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Abstract

Regulatory stress-testing is an important tool for ensuring banking system health in many

countries around the world. Current methodologies ensure banks are well capitalized against

the scenarios in the test, but it is unclear how resilient banks will be to other plausible scenarios.

This paper proposes a new methodology for choosing scenarios that uses a measure of systemic

risk with Correlation Pursuit variable selection, and Sliced Inverse Regression factor analysis,

to select variables and create factors based on their ability to explain variation in the systemic

risk measure. The main result is under appropriate regularity conditions, when the banking

system is well capitalized against stress-scenarios based on movements in the factors, then an

approximation of systemic risk is low, i.e. the banking system will be well capitalized against the

other plausible scenarios that could affect it with high probability. The paper also shows there

are circumstances when several scenarios may be required to achieve systemic risk objectives.

The methodology should be useful for regulatory stress-testing of banks. Although not done

in this paper, the methodology can potentially be adapted for stress-testing of other financial

firms including insurance companies and central counterparties.
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1 Introduction

The great recession that accompanied the Financial Crisis of 2007-2009 underlined the role of the

financial sector in real economic activity, and it highlighted the importance of controlling systemic

risk, the risk that many banks and financial institutions become financially distressed at the same

time and thus become impaired in their ability to provide financial intermediation for the real

sector. As part of the US regulatory response to the financial crisis, stress-tests were conducted

that assessed the ability of individual banks to maintain sufficient capital (measured by net worth

over risk-weighted assets) to perform as financial intermediaries during a small number of adverse

hypothetical macroeconomic and financial scenarios. Remedial action was required for banks that

had capital shortfalls. Since the first U.S. stress test in 2009, regulatory stress testing has become

the primary tool to assess the capital adequacy of many banks in the US as well as systemically

important financial institutions that are not banks (nonbank-SIFIs). 1 The use of regulatory stress

testing has also expanded in many other countries. The set of risks covered in the tests include

the risks present in banks loan books (aka their banking books). Some stress-tests also cover the

risks in large banks trading books. Separate stress scenarios are often used to cover the risks in the

banking and trading books.2

An important goal of regulatory stress-testing is to ensure that systemic risk is low. This

requires the financial system to be well capitalized against the small number of scenarios in the

stress-test and against the much broader set of likely scenarios that the financial system may face.

It is uncertain whether the current methodology for regulatory stress-testing creation can achieve

this goal. An important shortcoming of the current approach is banks exposures are not formally

used when creating regulatory stress-scenarios. As a consequence, regulatory scenarios may stress

variables banks are not exposed to while failing to stress important variables that banks are exposed

to, the missing variables problem; or they may stress variables in directions in which banks are

hedged or even make profits, while missing directions in which banks take risk, the missing directions

problem.

As an example of the missing variable problem, regulatory scenarios for banks loan books

are often formulated on the basis of a small number of macroeconomic and financial variables

that only weakly explain banks P&L [Guerrieri and Welch (2012), Bolotnyy et. al (2015)] and

whose movements often fail to forecast financial crises since such crises often occur before the

macroeconomy turns down [(Borio et al (2012), Alfaro and Drehmann (2009)].3 These finding

suggest that the small number of variables used for scenario formulation in banks loan books may

1For simplicity all of the institutions to which regulatory stress-testing is applied will be referred to as banks.
2For details see Federal Reserve Board (2014), European Banking Authority (2014), and Bank of England (2014).
3The Federal Reserve’s 2015 CCAR stress scenario for the 6 largest banks trading book positions stresses tens

of thousand of variables. But, only 16 macro-financial variables were utilized for U.S. banking book exposures, and
only 12 macro-financial variables were used for banking book exposures outside of the United States [Federal Reserve
Board (2014)].
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be inadequate, and additional variables may be needed. As an example of the missing directions

problem, capital adequacy for large banks trading book positions is often assessed on the basis of

a few regulatory scenarios that specify the movements of many variables for EBA/UK regulatory

stress tests, and for a very large number of variables (10,000+) for US regulatory stress tests. In

such a high dimensional setting, unless the scenario is chosen very carefully, important directions

of risk-taking may be missed.

To overcome the missing variable and missing direction problems, U.S. regulations also require

each bank to construct a scenario that stresses its most important vulnerabilities. However, because

this approach is based on bank-specfic vulnerabilities, it does not ensure banks are well capitalized

against common vulnerabilities, and hence cannot ensure that systemic risk is low.

