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Abstract

I provide a generalization of Calvo price setting, to include non-
overlapping contracts as a special case and embed this in a small DSGE
model. The resulting Generalized Phillips Curve (GPC) nests New-
Keynesian and Neoclassical versions. I linearize the model around a
potentially non-zero trend inflation rate, and estimate it on US data
using Bayesian methods, allowing for Markov switching in the vari-
ances of structural shocks. I find that the Phillips curve is 100% New
Keynesian. There is no evidence of either forward or backward in-
dexation. I illustrate that trend inflation affects the estimation of the
Phillips curve.
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Introduction
I provide a generalization of the price setting described in Calvo (1983)

that includes non-overlapping contracts as a special case.1 The resulting
Generalized Phillips Curve (GPC) nests New Keynesian and Neoclassical
versions. Models with one-period price contracts are applied in the theoret-
ical literature, and have policy implications that differ from the overlapping
contracts case.2 The empirical relevance of the non-overlapping contract
model is therefore of interest. I estimate this generalized Phillips curve3 as
part of a small DSGE model on US data using Bayesian methods. I allow
for Markov switching in structural shocks. I find that the GPC may be
described as 100% New Keynesian.

I obtain the GPC model by assuming that a fraction of the agents in the
Calvo model who do not reset their price optimally in a given period, in-
stead index their price to the expected next period price index. Full forward
indexation reduces to a model with prices set one period in advance4. That
produces a Neoclassical Phillips curve. On the other hand, zero indexa-
tion produces the standard New Keynesian Phillips curve, with overlapping
contracts. The GPC model captures both cases, as well as intermediate
ones.

As emphasized by Hornstein (2007), Cogley and Sbordone (2008), Cog-
ley, Primiceri, and Sargent (2010) and Ascari and Sbordone (2013), the re-
duced form parameters of the Phillips curve are not policy invariant: They

1Since Fischer (1977), Gray (1978), Taylor (1979) and Calvo (1983), staggered (over-
lapping) contracts as opposed to one-period contracts, have been the standard for nominal
rigidities in applied macromodels. See Taylor (1999) and Fuhrer (2010).

2A discussion of optimal policy in a one-period non-overlapping contract model is
provided in Mankiw and Weinzierl (2011). The model is a simple version of a sticky-
information model. One period contracts are also discussed in Woodford (2003), chapter
3, section 1. As a minimalist way of introducing real effects of monetary policy, the
non-overlapping contracts model has been used in the new open economy macro litera-
ture, see Obstfeld and Rogoff (1996) chapter 10, and also Corsetti and Pesenti (2005).
The framework of Krugman (1998) has an interpretation as one with a one-period price
contract.

3 In accordance with common practice, I use the term "Phillips curve" to describe a
relationship between inflation and output. Some would argue that the term "aggregate
supply curve" would be more appropriate for this purpose, and reserve the term "Phillips
curve" for the relationship between unemployment and inflation. Fuhrer (2010) uses the
term "inflation Euler equation".

4That model is also equal to the information lag model of Ball, Mankiw, and Reis
(2005), in the special case of an information lag equal to one.
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depend on the trend price inflation rate. Hence, I linearize the model around
a potentially non-zero trend inflation rate, and I also recognize the effect of
trend growth on the parameters of the GPC.

In the empirical section of this paper, I ask whether the US Phillips
curve has been a mix between Neoclassical and New Keynesian versions,
or whether the pure version of either fits the data better. I answer by
estimating the degree of forward indexation in the GPC. Using US data for
price inflation, output and interest rates, I follow Liu, Waggoner, and Zha
(2011), and allow for Markov switching in structural shocks to the economy.
For comparison, I also estimate a non-nested version of the model with a
standard hybrid New Keynesian Phillips curve (HNKPC), which is based on
potential backward indexation. The two models are identical and equal to
the purely forward-looking NKPC when forward- and backward indexation,
respectively, is equal to zero. That special case is preferred by the data.
The model with Markov switching in variances outperforms a version with
constant variances. I also estimate the models on demeaned data, where I
counterfactually calibrate trend inflaton and output growth to zero. Based
on those estimations, one would mistakenly find evidence of indexation.

The next section presents the model. In section 2, I present the equi-
librium conditions and the steady state, in section 3 monetary and fiscal
policy is discussed, and in section 4 the full set of log-linearized equilibrium
conditions are presented. In section 5, I describe empirical results.

1 The model

A representative yeoman farmer5 maximizes her objective with respect to
consumption C̃, her output price X, money m and bonds B, subject to a
period budget constraint,6

En

{ ∞∑
t=n

βt−nu(C̃t) + v(Yt; κ̃t) + f(
mt

Pt
)

}
, (1)

(1 + ωt)XtỸt +mt−1 + (1 + it−1)Bg
t−1 +Bt−1 =

tt + PtC̃t +mt +Bg
t + δt,t+1Bt. (2)

5See Woodford (2003), p. 149 for a discussion of the yeoman farmer model.
6To save notation, capital letters are used for individual as well as aggregate variables.

With a total mass of identical agents equal to one, and perfect risk sharing, aggregate
consumption and output will equal individual consumption in equilibrium.
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The constraint says that nominal income from production Ỹt, sold at price
Xt including taxes or subsidies, (1+ωt), plus financial assets and their return
brought over from last period (money mt−1 , state contingent claims Bt−1

and government bonds (1+it−1)Bg
t−1) must equal (lump sum) nominal taxes

tt, nominal consumption expenditure PtC̃t and new holdings of financial
assets7.

