment fragility tradeoff faced by a central bank. We then characterize the dual tradeoff
from inflation-investment-fragility that plagues monetary policy, in a simple static game.
Finally, we extend our results to a dynamic game setting.

The remainder of the paper is organized in the following manner. Section 2 motivates
the relationship between financial fragility and investment. Section 3 models the central
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bank’s tradeoff between fragility and investment. Section 4 studies an extended model
that accounts for feedback between the real and financial sectors, and Section 5 is the
conclusion.

2 Motivation for fragility-investment relation

In order to motivate the dual tradeoff approach to macroprudential policy, we need a func-
tional relation for the second tradeoff2, between fragility f and aggregate investment liabil-
ities L. That is, we require a simple micro-foundation for the function f = f(L). A natural
way to do this is to consider the well-documented fire-sale externality phenomena of banks:
during normal times, banks overinvest. Since every bank does this, during extreme events
the whole system is adversely affected.

There are two ways to represent such externalities: via the likelihood of extremes, or the
impact of extreme events. The externality can be an excessively high likelihood of extreme
events (Chollete (2012)), or an excessively high level of liabilities during extreme events
(Allen and Gale (2007); Kashyap and Stein (2012)). The first method is somewhat general,
so we present it in the Appendix. We focus on the liability-based approach below.

2.1 Leverage-based fragility measure

This approach models an externality from excessive investment, as in Fisher (1933); Keynes
(1936); Allen and Gale (2007); and Kashyap and Stein (2012). We summarize the ap-
proach of Kashyap and Stein (2012). Consider a large number of banks that play an in-
finitely repeated game, in periods denoted by t, for t = 0, 1, ...∞. In order to model
revelation of information about systemic risk fragility, each period t is further subdivided
into three dates t0, t1, and t2. Every bank i holds exogenously determined equity ki, whose
value is uniformly distributed over the interval [0, K].

Banks are in the business of investing, which can funded in two ways–short term or long
term debt. Specifically, each period the representative bank has an investment opportunity,
which, during normal times, transforms investment I i made at initial date t0 into θI i two
dates later at t2, for θ > 1. During extreme periods, investment yields no profit, and θ = 0.

2For the first tradeoff, the Phillips curve, see Phillips (1958); Lucas (1972); and Woodford (2003).
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In order to fund I i, bank i may issue an amount mI i of short-term debt and (1 − m)I i

of long-term debt. The gross interest rates on these two types of debts are r1 and r1 + δ,
respectively. Therefore the bank’s costs in normal times are mI ir1 + (1−m)I i(r1 + δ) =

I i(r1 + δ −mδ), implying net profits of I i(θ − r1 − δ +mδ).

At date t1 there is a public signal of the t2 return from investment. With probability 1 − s

it will be a normal state in t2, with investment return of θI i, while with probability s (for
systemic) it will be in the crisis state, with investment return of 0. In a normal state, debtors
will roll over the banks’ debt, while in a crisis state, debtors refuse to roll over debt. A bank
goes bankrupt if its equity value ki is less than the value of short term debt mI i at date t1.
Since ki is uniformly distributed over [0, K] the probability that bank i will fail is simply
mIi

K
. For simplicity, the likelihood of systemic risk is assumed to be linear in aggregate

investment I ≡
∑

i I
i. Similarly, the cost Ci that each bankrupt firm imposes on society

is also linear, Ci = γ ·
∑

i I
i, for γ > 0. Under the insolvency of bank i, its entire assets

will be sold at a depressed price p, which applies to all other banks’ assets and implies a
cost for bank i of Ci = γ ·

∑
i I

i. Thus bank i’s costs during extreme periods are given by
pmIiγ

∑
Ii

K
.

Such a fire-sale externality implies that each bank does not internalise the cost it imposes
on the other banks when it fails. The problem for bank i at the beginning of period t, date
t0 is to maximize expected profit Πi:

max
Ii

Πi = I i(θ − r1 − δ +mδ)− pmI iγ
∑

i I
i

K
. (1)

The solution to (1) is given by

Ic = (θ − r1 − δ +mδ)
K

pmγ
, (2)

where the c denotes the competitive outcome, and we remove superscript i for simplicity.
The socially optimal value maximizes joint profits

∑
iΠ

i =
∑

i I
i(θ − r1 − δ + mδ) −

pmIiγ
∑

i I
i

K
. The corresponding optimal investment3 is given by

Ip = (θ − r1 − δ +mδ)
K

2pmγ
, (3)

3For further details, see p. 272 of Kashyap and Stein (2012).
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where p denotes a Pareto optimum. Similar to the results in the above subsection, the
competitive level of investment Ic exceeds the optimum Ip.

Fragility Measure f 1. In this framework, financial fragility f is represented by the prob-
ability of bankruptcy due to excess leverage. With a continuum of competitive banks, this
probability is the mass of banks with capital less than mIc, that is, mIc

K
. We therefore

define our main fragility measure f 1, as below. The alternative fragility measure f 0 is in
Appendix A.1.

Definition 1. The leverage-based fragility measure is f 1(I) = mIc

K
.

We summarise the relevance of the fragility measures in Proposition 1, and the inefficien-
cies that motivate central bank intervention in Proposition 2, below.

Proposition 1: In a competitive banking system, financial fragility f can be represented
as a function of equilibrium aggregate liabilities L =

∑
i l

i, or as a function of aggregate
bank investment I =

∑
i I

i.

Proposition 2: In a competitive banking system with fire-sale externalities, the likelihood-
based fragility f 0 and the leverage-based fragility f 1 are inefficiently high.

Now that we have established the concept of financial fragility, we utilize it in the remainder
of the paper in a game theoretic setup. For simplicity we use the symbol f to denote
fragility.

3 Modelling tradeoffs between fragility, investment and
output

In this section we develop a simple model to establish a theoretical framework, and through-
out we focus on describing the second, financial fragility tradeoff. We develop this model
further in the succeeding section. Since the first tradeoff of unemployment and inflation is
well understood, we utilise existing results from that literature directly. The setting is one
of common knowledge, where the central bank knows the payoff functions of banks.4 The
central bank interacts with banks and entrepreneurs, and plays the game repeatedly. Such
repetitions are cumbersome to represent, hence we simplify computation by focusing on a

4For earlier work, see Kydland and Prescott (1977), and Barro and Gordon (1983). For details on repeated
games, see Fudenberg and Tirole (1991); Gibbons (1992); and Mas-Colell et al. (1995).
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stage game, which is a one-shot version of the repeated game. If the full game is played T

times, then the payoff for each player is simply the discounted sum of the payoffs in each
stage game.

Notation. This paper uses several types of notation in the next section. In order to ease the
reader’s understanding of the paper, we present below the most frequently used parameters
and symbols.

• a: Cost to central bank of missing inflation or interest target

• b: Cost to central bank of missing investment target

• β: Phillips curve-based cost to central bank of missing interest target

• r∗: Target interest rate

• IE − I∗: Gap between optimal and target investment

• I∗: Optimal investment

• K: Total equity in the banking system

• γ: Multiplier for systemic costs relative to I , which measures fire-sale costs

• m: Fraction of short-term debt in banking system, which measures system illiquidity

• εy: Output shock

• G
(
E
[
εi∗y
]
, r̂
)
: the number of banks that are expected to fail

Setting for inflation-unemployment tradeoff. The background here is well studied in the
literature, so we comment only briefly. There are three main actors: employers, workers
and the central bank. The central bank sets the interest rate, which determines the money
supply and inflation rate. In order to capture anticipated effects, employees and workers set
an imperfectly indexed wage. The central bank can set the interest rate lower than expected,
which will yield reduced real wages and allow employment to increase, but also result in
higher inflation.

Setting for fragility tradeoff. There are three actors in this part: a large number of firms,
a large number of financial intermediaries (‘banks’) , and a central bank. The setting is a
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sequential-move game where (time t) the entrepreneurs and banks negotiate on the level of
risky loans to undertake, after which (time t + 1) the central bank chooses the interbank
interest rate and whether to bail out or provide liquidity to some banks that are distressed.
Knowing the central bank’s strategy, investors and banks will anticipate this in period t

when deciding on their optimal strategies. In particular, if the central bank plans to rescue
some distressed banks and lower interest rates, this will induce both banks and investors
to demand and supply excessive risky loans, thereby increasing systemic risk. At the same
time, it is beneficial to lower interest rates and rescue some banks, since this encourages
investor confidence, thereby providing a spur to innovative investment that might not oth-
erwise occur.

