Discussion of Bache, Brubakk and Maih
"Estimating monetary policy when the model is misspecified"

Jesper Lindé

Federal Reserve Board

Norges Bank Workshop on Optimal Monetary Policy
November 21-22, 2008
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
Brief summary

This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - **NEMO** - New Norges Bank model, share many similarities with Ramses

Lindé (Federal Reserve Board) Discussion of Bache, Brubakk and Maih
Estimates a New Keynesian small open economy model using Bayesian techniques

- NEMO - New Norges Bank model, share many similarities with Ramses
- Small open economy model with imperfect pass-through, nominal and real frictions
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions
- Make different assumptions about the conduct of monetary policy
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions

- Make different assumptions about the conduct of monetary policy
 - Simple rule
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions
- Make different assumptions about the conduct of monetary policy
 - Simple rule
 - Loss function
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions
- Make different assumptions about the conduct of monetary policy
 - Simple rule
 - Loss function
- Careful investigation of which approximation of policy behavior that makes most sense empirically
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions

- Make different assumptions about the conduct of monetary policy
 - Simple rule
 - Loss function

- Careful investigation of which approximation of policy behavior that makes most sense empirically
 - In-of-sample fit of the model
Brief summary
This very interesting paper...

- Estimates a New Keynesian small open economy model using Bayesian techniques
 - NEMO - New Norges Bank model, share many similarities with Ramses
 - Small open economy model with imperfect pass-through, nominal and real frictions

- Make different assumptions about the conduct of monetary policy
 - Simple rule
 - Loss function

- Careful investigation of which approximation of policy behavior that makes most sense empirically
 - In-of-sample fit of the model
 - Out-of-sample forecasting performance (univariate and multivariate statistics)
Brief summary
This very interesting paper...

- Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis
Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis

- Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(λ) approach to misspecification
Brief summary
This very interesting paper...

- Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis
 - Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(λ) approach to misspecification

- Key findings:
Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis

- Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(\(\lambda\)) approach to misspecification

Key findings:

- Marginal likelihood substantially higher when modeling conduct of monetary policy with loss function based approach - opposite finding to Adolfson et al. (2008)
Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis

- Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(λ) approach to misspecification

Key findings:

- Marginal likelihood substantially higher when modeling conduct of monetary policy with loss function based approach - opposite finding to Adolfson et al. (2008)
- Support of loss function based approach relative to simple rule approach also when allowing for model misspecification
Brief summary
This very interesting paper...

- Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis
 - Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(λ) approach to misspecification

- Key findings:
 - Marginal likelihood substantially higher when modeling conduct of monetary policy with loss function based approach - opposite finding to Adolfson et al. (2008)
 - Support of loss function based approach relative to simple rule approach also when allowing for model misspecification
 - However, both versions of model suffer from misspecification, strong improvement in fit when allowing for misspecification, \(\hat{\lambda} \approx 1 < \infty \)
Brief summary

This very interesting paper...

- Similar approach to this question as in Adolfson et al. (2008) but extend our work by allowing for model misspecification and more elaborate forecasting analysis
 - Use the Del Negro & Shorfheide (2004, IER) DSGE-VAR(\(\lambda\)) approach to misspecification

- Key findings:
 - Marginal likelihood substantially higher when modeling conduct of monetary policy with loss function based approach - opposite finding to Adolfson et al. (2008)
 - Support of loss function based approach relative to simple rule approach also when allowing for model misspecification
 - However, both versions of model suffer from misspecification, strong improvement in fit when allowing for misspecification, \(\hat{\lambda} \approx 1 < \infty\)
 - Forecasting performance improved when allowing for misspecification, interest rates and inflation model forecasts close to official Norges Bank forecasts for inflation and the policy rate
Discussion outline

- Sample and set of observed variables used when estimating the model
Discussion outline

- Sample and set of observed variables used when estimating the model
- Simple rule vs. loss function estimation results
Discussion outline

- Sample and set of observed variables used when estimating the model
- Simple rule vs. loss function estimation results
- DSGE-VAR(λ) estimation results
Discussion outline

- Sample and set of observed variables used when estimating the model
- Simple rule vs. loss function estimation results
- DSGE-VAR(\(\lambda\)) estimation results
- DSGE-VAR(\(\hat{\lambda}\)) and Norges Bank forecasts
The sample used by the authors (1987Q1 — 2007Q4) covers several monetary regimes.
The sample used by the authors (1987Q1 – 2007Q4) covers several monetary regimes

Not a problem for a DSGE model parameters
The sample used by the authors (1987Q1 – 2007Q4) covers several monetary regimes

- Not a problem for a DSGE model parameters
- But, potentially a problem for the monetary policy estimates
The sample used by the authors (1987 Q1 – 2007 Q4) covers several monetary regimes

- Not a problem for a DSGE model parameters
- But, potentially a problem for the monetary policy estimates
- Robustness analysis when allowing for break in policy and inflation target prior to 1993?
Sample and set of observed variables

The sample used by the authors (1987 Q1 – 2007 Q4) covers several monetary regimes

- Not a problem for a DSGE model parameters
- But, potentially a problem for the monetary policy estimates
- Robustness analysis when allowing for break in policy and inflation target prior to 1993?