A no-Ponzi game constraint rules out unbounded borrowing;

Et

{
lim
s→∞

mt+s +Bt+s
Pt+s

Πk=s
k=t (1 + ik)

−1 ≥ 0

}
. (3)

Period utility from the composite consumption good C̃ is

u(C̃t) =
C̃1−ρ
t − 1

1− ρ , (4)

where the composite consumption good is

C̃t ≡ [

∫ 1

j=0
(C̃(j)t)

θ−1
θ dj]

θ
θ−1 . (5)

Producers of different period t goods C̃(j)t are indexed by j, and θ describes
the demand elasticity of substitution between goods. As described in B,
demand for consumption good j is given by

C̃(j)= (
X(j)

P
)−θ · C̃. (6)

The period disutility from producing output Ỹt for each agent is

v(Ỹt; κ̃t) = −1

2
κ̃tỸ

2
t . (7)

7Bgt is the nominal value of risk free government bonds, while Bt is a vector of quantities
of state contingent claims, and δt,t+1 is the vector of the prices of those claims. Each state
contingent claim pays one unit of currency in the subsequent period given a particular
realization of the state in that period. The gross risk free nominal interest rate, 1 + it (I
will also use It for this variable) is therefore equal to [δt,t+1·1]−1, where 1 is a vector of
ones.

4



κ̃t is an exogenous aggregate supply shock, or "laziness" shock8. Utility
from real money balances is additively separable and given by some function
f(mP ), f ′ ≥ 0, f ′′ 5 0.

1.1 The flexible price model

First order conditions for utility maximization with respect to consumption
and asset holdings give the consumption Euler equation,

C̃−ρt = Et{
β(1 + it)

Pt+1/Pt
C̃−ρt+1}. (8)

The condition for optimal price setting of price X(i) by agent i, if prices are
perfectly flexible is (see appendix A)

X(i)t
Pt

=
θ
θ−1

1 + ωt

κ̃tỸt

C̃−ρt
. (9)

This says that the relative price X(i)t
Pt

should equal the marginal rate of sub-
stitution between production and consumption, corrected for any markup
net of subsidies,

µt =
θ
θ−1

1 + ωt
.

I will use the notation M̃C = v′y = κ̃tỸt and M̃U = u′c = C̃−ρt .

There is no government consumption. Equilibrium output and consump-
tion under flexible prices is determined by productivity (κ̃t) and the distor-
tion from monopolistic competition and fiscal policy (µt);

Ỹt = (µtκ̃t)
− 1
1+ρ . (10)

With output given by exogenous shocks and fiscal policy, monetary pol-
icy and the consumption Euler equation are left to pin down price inflation
and interest rates in the flexible price model.

8 In a yeoman farmer model, the labor market is internalized. κ may be interpreted as
a labor supply shock or a productivity shock. In particular, following Obstfeld and Rogoff
(1996), the productivity variable κ may be understood as follows: Let disutility from work
effort l be given by -φl and the production function be Alα, α < 1. Inverting the production
function gives l = ( y

A
)1/α. Given α = 1

2
and κ = 2φ

A1/α
, we get −φ( y

A
)1/α = − 1

2
κy2.
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1.2 Price setting that nests Calvo Price setting and one-
period contracts

In order to introduce nominal rigidities, I assume that in any period, a
fraction α of arbitrarily chosen price setters are not free to adjust their
price, as in Calvo (1983). Price setters sell whatever volume is demanded
at the price they set. There is indexation of some or all of the sticky prices
to expected next period price inflation9;

Xt(j) = [Et−1(Πt)]
σXt−1(j),Πt = Pt/Pt−1. (11)

One interpretation of this price indexation scheme is that the non-optimizing
price setters have access to one period lagged information. A fraction σ of
agents (arbitrarily chosen ), are allowed to act on it. With σ = 1, this
price setting corresponds to the lagged information model of Mankiw and
Reis (2002) and Ball, Mankiw, and Reis (2005), in the special case of a one
period information lag.

Thus, the model allows for full updating of non-optimal prices with one-
period delayed information (σ = 1), or only partial updating ( σ < 1). The
case of full indexation (σ = 1), implies that the overlapping contracts of the
Calvo model in effect are replaced by a fraction (1−α) of flexible prices and
a fraction α of one-period contracts.

In appendix C, I derive optimal price setting. The relative price set by
flexible-price agents today, Xt/Pt = xt, depends on the relationship between
current and expected future costs from producing on the one hand, and
current and future marginal utility from consuming on the other, where the
future is weighted by the likelihood α that the price will stay effective going
forward. This is captured in equation (1.2) in table 1.

The optimal relative price also depends on competition among producers
as captured by θ, and the production subsidy ωt, and a possible need to
front-load price increases (decreases) due to trend inflation (deflation), in
case of less than full indexation (σ < 1). The equilibrium conditions are
summarized in table 1. Equation 1.1 is the consumption Euler equation
with equilibrium output substituted in for consumption. Equation 1.2 is
the price setting equation, and 1.3 is the price index. There is no explicit
production sector in the yeoman farmer model. Output and inflation are

9 I thank an anonymous referee for suggesting that this indexation scheme could capture
the Neoclassical one period contract case.
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determined jointly in combination with some monetary policy that remains
to be specified.

Table 1: Equilibrium conditions

Ỹ −ρt = Et{ β(1+it)
Pt+1/Pt

Ỹ −ρt+1}. (1.1)

x1+θ
t = θ

(θ−1)
Kt
Dt
, xt = Xt/Pt (1.2a)

K̃t ≡ M̃Ct + αβEt[Gt,1ψ
−2θ
t+1 K̃t+1], Gt,1 ≡ Ỹt+1

Ỹt
(1.2b)

D̃t≡M̃U t(1 + ωt)+αβEt[Gt,1ψ
1−θ
t+1 D̃t+1], (1.2c)

1 = (1− α)x1−θ
t + α {ψt}1−θ , ψt ≡ [Et−1(Πt)]

σ
(Πt)

−1 (1.3)

2 Normalized equilibrium conditions and the steady
state

I redefine the real variables in order to establish a model in terms of station-
ary real variables. Non-detrended variables have decorations like Z̃, while
the corresponding detrended variables do not. Let the detrended level of
consumption Ct be equal to C̃t

Zt
, and detrended output Yt = Ỹt

Zt
. The trend

growth factor is Ỹt
Ỹt−1

= Zt
Zt−1

≡ Γ.

The flexible-price level of output Y flex
t in detrended form is a function

of the detrended productivity shock defined as κt ≡ κ̃tZ1+ρ
t ;

Ỹ flex
t = (µtκ̃t)

− 1
1+ρ ,

Ỹ flex
t /Zt = (µtκtZ

−(1+ρ)
t )

− 1
1+ρ

1

Zt
=> (12)

Y flex
t ≡ (µtκt)

− 1
1+ρ .