Consequently, when deciding on bailouts, liquidity requirements and low interest rates, the
policymaker faces a fragility tradeoff. This tradeoff features costs of financial fragility and
systemic instability due to an excess of risky loans, and benefits of enhanced investment,
to the extent that low rates and rescuing of some distressed banks cause result in more
worthwhile innovative projects than anticipated being undertaken. The above interaction is
repeated an infinite number of times, T = ∞. In order to focus on this long-run tradeoff,
we analyse a reduced-form version of the repeated interaction, in the following stage game.
We model financial fragility f as an index that the central bank can affect directly, through
its decisions on how many distressed banks to rescue, as well as the magnitude and duration
of interest rate cuts.5 For simplicity, f can denote the number (or fraction) of banks that
will be allowed to fail during an extreme event. In the stage game below, we combine the
output-inflation tradeoff with this relatively recently studied fragility tradeoff.

3.1 A base model without feedback effects

First, banks and companies form expectations of financial fragility, f̂ , and inflation, π̂, re-
spectively. Second, the policymaker assesses expectations and chooses the actual fragility
f and inflation π. Banks and companies receive payoffs of −(f − f̂)2 and −(π − π̂)2, re-
spectively. That is, banks (companies) desire to anticipate fragility (inflation) as accurately
as possible, achieving their maximal payoff when f = f̂ (π = π̂). It is the policymaker’s
desire for fragility and inflation to be close to zero, but also for investment I and employ-
ment y to be at efficient6 levels I∗ and y∗.

5More generally, f will be a vector [f, r] of the fraction of banks rescued and interest rates.
6Perfect financial market stability may not be efficient, if it means no investment is undertaken.
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We let the real rate r̄ be fixed, so that according to the Fisher relation π = r1 − r̄, it is
sufficient to focus on the nominal short rate r1 instead of inflation. The policymaker’s loss
function is therefore

min
r1

L = (y − y∗)2 + a (r1 − r∗)2 + b [f(I)− f ∗]2 , (4)

where a > 0 and b > 0 reflect costs to the central bank of missing its targets. All terms in
(4) depend on the interest rate r1, in a manner that we now make explicit via the inflation-
output and fragility-investment tradeoffs, below. The inflation-output relationship is de-
fined by the Phillips curve,

y = αy∗ + β (r1 − r̂ + εy) , (5)

where α > 0 and β > 0, and εy is a zero-mean shock to output, εy ∼ [0, σ2
y ]. We model

the relationship between financial investment and the short-term interest rate by building
on the Kashyap and Stein (2012) specification, from equation (2) above:

I = (θ − r1 − δ +mδ + εf )
K

pmγ
.

Note that, unlike Kashyap and Stein (2012), we account for random financial shocks via
the term εf , E[εf ] = 0. Financial fragility is defined as the cost of a fire sale, namely
f (I) = γI = (θ − r1 − δ +mδ + εf )

K
pm

. And the socially optimal financial fragility f ∗

is f ∗ = γI∗ = γ (θ − r1 − δ +mδ + εf )
K

2pmγ
, or

f ∗ = (θ − r − δ +mδ + εf )
K

2pm
. (6)

Therefore, the central bank’s decision problem in (4) can be rewritten in terms of r1, using
(5) and (6), as

min
r1

L = [αy∗ + β (r1 − r̂ + εy)− y∗]2+a (r − r∗)2+b

[
(θ − r1 − δ +mδ + εf )

K

2pm

]2
.

(7)
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This objective is solved in Appendix A.2 to yield expressions for optimal interest rate rc

and output y:

rc =
1

B
[(1− α) βy∗ + ar∗ + (θ − δ +mδ)C]− 1

A

(
β2εy − Cεf

)
(8)

and

y = αy∗ +
B

A
βεy +

C

A
βεf = αy∗ +

β

A
(Bεy + Cεf ) , (9)

where the coefficients A,B and C capture the relative weights attached to various forms of

over- or undershooting: A = a+ β2 + b
(

K
2pm

)2
, B = a+ b

(
K

2pm

)2
, and C = b

(
K

2pm

)2
.

The expected welfare loss E[Ln] is also computed in Appendix A.3, Equation (33), to be

E[Ln] = (α− 1)2y∗2 + a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B

]2
+C

[
(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B

]2
+
B2 + β2(a+ C)

A2
β2σ2

y +
(a+ β2)2(C2 + C)

A2
σ2
f + 2Cβ2B + β2

A2
ρy,f ,

where σ2
y , σ2

f and ρy,f are the real shock variance, financial shock variance, and correlation
of the two shocks, respectively. In contrast, the cooperative, expected welfare loss E[Lc]

under perfect anchoring is computed in equation (34) of the Appendix to be

E [Lc] = E

[
[(α− 1) y∗ + βεy]

2 +

(
K

2pm
εf

)2
]
= (α− 1)2 y∗2 + β2σ2

y +
C

b
σ2
f .

Comments on the solution. Two aspects of the above solutions appear cogent. First, the
volatility of shocks to both the financial and real sectors matter for optimal loss of the
central bank. Second, and perhaps more novel, the covariance of real and financial shocks,
ρy,f , directly affects the central bank’s expected loss. In particular, it is not enough for
the central bank to focus on real or financial shocks: it must also identify the dependence
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between real and financial shocks. We summarize this latter observation in a proposition,
below.

Proposition 3: In a dual tradeoff model, the central bank’s expected loss increases mono-
tonically with the dependence between financial and real shocks.

3.2 Explanatory power and novel implications

Our theoretical framework provides a simple method to incorporate financial and real con-
siderations, simultaneously, in a tractable form for central bank policy. It also offers a
potential explanation of several interesting phenomena. In particular, a large, positive real
economy shock εy shifts the production function up and raises marginal productivity. Since
marginal productivity determines marginal return on capital, banks increase their supply of
credit. Consequently real shocks have financial effects, and our model explains the empir-
ically observed procyclicality of credit.

Similarly, a large negative financial shock εf reduces the amount of credit I that banks
supply. This, in turn, reduces firms’ investment and therefore results in output contraction.
Hence, our model explains the empirically observed occasional spillovers from financial
crises to the real economy. These spillovers will be exacerbated, the larger the correlation
between real and financial shocks.

Implications. Our model also has some novel implications. In particular, it suggests a
dual tradeoff between enhancing economic output and maintaining financial fragility. The
reason is that the central bank’s policy instrument r1, the short rate, appears positively in
the real economy, equation (10) but negatively in the financial economy, equation (11).
Central banks will experience the bite of this tradeoff, the larger the investment parameter
τ and the larger the correlation between real and financial shocks.

Potential policy tools. In light of the above analysis, effective policy instruments in the
face of this dual tradeoff must decrease τ or reduce real-financial correlations ρy,f . One
possible approach is for central banks to market correlation-indexed bonds, i.e. securities
that are indexed to the level of dependence between the real and financial sector.
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4 A model with feedback between banks and firms

Thus far, we have modelled a simple link between banks and firms, via the correlation of
shocks, ρf,y. More realistically, banks create credit I that firms use to produce real output
y. Hence the central bank’s choice of interest rate r affects bank credit, which affects
real output. In turn, the real output is observed, which affects the central bank’s choice of
interest rate.

Feedback from financial Sector to the real economy. This framework allows us to account
for the real effect of financial crises, since they reduce I via fire sales.7 In turn, the reduced
I decreases real output. Hence the Phillips curve is expanded to contain another element,
namely I .

Feedback from the Real Economy to the Financial Sector. Our framework also allows us to
account for feedback from the real economy, because the banking sector decide the amount
of credit I available depending on its expected marginal return. This marginal return, θ
from the Kashyap and Stein (2012) specification, is equal in competitive markets to the
marginal productivity of capital in the real economy.

We therefore revisit the Phillips curve and financial investment equations from the previous
section. In light of the above observations, we propose to account for financial frictions in
the real economy via an investment-augmented Phillips curve:

y = (I − I∗) + y∗ + β (r1 − r̂ + εy) , (10)

where I∗ represents investment under the natural rate of output y∗. We retain our previous
specification of the relationship between financial investment and the short-term interest
rate from Section 3 above:

I = (θ(y)− r1 − δ +mδ + εf )
K

pmγ
. (11)

Hence the financial sector and real sector are linked in three ways. First, as discussed
above, the two equations (10) and (11) are linked via the function θ(y), which represents
the marginal return on bank capital in (11), and is determined by the marginal product of y
from equation (10). Second, they are linked by the available credit for investment I , which

7This approach is similar to the credit transmission channel of Bernanke and Gertler (1989).
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is a component of real output. Finally, they are linked via the short rate r1, which is set by
the central bank in response to output shock ϵy.