Non-petroleum version of the Norwegian economy (e.g. match mainland GDP)
The sample used by the authors (1987 Q1 – 2007 Q4) covers several monetary regimes

- Not a problem for a DSGE model parameters
- But, potentially a problem for the monetary policy estimates
- Robustness analysis when allowing for break in policy and inflation target prior to 1993?

- Non-petroleum version of the Norwegian economy (e.g. match mainland GDP)
- Can you analyse an economy like Norway without oil in the model? GE-effects of oil?
Sample and set of observed variables

Lower inflation and interest rates after 1993
You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.

2. As I understand it, you also assume that foreign variables are given by univariate AR(1) processes. This assumption is surely strongly rejected by the data.

I would include foreign variables as observables and model them as seriously as possibly, otherwise you will end up with problems when using the model for policy analysis.
You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.
Sample and set of observed variables

You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.

2. As I understand it, you also assume that foreign variables are given by univariate AR(1) processes. This assumption is surely strongly rejected by the data.
You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.

2. As I understand it, you also assume that foreign variables are given by univariate AR(1) processes. This assumption is surely strongly rejected by the data.

I would include foreign variables as observables and model them as seriously as possibly, otherwise you will end up with problems when using the model for policy analysis.
You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.

2. As I understand it, you also assume that foreign variables are given by univariate AR(1) processes. This assumption is surely strongly rejected by the data.

I would include foreign variables as observables and model them as seriously as possibly, otherwise you will end up with problems when using the model for policy analysis.

- Bigger system, but should be feasible (Adolfson et al. 2007)
You use 11 variables to estimate the model. No foreign variables included. Problematic for two reasons:

1. Without the foreign variables included, NEMO can filter out foreign variables to be very different to what they actually are to improve the fit of the model.
2. As I understand it, you also assume that foreign variables are given by univariate AR(1) processes. This assumption is surely strongly rejected by the data.

I would include foreign variables as observables and model them as seriously as possibly, otherwise you will end up with problems when using the model for policy analysis.

- Bigger system, but should be feasible (Adolfson et al. 2007)

- For same reasons, would work with trade balance rather than exports (or take in imports)
Simple rule vs. loss function estimation results

- Specification of simple rule:

\[r_t^* = \omega_r r_{t-1}^* + (1 - \omega_r) [\omega_\pi \hat{\pi}_t + \omega_y \hat{y}_t + \omega_{rer} \hat{rer}_t] \]

(SR)
Simple rule vs. loss function estimation results

- Specification of simple rule:

\[r_t^* = \omega_r r_{t-1}^* + (1 - \omega_r) [\omega_\pi \hat{\pi}_t + \omega_y \hat{y}_t + \omega_{rer} \hat{rer}_t] \]

(SR)

- Notice: Rule deterministic, no policy shock in the rule. Normally (e.g. Adolfson et al., 2008) we allow for i.i.d. policy shocks
Simple rule vs. loss function estimation results

- Specification of simple rule:

\[r_t^* = \omega_r r_{t-1}^* + (1 - \omega_r) \left[\omega_\pi \hat{\pi}_t + \omega_y \hat{y}_t + \omega_{rer} \hat{rer}_t \right] \]

(SR)

- Notice: Rule deterministic, no policy shock in the rule. Normally (e.g. Adolfson et al., 2008) we allow for i.i.d. policy shocks

- Loss function specification

\[L_t = \pi_t^2 + \omega_y y_t^2 + \omega_{\Delta r} (r_t^* - r_{t-1}^*)^2 \]

and associated implicit targeting rule

\[r_t^* = \omega_S S_{t-1} + \omega_\theta \theta_t \]

(ITR)

where; \(S \) - vector with state variables (i.e. \(r_{t-1}^* \), Lagrangian multipliers + other states) and \(\theta_t \) - vector with shocks
Simple rule vs. loss function estimation results

- **Specification of simple rule:**

\[r_t^* = \omega_r r_{t-1}^* + (1 - \omega_r) \left[\omega_{\pi} \hat{\pi}_t + \omega_y \hat{y}_t + \omega_{rer} \hat{r}_{et} \right] \]