Growth in actual (non-detrended) output is equal to Γ times growth in
detrended potential output;

Ỹ flex
t /Ỹ flex

t−1 = Γ · ( µtκt
µt−1κt−1

)
− 1
1+ρ = Γ · Y flex

t /Y flex
t−1 (13)

Detrended marginal cost is derived:

M̃Ct = κ̃tỸt = κtZ
−(1+ρ)
t YtZt = κtYtZ

−ρ
t => MCt = M̃Ct · Zρt , (14)

while detrended marginal utility follows from

M̃U t = C̃−ρt = C−ρt Z−ρt => MUt = M̃U t · Zρt . (15)
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Table 2 repeats the equilibrium conditions in terms of detrended real vari-
ables.

Table 2: Normalized equilibrium conditions

Yt
−ρ = Et{ β(1+it)

Pt+1/Pt
Y −ρt+1}Γ−ρ. (2.1)

x1+θ
t = θ

(θ−1)
Kt
Dt
. (2.2a)

Kt ≡ κtYt + αβEt[
Yt+1
Yt
ψ−2θ
t+1Kt+1Γ1−ρ]. (2.2b)

Dt≡ (1 + ωt)C
−ρ
t + αβEt[

Yt+1
Yt
ψ

1−θ
t+1

Dt+1Γ1−ρ]. (2.2c)

1 = (1− α)x1−θ
t + α {ψt}1−θ , ψt = [Et−1(Πt)]

σ
Π−1
t (2.3)

The steady state versions of the above equations associated with some
nominal steady state Π, x, and real growth rate Γ are given below. I impose
the normalization κ = 1, and I assume an elimination of steady state effects
of monopolistic competition by fiscal policy, so that µ = 1 => y = c =

µκ
− 1
1+ρ = 1.

Table 3: Steady state equilibrium conditions
Π = IβΓ−ρ. (3.1)

x1+θ = θ
1−θ

K
D
, µ ≡ θ

(1+ω)(θ−1) = 1. (3.2a)

K = 1

1−αβΓ1−ρΠ
2θ(1−σ) . (3.2b)

D = (1+ω)

1−αβΓ1−ρΠ
(1−σ)(θ−1) . (3.2c)

1 = (1− α)x1−θ + αΠ
(σ−1)(1−θ)

, ψ = Π
σ−1

(3.3)

3 Monetary and Fiscal Policy

The instrument of monetary policy is the nominal interest rate. Authorities
respond to deviations in the price inflation rate from the target, which also
determines trend inflation, and deviation of output from some benchmark10,
when they set the gross nominal interest rate It:

It
I

= (
It−1

I
)ρi [(

Πt

Π∗
)φπ(

Yt

Y bench
t

)φY ](1−ρi) · emi,t , (16)

I ≡ ΠβΓ−ρ, Π∗ = Π.

10The definition of the output gap is discussed in section 4.
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Πt is gross period inflation and Π∗ is the gross inflation target. It is the
gross nominal interest rate. The steady state nominal rate is pinned down
by the inflation target and the consumption Euler equation.

Fiscal authorities collect nominal lump sum taxes and hand out subsi-
dies, so that the steady state effect of monopolistic competition is eliminated.
Fiscal policy is noisy, however, implying that there will be a difference be-
tween the flexible price output level and the first best output level.11 I do not
consider fiscal policy in the following, other than its effect on the markup. I
justify that by assuming that fiscal policy is always Ricardian. This means
that fiscal policy makes sure that the public sector transversality condition,
or debt sustainability condition, holds in nominal (as well as real) terms,
given any path for nominal interest rates and price inflation that is being
considered by monetary authorities. For example, implementing a balanced
budget rule,

tt − ωtXtỸt = 0,

will make the value of public nominal debt stay constant, and that will be
suffi cient for the transversality condition to hold in nominal terms under
most forms of monetary policy.12

4 A log-linear approximation around steady state

I use small letters in place of capital letters to denote normalized variables’
log deviations from their steady state values. Where necessary, I will use a
hat x̂ to state that a variable x is expressed in terms of log deviation from its
steady state. The disturbance κt in the log-linearized model in this section,
is the normalized version of the original shock, in terms of deviation from its
steady state. For simplicity, I still use notation κt in the rest of the paper.

4.1 Two definitions of the output gap

With κ normalized at κ = 1, we have normalized Y = 1, and the definition
of the flexible-price output gap expressed in terms of log deviations from

11This way of including markup shocks has precedence in Ball, Mankiw, and Reis (2005).
12One exception is that a balanced budget policy will not be compatible with a strictly

zero nominal interest rate with probability one at all times. In order to allow for a strictly
zero nominal interest rate at all times, fiscal policy has to make the path of nominal public
debt fall over time. See Schmitt-Grohe and Uribe (2000).
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trend is
yfgapt ≡ yt − yflext = yt +

1

1 + ρ
(µ̂t + κt). (17)

Since

µt ≡
θ
θ−1

1 + ωt
and

θ
θ−1

1 + ω
= 1, (18)

the log deviation from steady state of µ̂t ≈ −ωt, and hence

yfgapt ≡ yt −
1

1 + ρ
(ωt − κt). (19)

The above expression says that flexible-price output gap will be zero if above
(below) trend output yt is explained with high (low) productivity or a nega-
tive (positive) markup distortion. The deviation from first best trend output
is given by

ygapt ≡ yt − (− 1

1 + ρ
κt). (20)

4.2 The consumption Euler equation

The linearized consumption Euler equation (2.1) is

−ρyt = Et{it − πt+1 − ρyt+1}. (21)

4.3 Price setting and the Phillips curve

The Price index (2.3) expressed on log-linear form is

0 = (1− α)x1−θx̂t + αΠ
(σ−1)(1−θ)

ψ̂t, (22)

where
ψ̂t ≡ −(πt − σEt−1πt). (23)

In appendix D, I use the price setting equations (2.a−c) and the price index
equations (22) and (23) to derive the log-linearized price setting equation:

−ψ̂t(µ1 + µ2L
−1 + µ3L

−2) = (24)