4.1 Formalisation of the model

Consider a large number of banks and firms that play an infinitely repeated game with a
central bank, in periods denoted t, for t = 0, 1, . . . ,+∞. Each period t is further subdivided
into three dates t0, t1, and t2. The timing of the model is summarised in Figure 1.

Figure 1: Timeline of events in the model

Bank provides credit to firms, based on its expectation of central bank’s policy rate ;The credit is financed by both short-term and long-term debt contracts, with interest rates  and , respectively;The firms use the credit to buy capital input, and start production.
The shock to the production sector is revealed;The central bank decides its policy rate , based on the shock, inflation, and cost of bankruptcies in the financial sector;The bank becomes insolvent if its equity becomes negative, and its assets are sold at depressed prices;If the bank survives, it repays the existing short-term debt contracts, and rolls over part of the debt by issuing new short-term debt with interest rate .

The surviving banks earn a return from their investment in firms, and repay both the short- and long-term debt contracts;The failed banks are liquidated, and their debts cleared.

Stage t0: Each bank i decides its loan or credit supply I i to firms, given its expectation on
the central bank’s short-term (one-period) policy rate r̂ and the firms’ expected output. To
finance I i, bank i may issue an amount mI i of short-term debt and (1−m)I i of long-term
debt, the later of which lives from t0 to t2. The short-term debt is rolled over at t1 with
expected rate r̂. With similar notation to the previous section, the gross interest rates on
these two types of debt are r1 and r1 + δ, respectively, where compounding yields r1 = r̂2.

The firms use the loan I i as an input. The return from the bank’s investment in firms, θ, is
determined by the expected aggregate output E [y], and θ (E [y]) is an increasing function
of E [y]. The bank’s expected costs are therefore C (m, r1) = mI ir1 + (1−m)I i (r1 + δ),
implying expected net profits of θ(E [y])I i −C (m, r1), if it survives till t2. Without much
loss of generality, assume that θ (E [y]) = ωE [y].
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Stage t1: At t1 there is a publicly observed signal of the aggregate shock on date t2’s return

from firms. The shock is denoted by εy ∼ N
(
0, σ2

εy

)
. After the shock, the central bank

sets its policy rate rE , based on its loss function:

min
rE

L = (y − y∗)2 + a
(
rE − r∗

)2 − γ
∑
i

I iG
(
E
[
εi∗y
]
, r̂
)
,

where the superscript E denotes equilibrium. The term G
(
E
[
εi∗y
]
, r̂
)

denotes the number
of banks expected to fail, which depends on both real and monetary shocks, as explained
later in this section. This policy rate will affect aggregate output at t2. Actual output
is determined by the input I , subject to price stickiness. We define this inflation-output
relationship by an “augmented” Phillips curve

y
(
rE, εy

)
= (I − I∗) + y∗ + β

(
rE − r̂ + εy

)
.

The investment under natural output is denoted by I∗. Without loss of generality, the natural
output is normalised as y∗ = I∗.

In a state when the bank’s return is higher than rE , debtors will roll over banks’ debt,
while in other states, debtors refuse to roll over debt. The bank fails if its equity value
ki (uniformly distributed on [0, K]) is less than the value of short term debt mI i net the
expected value of its assets at date t2. If the bank fails, all of its assets will liquidated in a
fire sale, subject to the fire sale cost.

Stage t2: If the bank survives, the firms will repay the loans, and its debtors withdraw.

The equilibrium of the model is featured by the following set of functions:

(1) Given rE , the firms’ aggregate output at t2 is y = (I − I∗) + y∗ + β
(
rE − r̂ + εy

)
,

implying that the gross return to the bank’s investment is θ = ωy.

At t1, the bank will fail if mI ir̂rE + (1−m) I i (r1 + δ) − ωyI i > ki. Define yi∗ and
εi∗y such that mI ir̂rE + (1−m) I i (r1 + δ) − ωyi∗I i = ki, and yi∗ = (I − I∗) + y∗ +

β
(
rE − r̂ + εi∗y

)
. Then the ex post probability that the bank will fail is G

(
εi∗y
)
.

(2) If the bank fails at t1, its assets will be sold at the depressed price. The fire sale cost is
γ
∑

i I
i.
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At t0 the bank’s optimal decision on investment is determined by maximising its profit

max
Ii

Li
B = ω(E [y])I i − C (m, r1)− γ

∑
i

I iG
(
E
[
εi∗y
]
, r̂
)
,

where the B superscript denotes the bank, G
(
E
[
εi∗y
]
, r̂
)

denotes the ex ante probability
of insolvency, and rational expectations imply that r̂ = E

[
rE
]
.

At stage t0 the following relation holds: ω(E [y]) = ωE
[
(I − I∗) + y∗ + β

(
rE − r̂ + εy

)]
=

ωI , where I is the aggregate credit supply, taken as given for each individual bank.

Given the bank’s expectations for central bank policy, r̂, the bank’s expected probability
of becoming insolvent8 at t1 is G

(
E
[
εi∗y
]
, r̂
)
= mIir̂2+(1−m)Ii(r1+δ)−ωIIi

K
. Therefore, the

bank’s optimal decision problem at t0 is

max
Ii

Li
B = ωII i−mI ir1−(1−m)I i (r1 + δ)−γ

∑
i

I i
mI ir̂2 + (1−m) I i (r1 + δ)− ωII i

K
.

Note that since we are in a two period model, the short rate r̂ and long rate r1 are related
by r1 = r̂2.

Bank’s competitive equilibrium outcome IE . Under the above assumptions, the bank’s
first order condition yields

∂Li
B

∂I i
= ωI −mr1 − (1−m) (r1 + δ)− γI

mr̂2 + (1−m) (r1 + δ)− ωI

K
= 0.

This condition is satisfied by the equilibrium investment IE such that

ωIEK − r1K −Kδ +Kmδ − γIEr1 − γIEδ + γIEmδ + γ(IE)2ω = 0, (12)

where the superscript E denotes equilibrium. However, the bank does not take into account
the fire-sale externality it imposes to the entire financial system, which leads to excessive
investment.

8Our formulation of G() therefore generalizes the Kashyap and Stein (2012) framework, since the short-
rate enters G(). This formalises the notion that the central bank can affect the likelihood of default.
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Bank’s social optimum Ip. We now account for fire-sale externalities. If a planner forces
the bank to consider fire-sale costs, the bank will solve the following decision problem:

max
Ip

Lp
B = ω(E [y(Ip)])Ip − C (m, r1)− γ

∑
i

IpG
(
εi∗y , r̂

)
(i) ,

where the superscript p denotes planner. This maximization problem can be rewritten

max
Ip

Lp
B = ω(Ip)2−mIpr1−(1−m)Ip (r1 + δ)−γIp

mIpr̂2 + (1−m) Ip (r1 + δ)− ω(Ip)2

K
.

The first order condition yields

∂Lp
B

∂Ip
= 2ωIp−mr1−(1-m) (r1 + δ)−2γIpmr̂2 + 2γIp (1−m) (r1 + δ)− 3γω(Ip)2

K
= 0,

or the Ip such that

2IpωK − r1K −Kδ +Kmδ − 2Ipγr1 − 2Ipγδ + 2Ipγmδ + 3(Ip)2γω = 0. (13)

As summarised in Proposition 4 below, the bank’s equilibrium investment is larger than the
social optimum, the latter of which accounts for excess fragility.

Proposition 4: Inefficiency of bank’s competitive equilibrium investment.
Part A: In market equilibrium, the bank’s investment is larger than the planner’s solution,
i.e., IE > Ip. Moreover,

√
3Ip < IE < 2Ip.

Part B: In market equilibrium, liquidity risk provides some market discipline, but investment
is still excessive.

Part A is straightforward, and provides an upper-bound on the magnitude of over-investment.
Part B of the proposition says that a higher share of short-term debt (higher m) reduces
banks’ investment. Equivalently, liquidity risk restricts banks’ risk-taking in the market
equilibrium, thereby providing some market discipline. Nevertheless, due to the fire-sale
externality, market discipline is not sufficient. Compared with the planner’s solution, the
competitive equilibrium still features excessive investment.