This paper introduces a new methodology for creating regulatory stress scenarios; it chooses the

variables to use in a stress-scenario, and the directions and amounts the variables need to be moved

so that if banks are well capitalized against the scenario, then under some conditions (discussed

below) systemic risk will be low as measured by an approximate systemic risk objective. The new

methodology relies on dimension reduction techniques. It is premised on the idea although the value

of banks positions are driven by many variables, these variables are driven by a smaller number of

latent economic factors. The factors are assumed to be the most important determinant of banks

risk at a portfolio level. At an individual bank level, its risk is not determined by all of the factors,

but only those it has not hedged against. On an economy wide level, banks’ common exposures

to unhedged factors can cause them to experiene joint distress and are hence a source of systemic

risk. This reasoning suggests that for stress tests to keep systemic risk low, stress testing policy

needs to ensure banks remain well capitalized against movements in the most important factors

that explain their joint distress. The methodology in this paper pursues this idea by illustrating

how to use supervisory information and statistical techniques to identify banks exposures to the

unhedged factors, and to then designs stress scenarios that keep systemic risk low.

To identify the factors, the variables that affect banks portfolios are simulated, then using

supervisory information on risk exposures they are mapped into changes in the value of banks’

portfolios, and into a measure of banks’ joint financial distress. Then a principal components

factor analysis using Sliced Inverse Regression (SIR) [Li, (1991)], is conducted that identifies an

orthogonalized set of risk factors based on their ability to explain banks’ joint distress.4 Because

banks’ joint distress in the simulations can only depend on economic factors that banks have not

hedged against, the factors identified by SIR will only depend on those factors.5 As explained

below, SIR is more accurate if it does not rely on too many variables to create the factors. To

choose the variables that should be used for SIR, it is assumed that the information on banks joint

4Technically, the factors are chosen based on their correlation with an optimally chosen tranformation of banks
joint distress.

5Formally, the factors identified by SIR will be spanned by banks unhedged factors, and in some conditions both
sets of factors will span the same space.
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distress that is contained in all of the variables, is also contained in a smaller subset of variables that

are best for creating factors that explain banks’ joint distress. The best variables for creating the

factors are chosen using Correlation Pursuit (COP) [Zhong et al. (2012)] variable selection, which

is a method for choosing the best variables to use with Sliced Inverse Regression factor analysis.

To construct a stress scenario using the factors, the factors are shocked by chosen amounts, and

then all variables are set to their conditional expected values given the factor shocks. By relying on

systemic risk factors to determine how variables are shocked, the scenario by construction moves

variables in stressful directions from a systemic risk perspective. The shock sizes and directions

in the stress-scenario are chosen so that if banks are well capitalized against the scenario, then (if

feasible) regulators systemic risk objective will be achieved. Because the approach in this paper

chooses one or a small number of scenarios in order to satisfy a systemic risk objective, I refer to

the approach in the paper as the Systemically Chosen Scenario Approach, or SCSA.

The SIR and closely related COP method are both based on factor analysis. The purpose of

classical factor analysis is to summarize the information about the joint behavior of a large number

of variables by a much smaller number of factors that are linear combinations of the variables. A

disadvantage of classical factor analysis is that the identified factors are chosen to explain variation

in right hand side variables, but not in the dependent variable of interest. Supervised factor analysis

based on inverse regression methods such as COP, SIR, and Partial Least Squares (PLS) differ from

classical factor analysis in that they create factors based on their ability to explain a dependent

variable. SIR and COP differ from PLS because the latter typically requires the left hand side

variable to be a linear combination of the factors, while COP and SIR allow the left hand side to

be a nonlinear function of the factors. Because joint distress caused by asset bubbles bursting, or

asset fire sales may display nonlinear dynamics, an advantage of using SIR and COP to identify

the factors is that these methodologies may still be able to uncover the factor structure even when

there are nonlinearities.6

This paper contributes to both the practice and theory of regulatory stress-testing.7 Current

regulatory practice uses different approaches to specify scenarios for banks’ loan and trading books.

Loan book stresses are usually based on macroeconomic models, and consistent with those models,

utilize a relatively small number of macroeconomic and financial variables that differ from the

variables banks use to model their loan book risks. The disconnect between the variables used by

banks and regulators is a likely contributor to the missing variable problem in loan book stress

tests. By contrast, in the trading book, regulators specify stress scenarios using a very large

6Gibson and Pritsker (2001), and Giglio et al (2012) use PLS in the context of dimension reduction for risk
measurement. A novel aspect of Giglio et al is it uses quantile regression with partial least squares, and hence is an
early attempt to estimate a nonlinear factor structure using PLS. In addition, Kelly and Pruitt (2013) use PLS for
stock market prediction, and Groen and Kapetanios discuss its use for macroeconomic forecasting.