Et(µ4 + µ5L
−1)mct − Et(µ6 + µ7L

−1)(mut + ωt) + µ8Et(yt+1 − yt),

where the µ− coeffi cients are functions of structural parameters and L is
the lag operator.
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4.4 The complete model with a Generalized Phillips Curve
(GPC)

In appendix G, I substitute in the output gap for (mut + ωt) and mct in
equation (24), and rearrange to show that the generalized Phillips curve is
given by (25). The generalized Phillips curve (GPC), along with the con-
sumption Euler equation (26) and the interest rate rule (27), now together
determine price inflation and output deviations from their trends and the
deviation of the interest rate from its steady state:

(µ1 + µ2L
−1 + µ3L

−2)(πt − σEt−1πt) =

Et(µ6 + µ7L
−1)(1 + ρ)yfgapt (25)

+Etµ8(1− L−1)[(
1− ρ
1 + ρ

)κt − 2ygapt ],

yt = −1

ρ
Et(it − πt+1) + Etyt+1, (26)

it = ρiit−1 + (1− ρi)[φπ · πt + φY · ygapt ] +mi,t. (27)

There are six structural parameters in the model; Γ, σ, α, β, ρ, and θ, in
addition to the four policy parameters: ρi, φπ, φy and Π.

4.4.1 Some special cases for the GPC

In appendix H, I show that in the special case of a trend inflation rate equal
to zero; Π = 1, or full indexation σ = 1, the Phillips curve equation (25)
reduces to:

Et(1− βΓ(1−ρ)L−1)(πt − σEt−1πt) = κ0 · yfgapt , (28)

where

κ0 =
(1− αβΓ1−ρ)(1− α)(1 + ρ)

(1 + θ)α
, yfgapt ≡ yt +

1

1 + ρ
(κt − ωt). (29)

With α = 1, κ0 approaches zero, and there is then no link between
the output gap and deviations of the inflation rate from its trend. With
α = 0 (fully flexible prices), κ0 is infinite, but the output gap is always zero,
and the expression on the right hand side of (28) is not well defined. The
model then reduces to the one presented in section 1.1 on page 5, where
monetary policy and the Euler equation together determine the paths of
nominal variables, and the real and nominal dichotomy applies.
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4.4.2 The pure New Keynesian Phillips curve

In the case with Π = 1, no indexation (σ = 0), and Γ = 1 or ρ = 1 (log
utility), equation (25) reduces to the familiar New Keynesian Phillips curve:

πt = Etβ · πt+1 + κ0 · yfgapt .

4.4.3 The pure Neoclassical Phillips curve

With full indexation, (σ = 1), and given any Π and Γ, equation (25) reduces
to what we may call a Neoclassical Phillips curve, or aggregate supply curve:

πt − Et−1πt = κ0 · yfgapt .

4.5 The hybrid New Keynesian Phillips curve (HNKPC)

As discussed in appendix F, the New Keynesian version of this model, with
lagged indexation instead of forward indexation, is obtained by replacing
equation (25) with the following Phillips curve.

(µ1 + µ2L
−1 + µ3L

−2)(πt − σπt−1) =

Et(µ6 + µ7L
−1)(1 + ρ)yfgapt (30)

+Etµ8(1− L−1)[(
1− ρ
1 + ρ

)κt − 2ygapt ],

The difference between this Phillips curve and the one with some forward
indexation, is on the left hand side of the equality sign only: Lagged infla-
tion πt−1 replaces Et−1πt. Both the hybrid New Keynesian Phillips curve
(HNKPC) (30) and the Generalized Phillips curve (GPC) (25) encompass
the pure forward-looking Phillips curve as a special case, when σ = 0 in each
model.

5 Estimation

I use Junior Maih’s RISE toolbox for the estimations. See Alstadheim,
Bjornland, and Maih (2013) for description and references.
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5.1 Data and calibration

I use quarterly US data for GDP growth and PCE inflation (both SA) and
3-month interest rates from the St. Louis FRED database, for q1 1960 to
q2 201313. I read in the data series without demeaning or detrending, as
they appear in figure 1.

1960 1970 1980 1990 2000 2010 2020
­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

0.05
PCE inflation
GDP growth
3M Interest

Figure 1: US Quarterly data; 3m interest rate divided by 400, log growth
rates for PCE and GDP

13The FRED series ID for the inflation and GDP series are PCECTPI (inflation) and
GDPC1 (GDP). The source for both is the US Dep. of Commerce: Bureu of Economic
Ananalysis. For the interest rate, the FRED series ID is IR3TED01USQ156N (source:
OECD MEI). I use the log first difference of the PCE series and the GDP series. I divide
the interest rate series by 400.

13



The shock processes are specified as follows,

κt = ρκ · κt−1 + σκ · εκ,t

ωt = ρω · ωt−1 + σω · εω,t
mt = ρm ·mt−1 + σm · εm,t.

In addition, I allow for a measurement error in output, εy. The obser-
vation equations are, with observed log change in the price index given by
πobst , observed log change in real GDP given by dyobst and observed nominal
interest rate divided by 400 given by iobst :

πobst = πt + log(Π),

dyobst = yt − yt−1 + log(Γ) + εy,t,

iobst = it + log(I).

I is implicitly defined by the steady state condition Π = IβΓ−ρ, and
therefore depends on the estimation of Π and structural parameters.

The structural parameters of the model are Γ, σ, α, β, ρ, and θ, the pol-
icy parameters are ρi, φπ, φy and Π, and the parameters for exogenous
processes are their variances σm, σκ, σω, and their autocorrelation coeffi -
cients ρκ, ρm, ρω . The standard deviation of the measurement error εy,
given by σy, is also estimated. In the Markov Switching environment, the
parameters to estimate will also include the transition probabilities.

I impose a tight prior on the trend inflation rate Π in order to make the
model implication for the steady state nominal interest rate I be equal to
the sample mean for the nominal interest rate. Had I used sample means to
calibrate (priors for) the inflation rate and the real growth rate, as well as
the inflation rate, there would have been dynamic inconsistency (the Euler
equation would not hold for any β < 1).