(SR)

- **Notice:** Rule deterministic, no policy shock in the rule. Normally (e.g. Adolfson et al., 2008) we allow for i.i.d. policy shocks

- **Loss function specification**

\[L_t = \pi_t^2 + \omega_y y_t^2 + \omega_{\Delta r} (r_t^* - r_{t-1}^*)^2 \]

and associated implicit targeting rule

\[r_t^* = \omega_S S_{t-1} + \omega_{\theta} \theta_t \]

(ITR)

where; \(S \) - vector with state variables (i.e. \(r_{t-1}^* \), Lagrangian multipliers + other states) and \(\theta_t \) - vector with shocks

- **With large number of unobserved variables in the estimation, this probably gives ITR an advantage over SR**
Use authors’ posterior means to compute residuals in SR (compute \hat{y}_t in SR by HP-filter the GDP series, estimate the constant)
Simple rule vs. loss function estimation results
A simple assessment on role of policy shocks

- Use authors’ posterior means to compute residuals in SR (compute \hat{y}_t in SR by HP-filter the GDP series, estimate the constant)
- Fitted and actual values of SR shown in figure below
Simple rule vs. loss function estimation results
A simple assessment on role of policy shocks

- Use authors’ posterior means to compute residuals in SR (compute \hat{y}_t in SR by HP-filter the GDP series, estimate the constant)
- Fitted and actual values of SR shown in figure below
- From figure, compute standard deviation of policy shock of about 1.04.

Passing the residuals and the standard deviation to log-likelihood function yields a contribution of about 122 units. Given that difference in favor of LF to SR is 65.7 units, this assumption could be of key importance.
Simple rule vs. loss function estimation results
A simple assessment on role of policy shocks

- Use authors’ posterior means to compute residuals in SR (compute \hat{y}_t in SR by HP-filter the GDP series, estimate the constant)
- Fitted and actual values of SR shown in figure below
- From figure, compute standard deviation of policy shock of about 1.04.
 - Passing the residuals and the standard deviation to log-likelihood function yields a contribution of about 122 units
Simple rule vs. loss function estimation results
A simple assessment on role of policy shocks

- Use authors’ posterior means to compute residuals in SR (compute \hat{y}_t in SR by HP-filter the GDP series, estimate the constant)
- Fitted and actual values of SR shown in figure below
- From figure, compute standard deviation of policy shock of about 1.04.
 - Passing the residuals and the standard deviation to log-likelihood function yields a contribution of about 122 units
 - Given that difference in favor of LF to SR is 65.7 units, this assumption could be of key importance
Simple rule vs. loss function estimation results

Fit of the estimated Taylor rule
In Adolfson et al. (2008), marginal likelihood for SR falls by 87.5 units if policy shock is omitted.
Simple rule vs. loss function estimation results
An alternative assessment on the importance of allowing for policy shocks

- In Adolfson et al. (2008), marginal likelihood for SR falls by 87.5 units if policy shock is omitted
 - Standard deviation of inflation target shocks in the pre-inflation targeting period increases a lot
In Adolfson et al. (2008), marginal likelihood for SR falls by 87.5 units if policy shock is omitted.

- Standard deviation of inflation target shocks in the pre-inflation targeting period increases a lot.

Given that estimated Taylor-type rules have about the same fit on Swedish as on Norwegian data, could conceivably think about and improvement in LML in this range when introducing policy shocks.
Simple rule vs. loss function estimation results
An alternative assessment on the importance of allowing for policy shocks

- In Adolfson et al. (2008), marginal likelihood for SR falls by 87.5 units if policy shock is omitted
 - Standard deviation of inflation target shocks in the pre-inflation targeting period increases a lot
- Given that estimated Taylor-type rules have about the same fit on Swedish as on Norwegian data, could conceivably think about and improvement in LML in this range when introducing policy shocks
 - Thus, have the potential of changing ranking between SR and LF in the paper
Simple rule vs. loss function estimation results
An alternative assessment on the importance of allowing for policy shocks

- In Adolfson et al. (2008), marginal likelihood for SR falls by 87.5 units if policy shock is omitted
 - Standard deviation of inflation target shocks in the pre-inflation targeting period increases a lot
- Given that estimated Taylor-type rules have about the same fit on Swedish as on Norwegian data, could conceivably think about and improvement in LML in this range when introducing policy shocks
 - Thus, have the potential of changing ranking between SR and LF in the paper
- To sum up: Should consider including policy shocks in SR. More fair comparison of SR and LF approaches
When converting the DSGE model to VAR representation, the authors use 2-lags.
When converting the DSGE model to VAR representation, the authors use 2-lags.