Central bank’s decision. We now derive the central bank’s optimal strategy for short
rates. To establish the theoretical framework, we focus on the case where banks choose
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the fragility-based excessive credit supply IE solved above.9 The central bank’s optimal
decision at t1, after observing εy, is to solve the following program:

min
rE

LC = (y − y∗)2 + a
(
rE − r∗

)2
+ bγ

∑
i

I iG
(
εi∗y
)
(i) ,

where the subscript C denotes the central bank. The actual output y, given the announced
rE , is (I − I∗)+ y∗+β

(
rE − r̂ + εy

)
, and the return of the banks’ investment is therefore

ωy.

From the Appendix A.4, the central bank’s optimal short rate rE is proved to satisfy

rE =
2aK

2aK + bγ(IE)2m
r∗ −

2βK
(
IE − I∗

)
2aK + bγ(IE)2m

+
bγ
(
IE
)2

ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy. (14)

The solution for rE in (14) can be related to extant models. For example, as in Barro and Gordon
(1983), rE should partially respond to demand shocks, which is intuitive. There are, how-
ever, some important differences between rE and the short rate obtained by a traditional
central bank concerned with inflation targeting. We discuss these differences below.

4.2 Implications for macroprudential policy

In conventional inflation-targeting frameworks, the central bank’s decision problem does
not account for fire sales. Specifically, the central bank’s problem is

min
r0

L =
[(
IE − I∗

)
+ β

(
r0 − r̂ + εy

)]2
+ a

(
r0 − r∗

)2
,

in which r0 is the policy rate set by a pure inflation targeting central bank. The first order
condition yields

∂L

∂r0
= 2β

[(
IE − I∗

)
+ β

(
r0 − r̂ + εy

)]
+ 2a

(
r0 − r∗

)
= 0,

9Given the symmetric structure of the problem, the central bank will solve the same program when banks
supply the socially optimal credit Ip, except that everywhere in the program it would replace IE with Ip.
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or

r0 =
ar∗ + β2r̂ − β2εy − β

(
IE − I∗

)
a+ β2

.

The consistency condition E [r0] = r̂ implies that r̂ = E [r0] = E

[
ar∗+β2r̂−β2εy−β(IE−I∗)

a+β2

]
=

ar∗+β2r̂−β(IE−I∗)
a+β2 , or r̂ = r∗ − β

a

(
IE − I∗

)
. By substituting this condition into the expres-

sion for r0, we obtain the optimal short rate r0 for an inflation-targeting central bank:

r0 = r∗ − β

a

(
IE − I∗

)
− β2

a+ β2
εy. (15)

Recall that for a central bank which takes financial stability into account, the optimal short
rate rE from (14) satisfies

rE =
2aK

2aK − bγ(IE)2m
r∗ −

2βK
(
IE − I∗

)
2aK − bγ(IE)2m

+
bγ
(
IE
)2

ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy.

Observations on the solution. By comparing the solution for r0 in (15) to the one for rE

above, we can see the role of financial stability in the central bank’s decision making. In
particular, we discern two effects.

The first is the stability effect: in the first term of rE , 2aK
2aK−bγ(IE)2m

< 1, which indicates
that the central bank’s “stability target” interest rate should be lower, once it cares about
financial fragility. Thus, the central bank has the incentive to lower the policy rate in order
to reduce the insolvency rate in the banking sector.

The second is a discipline effect: in the second term of rE , − 2βK(IE−I∗)
2aK−bγ(IE)2m

+
bγ(IE)

2
ωβ

2aK+bγ(IE)2m
>

−β
a

(
IE − I∗

)
, which indicates that the central bank’s target rate should be higher, in order

to restrict excessive investment. This effect is in line with suggestions by John Taylor and
others, who argued in 2008 that a central bank which is concerned about financial stability
should set higher policy rates (relative to the Taylor rule) in normal times, in order to deter
build-up of financial imbalances. Here we do see such an incentive.
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More broadly, these findings extend the literature on central bank independence (e.g. Rogoff
(1985)). This literature argues that in order to achieve price stability, monetary policy
should be delegated to a “conservative” central bank that only cares about inflation or, in
the context of our model, a → +∞. In such a case, our model implies the following
condition: lima→+∞ r0 = rE = r∗.

What does our solution imply about dynamics? There is obviously the potential for moral
hazard. If banks have a systematically lower expectation r̂ and higher I i at t0, the central
bank will be, ex post, forced to follow with a lower rE if it has a low discount factor. We
discuss this issue further in the repeated game formulation below.

4.3 An impossibility result

Our framework may be valuable to clarify the limitations on central banking imposed by
attempts to control both inflation and fragility. Intuitively, the only time a central bank’s
dual targets of inflation control and stability are compatible is when the policy rates rE and
rO are equal. The central bank can use the same rate to control both inflation and targeting
only if rE − rO is identically zero. We solve this condition in the Appendix, which yields
the following proposition:

Proposition 5: General impossibility of both fragility control and inflation commit-
ment. Even if a central bank is independent, it is generally unable to control simulta-
neously fragility and inflation. Such control is only possible in the knife-edge case of
r∗ = β

a
(IE − I∗) + ωβ

m
, i.e. where the target rate is a specific linear function of the in-

vestment gap.

4.4 Infinitely repeated game

Now consider the following infinitely repeated version of the game above. One solution
above sets the vector [IE, rE] such that, given banks’ expectations, the marginal cost and
benefits to the central bank from surprise investment offset each other. This outcome is
subgame perfect, since the central bank is expected to allow a positive amount of fragility
and indeed does so. However, the central bank would be better off if it could commit to
a socially optimal scenario of rp (where rp ̸= rE) that results in the optimal credit supply
Ip. This is an inherent inconsistency problem, since the policymaker and banks have an
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incentive to deviate from the socially optimal investment and short rate [Ip, rp]. A simple
way to assess the implications of such deviations is to examine an infinite horizon game.

Infinite game formulation. Let policymakers, firms and banks share a common discount
factor d. To solve this game, we shall clarify the player payoffs and focus on pure strategies,
then derive conditions under which r = r̂ = rp and I = Ip every period, in a subgame
perfect Nash equilibrium.

Payoff functions for central bank and banks. Denote the banks’ choice of credit supply
in equilibrium and under the social (planner) optimum as IE and Ip, respectively. Then the
central bank’s payoff as a function of short rates and the banks’ credit supply I i ∈ {IE, Ip},
from the previous section, is

LC(r
c, r̂, I i) =

[(
I i − I∗

)
+ β (rc − r̂ + εy)

]2
+ a (rc − r∗)2 (16)

+bγI i
mI ir̂rc + (1−m) I i (r1 + δ)− ω [I i + β (rc − r̂ + εy)] I

i

K
,

where rc ∈ {rE, rp}. The bank’s payoff function is

LB(r̂, I
i) = ωII i−mI ir1−(1−m)I i (r1 + δ)−γ

∑
i

I i
mI ir1 + (1−m) I i (r1 + δ)− ωII i

K
.

(17)
We shall use the payoffs in (16) and (17) to compute optimal strategies and credible pun-
ishments for deviations.

Strategies for the central bank and bank. Given a bank’s credit supply I i ∈ {IE, Ip},
the central bank’s optimal interest rate strategy, from the previous section, is given by

rc =
2aK

2aK + bγ(I i)2m
r∗ − 2βK(I i − I∗)

2aK + bγ(I i)2m
+

bγ
(
IE
)2

ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy. (18)

Also from the previous section, the bank’s equilibrium strategy for investment is IE such
that the following relation holds:

ωIEK −Kr1 −Kδ +Kmδ − γIEr1 − γIEδ + γIEmδ + γ(IE)2ω = 0. (19)
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By contrast, the socially optimal investment Ip allows for fire-sale externalities, and Ip is
such that the following relation holds:

2ωIpK −Kr1 −Kδ +Kmδ − 2γIpr1 − 2γIpδ + 2γIpmδ + 3γ(Ip)2ω = 0. (20)

The central bank wishes to encourage socially optimal investment Ip defined in (20), and
stop intermediary banks from doing IE in (19). To accomplish this objective, the central
bank can choose a trigger strategy, which sets rc = rp computed from (18), as long as the
intermediaries behave and choose credit supply equal to Ip. Otherwise, the central bank
assumes banks are going to opt for their most profitable deviation of IE and sets r equal
to the best response rE , computed from (18). In our model, the banks’ expectations are
correct on average, so IE and Ip are in turn best responses to rE and rp, respectively. Thus
the central bank’s strategy is supported in a subgame perfect Nash equilibrium.