I set the prior on the trend inflation rate to Π v N,with 99, 9% of the
distribution between 1.004 and 1.006. I calibrate ρ = 1.2, β = 0.999 and
log(Γ) = 0.0076 (equal to the sample mean growth rate). With an estimated
trend inflation rate around log(Π) = 0.005, (annual inflation of 2%), the
implied steady state nominal rate will be about equal to the sample mean,
which is 0.0152 (corresponding to a 6% annual interest rate). Inspecting the
data in the figure, we see that this imposes the assumption that deviations
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from the trend inflation rate were large in the 1970s and 1980s. A version of
the model with Markov switching in the trend inflation rate was estimated
as a robustness check. In terms of fit to the data as measured by the MDD,
that model was dominated by the fixed steady-state inflation-rate version.
This is consistent with results in Liu, Waggoner, and Zha (2011) and Sims
and Zha (2006).

5.2 Results

I estimate two versions of the model with the GPC; The Constant parameter
model (C), and the Switching Variance model (SV). In the latter version, the
standard deviations of the four disturbances (technology shock εκ, markup
shock εω, the monetary policy shock εm and the measurement error in the
observation equation for output εy) are allowed to switch - in a synchronized
fashion - between two states. I estimate the corresponding model versions
with the HNKPC as well. As can be seen from the tables below, which report
the indexing parameter σ along with Marginal Data Densities (MDD) for
the different specifications, a version with Markov switching in the variances
of structural shocks fits the data best.

5.2.1 Main models:

Model MDD∗ GPC1): σ MDD HNKPC1): σ
Constant 2483 0.23 2469 0.11

Switch Variance 2533 0.00 2533 0.00
*)Marginal Data Density (LaPlace approximation)
1) Posterior mode

The table shows that the special case where the GPC and the HNKPC
models are identical, when there is zero indexation in both, is preferred by
the data. The result is the same when the models are estimated on a sample
that ends in 2008 q2, indicating that the result is robust to not including
the great recession period.

5.2.2 Robustness checks

Above, I used PCE inflation in the dataset. Estimation results with the CPI
instead are given below, confirming the case of no indexation.
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Results with the CPI intead of PCE inflation:

Model MDD∗ GPC1): σ MDD HNKPC: σ
Constant 2435 0.25 2435 0.04

Switch Variance 2479 0.00 2478 0.00
*)Marginal Data Density (LaPlace approximation)
1) Posterior mode

I also estimate the model on demeaned data series. In that case, I cali-
brate Π = 1.00 and Γ = 1.00, and also impose a steady state nominal interest
rate equal to zero on the observation equation for the nominal interest rate.
Results show that parameter estimates are sensitive to both demeaning the
data and to allowing variances of disturbances to switch:

Demeaned data, PCE inflation:

Model MDD∗ GPC1): σ MDD∗) HNKPC1): σ
Constant 2506 0.16 2507 0.47

Switch Variance 2562 0.27 2508 0.04
*)Marginal Data Density (LaPlace approximation)
1) Posterior mode

5.2.3 Estimated model with Markov switching in the variance of
shocks

The parameter estimates of the SV models for the GPC case and the HNKPC
case are given below. The estimates reflect that the two models are the same
in the special case that the data prefer.
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Structural parameters of SV, GPC model and HNKPC model:

Parameter Prior dist1) GPC2) HNKPC2)

σ U, [0,1], (100) 0.00 (0.0000) 0.00 (0.0000)

α U, [0,1], (100) 0.32 (0.0015) 0.32 (0.0015)

φπ N, [1,3], (95) 1.06 (0.0053) 1.19 (0.0051)

φy N,[0,3], (95) 2.39 (0.0082) 2.31 (0.0084)

ρi N, [0,0,9], (95) 1.49 (0.0032) 1.47(0.0033)

Π N, [1.004,1.006], (99,9) 1.0048 (0.0003) 1.0048 (0.0003)

MDD 2533 2533
1) Distribution, range and percent of distribution within range
2)Mode and standard deviation of posterior.

Parameters, exogenous shock processes:

Par Prior1) GPC2) HNKPC2)

ρκ beta, [0.1,0.6], (90) 0.37 (0.0050) 0.40 (0.0048)

ρω beta, [0.1,0.6], (90) 0.58 (0.0038) 0.55 (0.0039)

ρm beta, [0.1,0.6], (90) 0.61 (0.0018) 0.61 (0.0018)

σκ inv . gam ., [0 .005 ,1 .0 ], (90) .0028 (0.0007)/.0145 (0.0012) .0028 (0.0006)/.0145 (0.0012)

σω inv . gam ., [0 .005 ,1 .0 ], (90) .0067 (0.0007)/.0249 (0.0014) .0067 (0.0007)/.0253 (0.0014)

σm inv . gam ., [0 .005 ,1 .0 ], (90) .0074 (0.0005)/.0077 (0.0010) .0074 (0.0005)/.0077 (0.0009)

σy inv . gam ., [0 .005 ,1 .0 ], (90) .0073 (0.0005)/.0123 (0.0011) .0073 (0.0005)/.0123 (0.0010)

1) Distribution, range and percent of distribution within range
2) Mode and standard deviation of posterior

Parameters, switching probabilities:

Switch prob. Prior1) GPC2) HNKPC2)

Lo to hi var. N [ 0.001, 0.2] (95) 0.0496 (0.0039) 0.0487 (0.0040)

Hi to lo var. N [ 0.001, 0.2] (95) 0.0861 (0.0077) 0.0853 (0.0082)
1) Distribution, range and percent of distribution within range
2) Mode and standard deviation of posterior.

Figure 2 illustrates the smoothed probability of being in the high volatil-
ity regime, along with the graph for price inflation. This picture is based on
the GPC model, but the graph for the HNKPC model is almost exactly the
same.
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Figure 2: Probability of high volatility regime, GPC model with switching
variances.