- Fever than Del Negro et al. (2007) and Adolfson et al. (2007) (4 lags). How accurate is the approximation?
When converting the DSGE model to VAR representation, the authors use 2-lags. Fever than Del Negro et al. (2007) and Adolfson et al. (2007) (4 lags). How accurate is the approximation?

Authors argue that accuracy of approximation is not of key importance.
When converting the DSGE model to VAR representation, the authors use 2-lags

- Fever than Del Negro et al. (2007) and Adolfson et al. (2007) (4 lags). How accurate is the approximation?

Authors argue that accuracy of approximation is not of key importance

- But, suppose the DSGE model is the true DGP and that you need 4 lags to approximate this DGP. Would you still obtain $\lambda = \infty$ as the sample size $T \to \infty$ if only 2 lags is used in the VAR? Most likely this is not the case, and it means that we cannot interpret the absolute degree of misspecification from the optimal value of λ
When converting the DSGE model to VAR representation, the authors use 2-lags

- Fever than Del Negro et al. (2007) and Adolfson et al. (2007) (4 lags). How accurate is the approximation?

Authors argue that accuracy of approximation is not of key importance

- But, suppose the DSGE model is the true DGP and that you need 4 lags to approximate this DGP. Would you still obtain $\lambda = \infty$ as the sample size $T \to \infty$ if only 2 lags is used in the VAR? Most likely this is not the case, and it means that we cannot interpret the absolute degree of misspecification from the optimal value of λ

Good to report approximation accuracy, check if DSGE-VECM(λ) can improve accuracy
When converting the DSGE model to VAR representation, the authors use 2-lags

- Fever than Del Negro et al. (2007) and Adolfson et al. (2007) (4 lags). How accurate is the approximation?

Authors argue that accuracy of approximation is not of key importance

- But, suppose the DSGE model is the true DGP and that you need 4 lags to approximate this DGP. Would you still obtain \(\lambda = \infty \) as the sample size \(T \to \infty \) if only 2 lags is used in the VAR? Most likely this is not the case, and it means that we cannot interpret the absolute degree of misspecification from the optimal value of \(\lambda \)

Good to report approximation accuracy, check if DSGE-VECM(\(\lambda \)) can improve accuracy

- Figure below from Adolfson et al (2007)
It would be helpful to provide some more evidence to what extent the estimated value of λ tilts the empirical properties of the model.
It would be helpful to provide some more evidence to what extent the estimated value of λ tilts the empirical properties of the model.

- Impulse response functions (Del Negro et al., 2007), autocovariance functions (Adolfson et al., 2007)
DSGE-VAR estimation results

DSGE-VAR misspecification

- It would be helpful to provide some more evidence to what extent the estimated value of λ tilts the empirical properties of the model.
 - Impulse response functions (Del Negro et al., 2007), autocovariance functions (Adolfson et al., 2007)
 - See figure below from Adolfson et al (2007), $\hat{\lambda} = 5.5$
DSGE-VAR estimation results

DSGE-VAR misspecification

- Your estimated value of $\hat{\lambda} \approx 1$ suggests that misspecification is substantial in both versions of the model.

- Too little persistence in the estimated simple rule, $\hat{\omega} = 0.67$. When estimating simple rule as a single equation (imposing the 1.5 coefficient on inflation), obtain $\hat{\omega} = 0.975$ (see Table below). This alternative parameterization should give rise to more persistence in interest rate forecasts, i.e. explain the difference between pure model and DSGE-VAR forecasts.

- Low estimated value for $\hat{\omega}$ most likely driven by omitted policy shocks.
DSGE-VAR estimation results

DSGE-VAR misspecification

- Your estimated value of $\hat{\lambda} \approx 1$ suggests that misspecification is substantial in both versions of the model.
 - Too little persistence in the estimated simple rule, $\omega_r = 0.67$. When estimating simple rule as a single equation (imposing the 1.5 coefficient on inflation, obtain $\omega_r = 0.975$ (see Table below).
Your estimated value of $\hat{\lambda} \approx 1$ suggests that misspecification is substantial in both versions of the model.

- Too little persistence in the estimated simple rule, $\omega_r = 0.67$. When estimating simple rule as a single equation (imposing the 1.5 coefficient on inflation, obtain $\omega_r = 0.975$ (see Table below).
- This alternative parameterization should give rise to more persistence in interest rate forecasts, i.e. explain the difference between pure model and DSGE-VAR forecasts.
DSGE-VAR estimation results

Your estimated value of $\hat{\lambda} \approx 1$ suggests that misspecification is substantial in both versions of the model.