The repeated game involves evaluating stage game payoffs to various strategies from the
central bank and bank. These payoffs may be represented in the following matrix, Table 1.
In Table 1, Lp

C(·) denotes the central bank’s payoff in the socially optimal setting (where
financial fragility is minimised), and LE

C(·) denotes the central bank’s payoff in the ineffi-
cient equilibrium, where financial fragility is a problem. The tilde denotes payoffs from a
deviation. Thus L̃E

B is what the bank obtains by deviating to the equilibrium investment IE .

Table 1: Stage Game Payoffs to Central Bank and Intermediary Bank

Bank
Cooperate: r = rp Deviate: r = rE

Cooperate:
Central I = Ip (Lp

C , L
p
B) (L̃E

C , L̃
E
B)

bank
Deviate:
I = IE (L̃p

C , L̃
E
B) (LE

C , L
E
B)

More specifically, we consider two types of subgames that the central bank faces. The first
type is one in which banks have chosen the socially optimal credit supply Ip and the central
bank sets the short rate to rc in (18), for the present and for all previous periods. The second
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type is any one in which intermediary banks have deviated by choosing the individually
rational but fire-sale provoking credit level IE . The central bank and intermediary bank
share a common discount factor d.

Banks: In the first period, banks hold the expectation r̂ = rp, and supply the socially
optimal credit Ip. In subsequent periods they expect r̂ = rp, if and only if all prior credit
supply was Ip and short rates were actually rp. Otherwise, bank expectations r̂ are set
equal to rE , which we defined as optimal for the central bank if it wants to punish banks
for excess credit supply in the stage game.

Central Bank: The central bank chooses r = rp if and only if current bank and firm
expectations satisfy r̂ = rp, all previous expectations have been r̂ = rp, and all previous
actual investment and short rates have been Ip and rp. Otherwise, the central bank assumes
banks are building up excess credit IE and chooses rc = rE from its best response (18).

Infinite game equilibrium. Let banks’ first-period expectations be r̂ = rp. Further, as in
Table 1, let the central bank’s loss function be Lp

C(r
p, Ip). Now, given the bank’s strategy,

the central bank can focus on two possible paths of financial fragility. The first path involves
r̂ = rp, which results the next period in r̂ = rp and Ip. Consequently the central bank
makes the same decision in the next period. The second alternative involves expectations
r̂ = rE and credit supply I = IE . This results in (IE, rE) forever.

The payoffs from these two strategies are as follows: The first strategy (r = rp in this
period), yields the central bank a payoff of Lp

C(r
p, Ip) forever, for a total of 1

1−d
Lp
C(r

p, Ip).
The second strategy (r = rE this period) yields the central bank L̃p

C(r
p, Ip) this period,

then LE
C(r

E, IE) forever, for a total of L̃p
C(r

p, Ip) + d
1−d

LE
C(r

E, IE). Therefore the central
bank’s strategy is a best response to the banks’ strategy if the following condition holds:
1

1−d
Lp
C(r

p, Ip) ≥ L̃p
C(r

p, Ip) + d
1−d

LE
C(r

E, IE). This condition can be rewritten as

d ≥ L̃p
C(r

p, Ip)− Lp
C(r

p, Ip)

L̃p
C(r

p, Ip)− LE
C(r

E, IE)
, (21)

which has a ready economic implication. Economically speaking, the central bank finds
it optimal not to deviate from its commitment to minimise future financial fragility, if and
only if its discount rate (i.e. its willingness to sacrifice present pain for future gain from
enforcing low fragility) is large enough.
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4.5 Discount rate, investment and policy surfaces

In order to illustrate our results visually, we depict the threshold discount rate d, aggre-
gate investment I , and the optimal policy rate in traditional and fragility-based settings,
i.e. equations (19) and (20), respectively. This communicates the difference between our
approach and previous research in an intuitive manner.

Details of our calibration are in the Appendix.10 The surface for the threshold discount
rate is displayed in Figure 2. Intuitively, d is more likely to be below 1 when the weight
of financial stability gets higher in the central bank’s loss function. We show results of
our investment calibration in Figure 3. Evidently investment is too low and unresponsive
when the central bank only targets inflation. Figure 4 displays the optimal short rate for
a central bank that cares about fragility or only inflation. The yellow surface shows that
the optimal short rate is unresponsive to fragility concerns, which is straightforward. The
dark blue surface corresponds to a relatively large m (illiquidity). It is lower than the case
(light blue) of small m, indicating attenuation of optimal short rates in the case of a highly
illiquid financial sector. In sum, the calibration results are quite reasonable. Nevertheless,
we do not place much emphasis on this aspect of the paper, since our focus is to illustrate,
in a tractable theoretical framework, the forces at work when a central bank faces the dual
tradeoffs of inflation and fragility.

5 Conclusions

We develop a framework that characterises central banks’ dual tradeoff between financial
stability and inflation control. We analyse two models: a base model where there is no
feedback, and an extended model with feedback effects between the real and financial
sectors. The base model offers a potential explanation of several interesting phenomena. In
particular, a large, positive real economy shock shifts the production function upward and
raises marginal productivity. Since marginal productivity determines the marginal return
on capital, banks increase their supply of credit. Consequently real shocks have financial
effects, and our model explains the empirically observed procyclicality of credit. Similarly,
a large negative financial shock reduces the credit banks supply. This, in turn, reduces
firms’ investment and therefore results in output contraction. Hence, our model explains the

10Solution of the equations was performed in Maple.
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empirically observed occasional spillovers from financial crises to the real economy. These
spillovers will be more prominent, the larger the correlation between real and financial
shocks.

In the extended model, we account for both intermediaries’ and central banks’ incentives to
deviate from appropriate bailout, liquidity, and interest rate targets. Our model introduces
a novel tradeoff between enhancing economic output and maintaining financial stability.
Central banks will experience the bite of this tradeoff, the larger the correlation between
real and financial shocks. Specifically, higher interest rates deter buildup of financial im-
balances, but lower rates reduce the likelihood of insolvency. We term these factors the
discipline effect and stability effect, respectively. We show that the central bank’s welfare
loss increases with dependence between the real and financial shocks. Thus, a central bank
may be able to reduce tradeoff costs by marketing correlation-indexed securities.

Our findings extend the literature on central bank independence (e.g. Rogoff (1985)). This
literature demonstrates that in order to achieve price stability, monetary policy should be
delegated to a conservative central bank whose sole concern is inflation. Our framework
suggest a further impossibility result: in our model, even with an independent central bank,
the attainment of both low inflation and financial stability is generally not possible.
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A Appendix

A.1 Alternative fragility measure f 0, and proofs of propositions 1 and
2

This approach observes that individual banks may not consider the full impact of their individual
risk-taking on the aggregate likelihood of extreme events. The mechanism can be elucidated with a
simple externality model (Cornes and Sandler (1996)), as in Chollete (2012). Consider an economy
populated with a large number N of small banks, indexed by i = 1, ...N. All banks maximize the
same expected yield function Y . The banks choose their assets ai and liabilities li, and aggregate
liabilities L are simply the sum of individual liabilities, L ≡

∑
i l

i. Since banks are small, they
cannot control other banks’ behavior, and take the total of other banks’ liabilities, L−i ≡

∑
j ̸=i l

j ,
as given. The ’price’ of holding one unit of assets is the foregone interest r, while the price of
holding liabilities is the bankruptcy cost b in event of a default.

Welfare effects of competitive banking. We first examine the competitive solution. The typical
bank’s problem is to choose a combination of assets ai and liabilities li to maximize expected yield,
Y (ai, li, s(L)). The function Y (·) is concave and continuously differentiable, and the last term s
represents the likelihood of systemic risk. As the total amount of liabilities L rises, it increases
the likelihood of systemic risk. This effect occurs for a number of reasons (liquidity-mismatch,
changing investor confidence, etc.), which we summarize with a continuously differentiable func-
tion s = s(L). Partial derivatives are denoted with a subscript, for example, Ya ≡ ∂Y/∂a. In order
to capture the fact that systemic risk increases with total liabilities, let sL ≡ s′(L) > 0.11 Since
banks are averse to systemic risk, we let Ys ≡ ∂Y/∂s < 0. Now the representative bank solves the
following problem:

max
{ai,li}

Y [ai, li, s(li + L−i)] (22)

subject to
r · ai + b · li ≤ ki, (23)

where ki is the initial capital of bank i. In a competitive industry, excess profits will be eroded such
that (23) becomes an equality. Under the given assumptions, the bank’s problem has a solution, with
the following necessary and sufficient conditions: Y i

a−λ·r = 0 and Y i
l +Y i

s sL(L)−λ·b = 0. These

conditions combine to yield Y i
l +Y i

s sL(L)

Y i
a

= b
r , which can be simplified in terms of the likelihood of

systemic risk as

scL(L
c) =

Y i
a · b

r − Y i
l

Y i
s

, (24)

where the superscript c denotes the competitive solution. The above relation characterizes sensitivity
of the banking industry to increased likelihood of systemic risk, for a unit increase in total liabilities
L, at the competitive optimum. Thus, it captures a measure of financial fragility.