6 Concluding remarks

I find that a version of the generalized Phillips curve (GPC) with zero for-
ward indexation fits US data better than either a more Neoclassical Phillips
curve or a hybrid New Keynesian Phillips curve (HNKPC).
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Appendix

A The flexible price model

The price X(i)t is set by each representative agent i in period t, in order to
maximize the utility value of revenue minus the utility loss associated with
production:

Max
X(i),t

En

{ ∞∑
t=n

βt−n
(
λt(1 + ωt)X(i)tỸt −

1

2
κ̃tỸ (i)t

2

)}
,

or, with demand Ỹ (i)t = (X(i)t
Pt

)−θỸt:

Max
X(i)s,t

En

{ ∞∑
t=n

βt−n
(
λt(1 + ωt)X(i)t[(

X(i)t
Pt

)−θỸt]−
1

2
κ̃t[(

X(i)t
Pt

)−θỸt]
2

)}
.

The first order condition for optimal price setting if prices are flexible is
then given by equation (9) in the main text.

B The intratemporal problem

The agents’intratemporal cost minimization problem is:

Min [PC − λ[C − 1]] , (B.1)

where the agent minimizes with respect to C . P is the price index.

λC−1 = λ ≡ P. (B.2)

From

Ct ≡ [

∫ 1

j=0
(Cj,t)

θ−1
θ dj]

θ
θ−1 , (B.3)

demand for good j in terms of the relative price X(j)
P is;(

Cj
C

)
= (

X(j)

P
)−θ.
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This means that demand for an individual firms’goods is

Cj= (
X(j)

P
)−θC, (B.4)

and the price index is

P=

[∫ 1

j=0
X(j)1−θdj

] 1
1−θ

.

C Sticky price setting and forward indexation

There is potential indexation of prices by the fraction α of price setters who
do not optimize their price in period t :

Xt(j) = [Et−1(Πt)]
σXt−1(j),Πt = Pt/Pt−1. (31)

Inserting prices of firms (1 − α) that optimize their price X (they are all
equal and hence set the same price, so we can disregard indexing of individual
firms), and prices of sticky-price firms (α) who potentially index to expected
inflation into (32), noting that the distribution of initial prices for non-
optimizing firms (j) equals the lagged price index:

Pt =

{
(1− α)X1−θ

t + α

∫ 1

j=0

[
[Et−1(Πt)]

σ
Pt−1(j)

]1−θ
dj

} 1
1−θ

=
{

(1− α)X
(1−θ)
t + α[Et−1(Πt)]

σ(1−θ)P 1−θ
t−1

} 1
1−θ

Dividing through by the price index Pt, and using xt ≡ Xt/Pt, gives:

1 = (1− α)x1−θ
t + α

{
[Et−1(Πt)]

σ
(Πt)

−1
}1−θ

(32)

Analogous to Hornstein (2007), but with forward indexation instead of
lagged indexation, define

ψt ≡ [Et−1(Πt)]
σ
(Πt)

−1,

and the price index may be expressed as

1 = (1− α)x1−θ
t + α {ψt}1−θ . (33)
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Given indexation according to (31), the producer’s relative price xn evolves
according to

xn+τ (j) = (Πn+τ )−1[En+τ−1(Πn+τ )]σxn+τ−1(j) = ψn+τxn+τ−1(j),

τ ≥ 1.

The τ -period ahead relative price is, with repeated substitution,

xn+τ (j) =
τ∏
k=1

[Π−1
n+k[En+k−1(Πn+k)]

σ]xn(j) =
τ∏
k=1

ψn+kxn(j) = Ψn,τxn(j),

Ψn,0 ≡ 1.

The level of the price Xn+τ , set at period n, develops according to

Xn+τ = xn+τPn+τ = xn+τPn

τ∏
r=1

Πn+r = Ψn,τxnPn

τ∏
r=1

Πn+r, (34)

so that demand in period τ for producer i′s production, who is setting price
in period n, is

Ỹτ (i) = (Ψn,τxn)−θỸτ (35)

The optimal price Xn(j) is chosen in period n to maximize expected utility
for consumer/producer j, given that the price will stay effective (but po-
tentially subject to forward indexation) with probability α in each period
ahead:

Max
X(j)n

En

{ ∞∑
τ=n

(αβ)τ−n
(
λτ (1 + ωτ )X(j)τ Ỹ (X(j))τ −

1

2
κ̃τ Ỹ (X(j))τ

2

)}
.

Noting that the producer supplies whatever volume is demanded, given
the price she sets, and disregarding indexing of agents j, the agent’s max-
problem when setting her price is:

Max
xn

En

{ ∞∑
τ=n

(αβ)τ−n
(
λτ [(1 + ωτ )[Xτ (Ψn,τxn)−θỸτ ]− 1

2
κ̃τ [(Ψn,τxn)−θỸτ ]2

)}
,

or, using (34) and (35),

Max
xn

En

{ ∞∑
τ=n

(αβ)τ−n

(
Pn(

τ∏
r=1

Πn+r)
1

Pτ C̃
ρ
τ

[(1 + ωτ )[Ψ1−θ
n,τ x

1−θ
n Ỹτ ]− 1

2
κ̃τ [Ψ−θn,τx

−θ
n Ỹτ ]2

)}
.
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Differentiating with respect to the relative price xn gives the first order
condition

x1+θ
n =

θ

(θ − 1)

En
∑∞

τ=n(αβ)τ−nκ̃τΨ−2θ
n,τ Ỹ

2
τ

En
∑∞

τ=n(αβ)τ−n(
τ∏
r=1

Πn+r)Pn
(1+ωτ )

Pτ C̃
ρ
τ

[Ψ1−θ
n,τ Ỹτ ]

. (36)

Dividing through by Ỹn in the numerator and denominator and defining
the growth rate Gn,τ = Ỹτ

Ỹn
, and marginal cost MCτ = κ̃τ Ỹτ , and marginal

utility MUτ = C̃−ρτ :

x1+θ
n =

θ

(θ − 1)

En
∑∞

τ=n(αβ)τ−nκ̃τ ỸτΨ−2θ
n,τ Gn,τ

En
∑∞

τ=n(αβ)τ−n
(Πτr=1πn+r)Pn(1+ωτ )

Pτ C̃
ρ
τ

[Ψ1−θ
n,τ Gn,τ ]

, (37)

or, re-indexing, replacing n by t, and using that Pτ/Pn = Πτ
r=1(Πn+r);

x1+θ
t =

θ

(θ − 1)

Et
∑∞

τ=0(αβ)τM̃Ct+τΨ−2θ
t,τ Gt,τ

Et
∑∞

τ=0(αβ)τM̃U t+τ (1 + ωt+τ )[Ψ1−θ
t,τ Gt,τ ].