- Too little persistence in the estimated simple rule, $\omega_r = 0.67$. When estimating simple rule as a single equation (imposing the 1.5 coefficient on inflation, obtain $\omega_r = 0.975$ (see Table below).

- This alternative parameterization should give rise to more persistence in interest rate forecasts, i.e. explain the difference between pure model and DSGE-VAR forecasts.

- Low estimated value for ω_r most likely driven by omitted policy shocks.
Dependent Variable: R_APR
Method: Least Squares
Date: 11/19/08 Time: 12:55
Sample: 1987Q1 2007Q4
Included observations: 84
Convergence achieved after 5 iterations
R_APR = C(1)*R_APR(-1) + (1-C(1))*(1.5*PIE_APR+4*C(3)*YGAP_HP
 +C(4)*RERALT+4.75)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>0.974969</td>
<td>0.024951</td>
<td>39.07598</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(3)</td>
<td>1.202010</td>
<td>1.476648</td>
<td>0.814012</td>
<td>0.4180</td>
</tr>
<tr>
<td>C(4)</td>
<td>0.239815</td>
<td>0.577171</td>
<td>0.415501</td>
<td>0.6789</td>
</tr>
</tbody>
</table>

R-squared 0.955774 Mean dependent var 6.142500
Adjusted R-squared 0.954682 S.D. dependent var 2.835808
S.E. of regression 0.603688 Akaike info criterion 1.863542
Sum squared resid 29.51957 Schwarz criterion 1.950357
Log likelihood -75.26877 Hannan-Quinn criterion 1.898441
Durbin-Watson stat 0.958730
Figure 4: Actual policy rate, Norges Bank’s official forecasts and model forecasts
A striking finding in the paper is that the DSGE-VAR(\(\hat{\lambda}\)) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank.
A striking finding in the paper is that the DSGE-VAR(\(\hat{\lambda}\)) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank

- The DSGE-VAR(\(\hat{\lambda}\)) offsets the propagation mechanism in NEMO
A striking finding in the paper is that the DSGE-VAR(\hat{\lambda}) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank.

The DSGE-VAR(\hat{\lambda}) offsets the propagation mechanism in NEMO.

However, in order to provide firm evidence for this claim, must also compare forecasts for other key variables as well (e.g. nominal wages, labor productivity growth).
A striking finding in the paper is that the DSGE-VAR(\(\hat{\lambda}\)) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank.

- The DSGE-VAR(\(\hat{\lambda}\)) offsets the propagation mechanism in NEMO.

However, in order to provide firm evidence for this claim, must also compare forecasts for other key variables as well (e.g. nominal wages, labor productivity growth).

- Even if forecasts for all variables about the same, could be the case Norges Bank have used judgment in their official forecasts, but have held firm belief in the propagation mechanism in NEMO.
DSGE-VAR and Norges Bank forecasts

Can the DSGE-VAR approximate the forecasting process in Norges Bank?

- A striking finding in the paper is that the DSGE-VAR(\(\hat{\lambda}\)) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank.
 - The DSGE-VAR(\(\hat{\lambda}\)) offsets the propagation mechanism in NEMO.
- However, in order to provide firm evidence for this claim, must also compare forecasts for other key variables as well (e.g. nominal wages, labor productivity growth).
 - Even if forecasts for all variables about the same, could be the case Norges Bank have used judgment in their official forecasts, but have held firm belief in the propagation mechanism in NEMO.
- Forecasts from the DSGE-VAR(\(\lambda\)) are not optimal efficient forecasts according to NEMO.
DSGE-VAR and Norges Bank forecasts
Can the DSGE-VAR approximate the forecasting process in Norges Bank?

- A striking finding in the paper is that the DSGE-VAR(\(\hat{\lambda}\)) forecasts for inflation and the policy rate are very similar to the official forecasts published by Norges Bank. Authors interpret this to imply that the DSGE-VAR is the "mental model" of Norges Bank.
 - The DSGE-VAR(\(\hat{\lambda}\)) offsets the propagation mechanism in NEMO.
- However, in order to provide firm evidence for this claim, must also compare forecasts for other key variables as well (e.g. nominal wages, labor productivity growth).
 - Even if forecasts for all variables about the same, could be the case Norges Bank have used judgment in their official forecasts, but have held firm belief in the propagation mechanism in NEMO.
- Forecasts from the DSGE-VAR(\(\lambda\)) are not optimal efficient forecasts according to NEMO.
 - How conduct optimal monetary policy in the DSGE-VAR model(\(\hat{\lambda}\))?