11A similar approach is used in Shin (2010).
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In order to assess efficiency of the competitive solution above, we compute a Pareto optimum. A so-
cial planner calculates the socially optimal level of investment by solving the following optimization
program:

max
{ai,li}

N∑
i=1

Y i[ai, li, s(L)] (25)

subject to

r
∑
i

ai + b
∑
i

li ≤
∑
i

ki.

The solution involves the following first order conditions: Y i
a −λ ·r = 0, all i, and Y i

l +
(∑

j Y
j
s

)
·

sL(L)− λ · b = 0, which combine to yield
Y i
l +(

∑
j Y

j
s )·sL(L)

Y i
a

= b
r . Further simplification results in

the Pareto optimum condition for aggregate liabilities:

s∗L(L
∗) =

Y i
a · b

r − Y i
l(∑

j Y
j
s

) , (26)

where the superscript ∗ denotes a Pareto optimum. Evidently, (26) differs from the competitive
solution in (24) by dint of the larger denominator. Thus, s∗L(L

∗) < scL(L
c).

General fragility measure f0. The discussion above shows that the sensitivity sL(L) of the econ-
omy to systemic risk is suboptimally large in a competitive banking system. Since scL(L

c) measures
sensitivity of the banking sector to systemic risk, we use it to define our general fragility measure
f0, as below.

Definition 2. The likelihood-based fragility measure is f0(L) = scL(L
c).

Proofs of Propositions 1 and 2:

Proposition 1: In a competitive banking system, financial fragility f can be represented as a func-
tion of equilibrium aggregate liabilities L =

∑
i l

i, or as a function of aggregate bank investment
I =

∑
i I

i.

Proof of Proposition 1. By Definition 1 in Section 2 and Definition 2 above. �

Proposition 2: In a competitive banking system with fire-sale externalities, the likelihood-based
fragility f0 and the leverage-based fragility f1 are inefficiently high.

Proof of Proposition 2. Inefficiency of f0 follows from comparing equations (24) and (26) above.
Inefficiency of f1 follows from comparing equations (2) and (3) in Section 2. �
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A.2 Derivation of optimal policy response rc of section 3.1

Recall from equation (7) that the the central bank’s decision problem is

min
r

L = [αy∗ + β (r − r̂ + εy)− y∗]2 + a (r − r∗)2 + b

[
(θ − r − δ +mδ + εf )

K

2pm

]2
.

The first-order condition is

∂L

∂r
= 0 = 2β [αy∗ + β (r − r̂ + εy)− y∗]+2a (r − r∗)+2b

[
(θ − r − δ +mδ + εf )

K

2pm

](
− K

2pm

)
,

which can be solved to obtain the central bank’s best response, denoted rc:

rc = − 1

a+ β2 + b
(

K
2pm

)2
[
αβy∗ − β2r̂ + β2εy − βy∗ − ar∗ − b

(
K

2pm

)2

(θ + εf ) + (1−m) δb

(
K

2pm

)2
]
.

(27)

To compute the above expression, we require the interest rate expectations r̂, to which we now turn.
If expectations are on average correct in an equilibrium, then r̂ = E [rc], whence we can derive the
following relation:

r̂ = − 1

a+ β2 + b
(

K
2pm

)2
[
αβy∗ − β2r̂ − βy∗ − ar∗ − b

(
K

2pm

)2

θ + (1−m) δb

(
K

2pm

)2
]
.

This expression can be simplified to

r̂ = − 1

a+ b
(

K
2pm

)2
[
αβy∗ − βy∗ − ar∗ − b

(
K

2pm

)2

θ + (1−m) δb

(
K

2pm

)2
]
,

or, equivalently,

r̂ =
1

a+ b
(

K
2pm

)2
[
(1− α)βy∗ + ar∗ + (θ − δ +mδ)

(
K

2pm

)2

b

]
. (28)

By substituting the r̂ term from (28) into (27) we obtain the equilibrium policy rate, namely,
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rc = − 1

a+ β2 + b
(

K
2pm

)2
 β2

a+ b
(

K
2pm

)2
[
αβy∗ − βy∗ − ar∗ − b

(
K

2pm

)2

θ + (1−m) δb

(
K

2pm

)2
]
+ β2εy



− 1

a+ β2 + b
(

K
2pm

)2
[
αβy∗ − βy∗ − ar∗ − b

(
K

2pm

)2

(θ + εf ) + (1−m) δb

(
K

2pm

)2
]
.

Now we just simplify the above expression. First, note that upon collecting terms, it becomes

rc = − 1

a+ β2 + b
(

K
2pm

)2

a+ β2 + b

(
K

2pm

)2
a+ b

(
K

2pm

)2
[
αβy∗ − βy∗ − ar∗ − b

(
K

2pm

)2

θ + (1−m) δb

(
K

2pm

)2
]

− 1

a+ β2 + b
(

K
2pm

)2
{
β2εy − b

(
K

2pm

)2

εf

}
.

Now define A = a + β2 + b
(

K
2pm

)2
, B = a + b

(
K

2pm

)2
, and C = b

(
K

2pm

)2
. Then the above

expression implies

rc =
1

B

[
−αβy∗ + βy∗ + ar∗ + b

(
K

2pm

)2

θ − (1−m) δb

(
K

2pm

)2
]
− 1

A

[
β2εy − b

(
K

2pm

)2

εf

]

or
rc =

1

B
[(1− α)βy∗ + ar∗ + (θ − δ +mδ)C]− 1

A

[
β2εy − Cεf

]
. (29)

Similarly, we can simplify the expected interest rate r̂ from equation (28) to be

r̂ =
1

B
[(1− α)βy∗ + ar∗ + (θ − δ +mδ)C]− 1

A

(
β2εy − Cεf

)
(30)

Thus rc and r̂ have the following relation, rc = r̂ − 1
A(β

2εy − Cεf ).

We also need to obtain the term for output y. From the Phillips curve relation (5), actual output is

y = αy∗ + β (rc − r̂ + εy) ,

30



which upon substitution yields

y = αy∗ +
a+ b

(
K

2pm

)2
a+ β2 + b

(
K

2pm

)2βεy + b
(

K
2pm

)2
a+ β2 + b

(
K

2pm

)2βεf .
and finally,

y = αy∗ +
B

A
βεy +

C

A
βεf = αy∗ +

β

A
(Bεy + Cεf ) . (31)

A.3 Derivation of expected welfare loss E[Ln] in section 3.1.

To compute this moment, we first calculate the welfare loss expression Ln, by substituting (29) and
(31) into the objective (7):

L =

[
αy∗ +

B

A
βεy +

C

A
βεf − y∗

]2
+a

[
1

B
[(1− α)βy∗ + ar∗ + (θ − δ +mδ)C]− 1

A
(β2εy − Cεf )− r∗

]2
+b

[(
θ −

(
1

B
[(1− α)βy∗ + ar∗ + (θ − δ +mδ)C]− 1

A
(β2εy − Cεf )

)
− δ +mδ + εf

)
K

2pm

]2
=

[
(α− 1)y∗ +

B

A
βεy +

C

A
βεf

]2
+ a

[
(1− α)βy∗ + (a−B)r∗ + (θ − δ +mδ)C

B
−

β2εy − Cεf
A

]2
+b

[(
B(θ − δ +mδ)− [(1− α)βy∗ + ar∗ + (θ − δ +mδ)C]

B
+

β2εy + (A− C)εf
A

)
K

2pm

]2
.