. (38)

Define

K̃t ≡ Et
∞∑
τ=0

(αβ)τM̃Ct+τΨ−2θ
t,τ Gt,τ

and

D̃t ≡ Et
∞∑
τ=0

(αβ)τM̃U t+τ (1 + ωt+τ )[Ψ1−θ
t,τ Gt,τ ],

and the first order conditions becomes:

x1+θ
t =

θ

(θ − 1)

K̃t

D̃t

, (39)

where the following recursive definitions following from the definitions above
will be useful:

K̃t = M̃Ct + αβEt[Gt,1ψ
−2θ
t+1 K̃t+1], (40)

D̃t=M̃U t+τ (1 + ωt+τ ) + αβEt[Gt,1ψ
1−θ
t+1 D̃t+1]. (41)
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D Linearizing the price setting equation

From ψ = Π
σ−1

and (22) we have

x̂t =
−αΠ

(σ−1)(1−θ)

[1− αΠ
(σ−1)(1−θ)

]
ψ̂t. (42)

I log linearize optimal price setting, equation (2.2a) in table 2, to get

x̂t =
1

(1 + θ)
(kt − dt). (43)

(42) and (43), and the definitions in table 4 below, imply

−(1 + θ)η0ψ̂t = kt − dt. (44)

In log-linearized form, (2.2b) becomes

kt = [1− αβΓ1−ρΠ
2θ(1−σ)

]mct+

αβΓ1−ρΠ
2θ(1−σ)

Et[(yt+1 − yt) + kt+1 − 2θψ̂t+1], (45)

mct = κt + yt,

while (2.2c) becomes

dt = [1− αβΓ1−ρΠ
(1−σ)(θ−1)

](ωt +mut)+

αβΓ1−ρΠ
(1−σ)(θ−1)

Et[(yt+1 − yt) + dt+1 + (1− θ)ψ̂t+1], (46)

mut = −ρyt.

It is useful to rewrite (45), and let gt ≡ yt+1 − yt:

Et

{
(1− η2L

−1)kt + η22θψ̂t+1 − η2gt

}
= η3mct, (47)

and (46):

Et(1− η1L
−1)dt + η1Et[(θ − 1)ψ̂t+1 − gt] = [1− η1](ωt +mut), (48)

where:

Table 4: η parameters

η0≡ αΠ
(σ−1)(1−θ)

[1−αΠ
(σ−1)(1−θ)

]

η1≡ αβΓ(1−ρ)Π
(1−σ)(θ−1)

,

η2≡ αβΓ(1−ρ)Π
2θ(1−σ)

,

η3≡ [1− αβΓ(1−ρ)Π
2θ(1−σ)

].
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Now, expand equation (48), and reorganize, to define B:

Et(1− η1L
−1)(1− η2L

−1)dt =

Et(1− η2L
−1){[1− η1] (ωt +mut)− η1Et[(θ − 1)ψ̂t+1 − gt]} = B,

and the same with equation (47), to define A:

Et(1− η1L
−1)(1− η2L

−1)kt =

Et(1− η1L
−1){η3mct + [η2gt − η22θψ̂t+1]} = A.

The above implies

Et(1− η1L
−1)(1− η2L

−1)[kt − dt] = A−B = (49)

Et(1− η1L
−1){η3mct − η22θψ̂t+1}

+Et(1− η2L
−1){η1(θ − 1)ψ̂t+1 − [1− η1] (ωt +mut)}+ (η2 − η1)gt.

And now (44) can be written in an expanded fashion as

Et(1− η1L
−1)(1− η2L

−1)[−(1 + θ)η0ψ̂t] = A−B. (50)

I plug in for A−B from the definition in (49 ), and collect ψt−terms on the
left hand side, to get

− Et(1− η1L
−1)(1− η2L

−1)[(1 + θ)η0ψ̂t]+

Et(1− η1L
−1){η22θψ̂t+1} − Et(1− η2L

−1)η1(θ − 1)ψ̂t+1 (51)

= Et(1− η1L
−1){η3mct}+

Et(1− η2L
−1){−[1− η1] (ωt +mut)}+ (η2 − η1)Etgt.

This gives

−ψ̂t(µ1 + µ2L
−1 + µ3L

−2) = (52)

Et(µ4 + µ5L
−1)mct − Et(µ6 + µ7L

−1)(ωt +mut) + µ8Etgt,

where
−ψ̂t= (πt−σEt−1πt),

with µ- parameters defined in table 5.
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Table 5: µ-parameters.
µ1 ≡ (1 + θ)η0,

µ2 ≡ −[(1 + θ)η0(η2 + η1) + η22θ + η1(1− θ)],
µ3 ≡ (1 + θ)(η0 + 1)η1η2,

µ4 ≡ η3,

µ5 ≡ −η3η1,

µ6 ≡ [1− η1],

µ7 ≡ −η2[1− η1],

µ8 ≡ (η2 − η1)

E An alternative representation in terms of a factorized poly-

nomial

Defining λ1 and λ2 implicitly by:

(µ1+µ2L
−1+µ3L

−2) = µ3(
µ1

µ2
+
µ2

µ3
L−1+L−2) =

µ3

λ1λ2
(1−λ1L

−1)(1−λ2L
−1),

lets us write equation (52) as

µ3

λ1λ2
(1− λ1L

−1)(1− λ2L
−1)(πt − σEt−1πt)

= Et(µ4 + µ5L
−1)mct − Et(µ6 + µ7L

−1)(ωt +mut) + µ8Etgt,

or

(1− λ1L
−1)(1− λ2L

−1)(πt − σEt−1πt) =

κp

[
Et(1 +

µ5

µ4
L−1)mct − Et(

µ6

µ4
+
µ7

µ4
L−1)(ωt +mut) +

µ8

µ4
Etgt

]
,

where
κp = λ1λ2

µ4

µ3
,

and hence

(πt − σEt−1πt) = (53)

κp
[
(1− λ2L

−1)(1− λ2L
−1)
]−1 ·[

Et(1 +
µ5

µ4
L−1)mct − Et(

µ6

µ4
+
µ7

µ4
L−1)(ωt +mut) +

µ8

µ4
Etgt

]
.
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F The price setting equation with standard indexation to lagged

inflation

The derivation of the price setting equation is exactly as in D, but with

ψ̂t = −(1− σL)πt, (54)

and the price setting equation then becomes

(1− σL)πt = (55)

κp
[
(1− λ2L

−1)(1− λ2L
−1)
]−1 ·[

Et(1 +
µ5

µ4
L−1)mct − Et(

µ6

µ4
+
µ7

µ4
L−1)(ωt +mut) +

µ8

µ4
Etgt

]
.