To simplify, note that (a−B)r∗ = −Cr∗, in the third line; and (B−C)(θ−δ+mδ) = a(θ−δ+mδ),
and (A− C)εf = (a+ β2)εf , for the fourth line. Thus we can rewrite the above expression as

L =

[
(α− 1)y∗ +

B

A
βεy +

C

A
βεf

]2
+ a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B
−

β2εy − Cεf
A

]2
+b

(
K

2pm

)2 [(−(1− α)βy∗ − ar∗ + (θ − δ +mδ)a

B
+

β2εy + (a+ β2)εf
A

)]2
=

[
(α− 1)y∗ +

B

A
βεy +

C

A
βεf

]2
+ a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B
−

β2εy − Cεf
A

]2
+C

[(
−(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B
+

β2εy + (a+ β2)εf
A

)]2
. (32)
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Now that we have the expression for welfare loss L, we can compute its moments, which rely on
joint stochastic properties of the real and financial shocks εy and εf . Recall that the distribution of
the shocks is the following. ε ≡ [εy, εf ]

′, then ε ∼ [0, V ], where the covariance matrix V is of the

form V =

[
σ2
y ρy,f

ρy,f σ2
f

]
.

Then we can take expectations of (32). In the following, we first express the constant terms, then
the stochastic ones, i.e. those that depend on the moments of εy and εf . Specifically,

E[L] = (α− 1)2y∗2 + a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B

]2
+C

[
(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B

]2
+

([
B

A

]2
β2 + a

[
β2

A

]2
+ C

[
β2

A

]2)
σ2
y +

([
C

A

]2
β2 + a

[
C

A

]2
+ C

[
(a+ β2)

A

]2)
σ2
f

+2

(
B

A

C

A
β2 − a

β2

A

C

A
+ C

β2

A

(a+ β2)

A

)
ρy,f

= (α− 1)2y∗2 + a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B

]2
+C

[
(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B

]2
+
B2 + aβ2 + Cβ2

A2
β2σ2

y +
C2(β2 + a) + C(a+ β2)2

A2
σ2
f + 2Cβ2B − a+ a+ β2

A2
ρy,f ,

or

E[Ln] = (α− 1)2y∗2 + a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B

]2
+C

[
(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B

]2
+
B2 + β2(a+ C)

A2
β2σ2

y +
(a+ β2)2(C2 + C)

A2
σ2
f + 2Cβ2B + β2

A2
ρy,f (33)

In contrast, the cooperative solution features two conditions: r̂ = rc = r∗; and r∗ = θ − (1 −
m)δ. Substituting these conditions into the objective function (7) and taking expectations yields the
expected loss under perfect anchoring, E[Lc]:

E[Lc] = E

[
[(α− 1)y∗ + βεy]

2 +

(
K

2pm
εf

)2
]

= (α− 1)2y∗2 + β2σ2
y +

C

b
σ2
f , (34)
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where the second line uses the fact that C = b
(

K
2pm

)2
. The difference in expected loss ∆ =

E[L]− E[Lc] is calculated from (33) and (34) to be

∆ = a

[
(1− α)βy∗ + (θ − δ +mδ − r∗)C

B

]2
+ C

[
(1− α)βy∗ + ar∗ − (θ − δ +mδ)a

B

]2
+
B2 + β2(a+ C)−A2

A2
β2σ2

y +
b(a+ β2)2(C2 + C)−A2C

bA2
σ2
f + 2Cβ2B + β2

A2
ρy,f .(35)

Proposition 3: In a dual tradeoff model, the central bank’s expected loss increases monotonically
with the dependence between financial and real shocks.

Proof: We have to show that ∆ = E[L] − E[Lc] increases with dependence. Dependence is
measured by ρy,f , and the expected loss differential is presented in equation (35). From examination
of the last term, it is evident that the coefficient on ρy,f is unambiguously positive. Therefore
E[L]− E[Lc] increases with ρy,f , as was to be shown. �

Proposition 4: Inefficiency of bank equilibrium investment. Part A: In market equilibrium, the
bank’s investment is larger than the planner’s solution, i.e., IE > Ip. Moreover,

√
3Ip < IE < 2Ip.

Part B: In market equilibrium, liquidity risk provides some market discipline, but investment is still
excessive.

Proof of Part A: Subtracting (13) from (12), one can get

γω
(
3(Ip)2 − (IE)2

)
+
(
2Ip − IE

)
(ωr̂K − γr1 − γδ + γmδ) ≡ 0.

The banks borrow short-term debt only if long-term debt is too costly, or ω < ωIp ≤ r1 + δ.
Therefore

ωr̂K − γ (r1 + δ) + γmδ ≥ ω (r̂K − γ) + γmδ > 0

as long as r̂K − γ > 0. This latter condition is fairly weak: since r̂ > 1 > γ, the inequality strictly
holds if Ip > K > 1.

Suppose that IE < IE , then γω
(
3(Ip)2 − (IE)2

)
+
(
2Ip − IE

)
(ωr̂K − γr1 − γδ + γmδ) > 0.

A contradiction.

Suppose that Ip ≤ IE ≤
√
3Ip, then γω

(
3(Ip)2 − (IE)2

)
+
(
2Ip − Ii

)
(ωr̂K − γr1 − γδ + γmδ) >

0. A contradiction.

Suppose that IE ≥ 2Ip, then γω
(
3(Ip)2 − (IE)2

)
+
(
2Ip − Ii

)
(ωr̂K − γr1 − γδ + γmδ) < 0.

A contradiction.

Therefore,
√
3Ip < IE < 2Ip.
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Part B. This part of the proof involves evaluating comparative statics of the liquidity effect. Using
the implicit function theorem, we can take the derivative of (17) with respect to m to get

∂IE

∂m
= − Kδ + γIδ

ωK − γr1 − γδ + γmδ + 2IEγω
.

The denominator can be rewritten as

ωK + γ(ωIE − r1) + γ(ωIE − δ) + γmδ.

Since ωIE is the return on investment, ωIE > r1 > δ by assumption. Therefore the denominator
is positive, and ∂IE

∂m < 0. �

A.4 Derivation of optimal short rate rE in model of section 4.2

Recall that the central bank’s program is

min
rE

LC = (y − y∗)2 + a
(
rE − r∗

)2
+ bγ

∑
i

IiG
(
εi∗y
)
(i) ,

For simplicity, we have assumed that bankruptcy formally occurs in the end of the period, t2. Thus,
the share of bankrupted banks can be written as

mIE r̂rE + (1−m) IE (r1 + δ)− ω
[
IE + β

(
rE − r̂ + εy

)]
IE

K
.

The central bank’s decision problem can now be rewritten as

min
rE

LC =
[(
IE − I∗

)
+ β

(
rE − r̂ + εy

)]2
+ a

(
rE − r∗

)2
+bγIE

mIE r̂rE + (1−m) IE (r1 + δ)− ω
[
IE + β

(
rE − r̂ + εy

)]
IE

K
.

The first order condition is linear in rE so that we can solve r̂ by taking expectations. The first order
condition yields

∂LC

∂rE
= 2β

[(
IE − I∗

)
+ β

(
rE − r̂ + εy

)]
+ 2a

(
rE − r∗

)
+

bγIE

K

(
mIE r̂ − ωIEβ

)
= 0.

Since in a rational expectations equilibrium E
[
rE
]
= r̂, we take expectations on the first order

condition, in order to obtain
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2β
(
IE − I∗

)
+ 2a (r̂ − r∗) +

bγIE

K

(
mIE r̂ − ωIEβ

)
= 0,

which implies that interest rate expectations satisfy

r̂ =
2aKr∗ − 2βK

(
IE − I∗

)
+ bγ(IE)2ωβ

2aK + bγ(IE)2m
.

We now insert r̂ into the first order condition, and solve for the central bank’s optimal short rate to

obtain rE =
2aKr∗−2βK(IE−I∗)+bγ(IE)2ωβ

2aK−bγ(IE)2m
− β2

a+β2 εy,

or, equivalently,

rE =
2aK

2aK + bγ(IE)2m
r∗ −

2βK
(
IE − I∗

)
2aK + bγ(IE)2m

+
bγ
(
IE
)2

ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy,

which is presented as equation (14) of the text.

Proof of the impossibility result, Proposition 5

We have to show that when the central bank’s rates are equal, rE = rO, then the target rate is a
linear function of the investment gap: r∗ = β

a (I
E − I∗) + ωβ

m .