G The Phillips curve

It is useful to define the parameter T :

1−µ6

µ4
= −αβΓ(1−ρ)[Π

2θ(1−σ)−Π(1−σ)(θ−1)]/[1− αβΓ(1−ρ)π2θ(1−σ)] = T.

(56)
Other parameter combinations equal −T :

µ5

µ4
−µ7

µ4
=−αβΓ(1−ρ)[Π(1−σ)(θ−1)−Π2θ(1−σ)]/[1− αβΓ(1−ρ)πs2θ(1−σ)] = −T,

(57)
µ8

µ4
=−T.

Parts of the last line in (53) can be expressed as

Et(1 +
µ5

µ4
L−1)mct − Et(

µ6

µ4
+
µ7

µ4
L−1)(mut −mct +mct) = (58)

Tmct − TL−1mct + Et(
µ6

µ4
+
µ7

µ4
L−1)(mct −mut).

Using this in equation (53) gives

(πt − σEt−1πt) = (59)

κp
[
(1− λ2L

−1)(1− λ2L
−1)
]−1 ·[

EtT [mct −mct+1] + Et(
µ6

µ4
+
µ7

µ4
L−1)(mct − (ωt +mut))− Tgt

]
.
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Or, with gt = yt+1 − yt,

(πt − σEt−1πt) =

κp
[
(1− λ2L

−1)(1− λ2L
−1)
]−1 ·[

EtT [κt + yt − (κt+1 + yt+1)] + Et(
µ6

µ4
+
µ7

µ4
L−1)(mct − (ωt +mut))− T (yt+1 − yt)

]
.

Furthermore,

yfgapt ≡ yt +
1

1 + ρ
(κ̂t − ωt) => (60)

(1 + ρ)yfgapt = (1 + ρ)yt + (κt − ωt) (61)

= mct − (ωt +mut),

and hence

(πt − σEt−1πt) =

κp
[
(1− λ2L

−1)(1− λ2L
−1)
]−1 ·[

EtT [κt + 2yt − (κt+1 + 2yt+1)] + Et(
µ6

µ4
+
µ7

µ4
L−1)((1 + ρ)yfgapt )

]
.

Inserting κp = λ1λ2
µ4
µ3
, we get

(λ1λ2)−1µ3

µ4

[
(1− λ2L

−1)(1− λ2L
−1)
]

(πt − σEt−1πt) =[
EtT [κt + 2yt − (κt+1 + 2yt+1)] + Et(

µ6

µ4
+
µ7

µ4
L−1)((1 + ρ)yfgapt )

]
.

And the above is equal to

1

µ4
(µ1 + µ2L

−1 + µ3L
−2)(πt − σEt−1πt) =[

EtT [κt + 2yt − (κt+1 + 2yt+1)] + Et(
µ6

µ4
+
µ7

µ4
L−1)((1 + ρ)yfgapt )

]
.

Use the fact that µ8
µ4

= −T , and multiply by µ4;

(µ1 + µ2L
−1 + µ3L

−2)(πt − σEt−1πt) =[
Etµ8[(κt+1 + 2yt+1)− (κt + 2yt)] + Et(µ6 + µ7L

−1)((1 + ρ)yfgapt )
]
.
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And finally note that

(κt+1+2yt+1)− (κt+2yt) =

(κt+1+2(yfgapt+1 −
1

1 + ρ
(κ̂t+1−ωt+1)))− (κt+2(yfgapt − 1

1 + ρ
(κ̂t−ωt)) =

2(ygapt+1−y
gap
t ) + (

ρ− 1

ρ+ 1
)(κt+1−κt)

Which implies

(µ1 + µ2L
−1 + µ3L

−2)(πt − σEt−1πt) =

Et(µ6 + µ7L
−1)(1 + ρ)yfgapt (62)

+Etµ8(1− L−1)[(
1− ρ
ρ+ 1

)κt − 2ygapt ].

Note the appearance of both ygapt and yfgapt in the above equation.

H A special case: approximation around a zero trend inflation

rate

In case of Π = 1 or σ = 1; the parameters in table 4 become

Table 4b: η parameters when Π = 1 or σ = 1

η0= α
[1−α]

η1= αβΓ(1−ρ)≡ η,
η2= αβΓ(1−ρ)≡ η,
η3= [1− αβΓ(1−ρ)] ≡ 1− η.
Now, with η1 = η2, (49) simplifies to

Et(1− η1L
−1){−(1 + θ)η0ψ̂t} =

Et[{η3mct − η22θψ̂t+1}+ {η1(θ − 1)ψ̂t+1 − [1− η1] (ωt +mut)}+ (η2 − η1)gt],

=>

Et(1− ηL−1)[−(1 + θ)η0ψ̂t] = (63)

Et{[1− η]mct − η2θψ̂t+1}+ Et{η(θ − 1)ψ̂t+1 − [1− η] (ωt +mut)}.
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And this simplifies to

Et(1− (η +
ηθ + η

(1 + θ)η0
)L−1)[−̂ψt] = (64)

Et{
[1− η]

(1 + θ)η0
((1 + ρ)yfgapt ),

and further to

Et(1− βΓ(1−ρ)L−1)(πt − σEt−1πt) =

(1− αβΓ(1−ρ))(1− α)

(1 + θ)α
(1 + ρ)yfgapt . (65)
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