The central bank can use the same rate to control both inflation and targeting only if rE − rO is
identically zero. We solve this condition by taking the difference rE − r0 :

rE − r0 =
2aK

2aK + bγ(IE)2m
r∗ − 2βK(IE − I∗)

2aK + bγ(IE)2m
+

bγ(IE)2ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy (36)

−
[
r∗ − β

a
(IE − I∗)− β2

a+ β2
εy

]
=

[
2aK

2aK + bγ(IE)2m
− 1

]
r∗ + β[IE − I∗]

[
1

a
− 2K

2aK + bγ(IE)2m

]
+

bγ(IE)2ωβ

2aK + bγ(IE)2m

=

[
2aK − 2aK − bγ(IE)2m

2aK + bγ(IE)2m

]
r∗ + β[IE − I∗]

[
2aK + bγ(IE)2m− 2aK

a[2aK + bγ(IE)2m]

]
+

bγ(IE)2ωβ

2aK + bγ(IE)2m

=

[
−bγ(IE)2m

2aK + bγ(IE)2m

]
r∗ + β[IE − I∗]

[
bγ(IE)2m

a[2aK + bγ(IE)2m]

]
+

bγ(IE)2ωβ

2aK + bγ(IE)2m

=

[
−bγ(IE)2m

2aK + bγ(IE)2m

]
r∗ +

[
bβγ(IE)2m

a[2aK + bγ(IE)2m]

]
(IE − I∗) +

bγ(IE)2ωβ

2aK + bγ(IE)2m
,

or

rE − r0 =

[
bγ(IE)2

2aK + bγ(IE)2m

] [
m

(
β

a
(IE − I∗)− r∗

)
+ ωβ

]
. (37)
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The central bank can use the same rate to control both inflation and targeting only if the expression
in (37) is identically zero, i.e. at least one of the terms on the RHS is zero. Let us examine the first
term. This term is non-zero because the central bank cares about fragility (b > 0), fire sales occur
(γ > 0), investment is positive (IE > 0), and there is always some short term debt in the economy
(m > 0). Therefore it suffices to examine only the second term. This second term is zero if the
target rate is a specific linear function the investment gap: r∗ = β

a (I
E − I∗) + ωβ

m , as was to be
shown. �

B Calibrations for optimal investment, short-rates, and
threshold discount rate

We calibrate the key variables from Section 4, in order to illustrate them graphically.

B.1 Calibration of investment and short-rates

In this part we calibrate variables from Section 4.2 and 4.3. Aggregate investment is represented
in equations (12) and (13), while short rates under fragility and traditional central banking are in
equations (15) and (14). The main parameters are described below.

Table 2: Description of Variables in Investment and Short Rates

Parameter Interpretation
1. a Cost to central bank of missing inflation or interest target
2. b Cost to central bank of missing investment target
3. β Phillips curve-based cost to central bank of missing interest target
4. r∗ Target interest rate
5. IE − I∗ Gap between optimal and target investment
6. I∗ Optimal Investment
7. K Total equity in banking system
8. γ Multiplier for systemic costs relative to I , which measures fire-sale costs
9. m Fraction of short-term debt in banking system, which measures system illiquidity
10. εy Output shock

We approach determination of the parameter values through a combination of natural constraints,
theoretical considerations, and banking practice. Notice that:

• Typical inflation targeting central banks put much higher weight on inflation loss than output
loss, i.e., a >> 1;
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• The ratio IE

k reflects the bank’s leverage ratio. The typical leverage in the banking industry
is about 12.5, rarely below 5; therefore, IE

K = 5 (the lowest banking leverage) may be a good
guess;

• The value γΣiI
i is the fire sale loss of one unit liquidated asset, therefore γIE < 1 — even

in the worse case when all the bank assets are liquidated, the banks can still recover some
value (1− γIE per unit);

• The reliance on short-term debt varies quite a lot across banks, and depends mainly on how
much investment banking business one bank gets involved. However, post-crisis banks tend
to focus more on the mainstream banking, and m is mostly between 20% and 40% in Europe
and US;

• For regularity, we require 2aK − bγ
(
IE
)2

m > 0.

B.2 Calibrating the threshold discount rate

We now calibrate the threshold discount rate d for the infinitely repeated game from Section 4.4.
The discount rate is given by expression (21), reproduced here:

d ≥
L̃p
C − Lp

C

L̃p
C − LE

C

≡ d̄. (38)

The expressions for L̃p
C , L

p
C and LE

C depend on similar parameters to those for the optimal policy
rates in section 1 above. In particular, equation (21) gives the central bank’s loss function as

LC(r
c, r̂, I i) = [(Ii − I∗) + β(rc − r̂ + εy)]

2 + a(rc − r∗)2

+bγIi
mIir̂rc + (1−m)Ii(r1 + δ)− ω[Ii + β(rc − r̂ + εy)]I

i

K
,

where rc ∈ {rE , rp} and Ii ∈ {IE , Ip}.

Preliminary results for computing threshold.
Before we compute the threshold d̄, recall that rE and rp are calculated from equation (23) in the
text, as

rp =
2aK

2aK + bγ(Ip)2m
r∗ − 2βK(Ip − I∗)

2aK + bγ(Ip)2m
+

bγ(Ip)2ωβ

2aK + bγ(Ip)2m
− β2

a+ β2
εy

and

rE =
2aK

2aK + bγ(IE)2m
r∗ − 2βK(IE − I∗)

2aK + bγ(IE)2m
+

bγ(IE)2ωβ

2aK + bγ(IE)2m
− β2

a+ β2
εy.

Further, IE and Ip satisfy the following conditions from equations (17) and (18) in the text:

ωIEK − r1K −Kδ +Kmδ − γIEr1 − γIEδ + γIEmδ + γ(IE)2ω = 0,
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and
2ωIpK − r1K −Kδ +Kmδ − 2γIpr1 − 2γIpδ + 2γIpmδ − 3γ(Ip)2ω = 0,

respectively.

Computing the threshold d̄.
Now we can compute the three different elements of the threshold discount rate in (38)–namely Lp

C ,
LE
C , and L̃p

C . The first two are straightforward since they involve the bank and central bank both
playing cooperate or deviate:

Lp
C(r

p, r̂, Ip) = [(Ip − I∗) + β(rp − r̂ + εy)]
2 + a(rp − r∗)2

+bγIp
mIpr̂rp + (1−m)Ip(r1 + δ)− ω[Ip + β(rp − r̂ + εy)]I

p

K
; (39)

and

LE
C(r

E , r̂, IE) = [(IE − I∗) + β(rE − r̂ + εy)]
2 + a(rE − r∗)2

+bγIE
mIE r̂rE + (1−m)IE(r1 + δ)− ω[IE + β(rE − r̂ + εy)]I

E

K
.(40)

The third payoff, L̃p
C , is different because it reflects the central bank’s payoff (by choosing r = rp)

if the bank deviates (I = IE) for one period:

L̃p
C(r

p, r̂, IE) = [(IE − I∗) + β(rp − r̂ + εy)]
2 + a(rp − r∗)2

+bγIE
mIE r̂rp + (1−m)IE(r1 + δ)− ω[IE + β(rp − r̂ + εy)]I

E

K
.(41)

Thus the threshold discount factor d̄ in (38) can be computed from equations (39) to (41), and the
short rate and investment expressions from Section 2.1.
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Figure 2: Threshold Discount Rate for Infinite-Horizon Game

The figure shows the threshold discount rate d from equation (21). The calibration is as in Appendix
B. The parameters a and b denote the central bank’s weight on inflation and fragility, respectively.
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Figure 3: Aggregate Investment with Fragility-Conscious Central Bank

The figure shows the average investment surface from equations (12) and (13). The calibration is as
in Appendix B. The parameters a and b denote the central bank’s weight on inflation and fragility,
respectively. The blue surfaces correspond to equation (13), and show the optimal investment when
the central bank targets both inflation and fragility– the light blue corresponds to m = 0.4 while the
dark blue corresponds to m = 0.6. The yellow surface corresponds to equation (12), and shows the
optimal investment when the central bank only targets inflation.
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Figure 4: Optimal Policy Rates under Traditional Targeting and Fragility Concerns

The figure shows the optimal policy rates r0 and rE from equations (15) and (14). The calibration is
as in Appendix B. The parameters a and b denote the central bank’s weight on inflation and fragility,
respectively. The blue surfaces correspond to equation (14), and depict the optimal policy rate when
the central bank targets both inflation and fragility– the light blue corresponds to m = 0.4, while
the dark blue corresponds to m = 0.6. The yellow surface corresponds to equation (15), and shows
the optimal short rate when the central bank only targets inflation.
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