7Seminal contributions to systemic risk stress-testing include the macro-financial models of the Bank of Austria
[Boss et. al. (2006)] and the Bank of England [Alessandri et. al. (2009)]. Bookstaber et. al. (2013) and Schuermann
(2013) provide critical reviews of the literature and regulatory practice.
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number of variables based on the variables banks use to model their risks. This approach to trading

book scenarios mitigates the missing variables problem, but exacerbates difficulties in choosing the

direction and magnitude by which trading book variables should be shocked in a stress scenario.

The methods advocated in this paper have potential to improve stress testing for both sets of books.

Loan book variable selection is improved by choosing from among the variables that banks use to

model loan book risks, and then selecting the loan book variables that are most useful for modeling

systemic risk. To address the missing directions problem in both the loan and trading books, the

paper uses dimension reduction to identify the direction and magnitude of banks vulnerabilities to a

smaller number of identified systemic risk factors, and chooses stress scenarios to achieve regulatory

objectives based on this information.

This paper is related to a growing literature on systemic risk measurement [Bisias et. al.(2012)].

The methodology in this paper does not address all types of systemic risk, but it is related to banks

becoming financially distressed by becoming undercapitalized together. The approach to derive

stress scenarios in this paper requires a measure of systemic risk based on banks’ joint distress.

Measures that could be used in this paper include aggregated across banks versions of Systemic

Expected Shortfall (SES) [Acharya et al, 2010], the Distressed Insurance Premium (DIP) [Huang

et al (2009)], or System Assets in Distress (SAD) [Pritsker, (2014)].8 Although not pursued in

this paper, it should be possible to alternatively measure systemic risk based on commonality in

financial institutions’ liquidity mismatches, and then identify factors that explain vulnerability to

this commonality.9

This paper is closely related to a few papers in the stress-testing literature. Pritsker (2014)

proposes a methodology to achieve systemic risk objectives at lowest capital cost in a framework

that uses a very large number of stress scenarios. This paper proposes a complementary approach

that attempts to accomplish a similar objective by utilizing a smaller number of stress scenarios

that are very carefully chosen. Reliance on a few scenarios is more consistent with regulatory

practice, and may be more practical to implement if computing many scenarios is too costly.

Another complementary paper is Kapinos and Mitnik (2014). They use LASSO regression and

factor analysis to improve on variable selection and P & L modeling as part of stress-testing. Their

application differs from this paper in several important ways, most importantly they do not choose

variables or factors based on their ability to explain systemic risk, and their analysis does not have

a systemic risk objective.10

8System Assets in Distress is aggregated across banks.
9See BIS 2013 for a discussion of liquidity stress testing.

10Kapinos and Mitnik (KM) (2014) choose which macro-variables and transforms of macro-variables explain com-
ponents of banking-book P&L using LASSO regression; they then apply principal components to the chosen variables
and use the components to model how banks respond to changes in macro variables as part of stress-testing. Although
this paper and KM are similar in choosing variables and factors, their focuses are different. KM chooses variables
to estimate models that relate the variables to banks P&L. By contrast, this paper takes the relationships between
the variables and banks P&L as given; it then uses these relationships to chooses variables and factors to create
stress-scenarios to attain systemic risk objectives.
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One criticism of regulatory stress tests is they do not have a clearly defined objective. That is,

it is unclear what objective function justifies their choice of the scenarios they focus on given the

many scenarios they could choose. This paper addresses the criticism by choosing regulatory stress

scenarios in order to keep systemic risk below a target level. Some papers on stress scenario selection

pursue a related approach for firm stress-testing by choosing a stress scenario that generates the

largest losses for the firm from among a set of possible scenarios. If the firm is well capitalized

against the worst-case scenario, it is well capitalized against all scenarios in the set with a probability

exceeding the probability of the set [Breuer et al (2009), Flood and Korenko (2013)].11 An advantage

of this approach is if the objective for a firm is to achieve capital adequacy with a given probability,

then if the set has that probability, assuring capital adequacy against the set meets and exceeds

the objective. A disadvantage of this worst case approach is the objective is often exceeded by

large amounts requiring a firm to hold far more capital than is needed. The method in this paper

achieves the objective but is less conservative because it is designed to just satisfy the objective,

not exceed it. An additional contribution of the approach in this paper is the objective is not for

one firm, but is instead based on a systemic risk objective function.

The rest of the paper proceeds in four sections. Section 2 illustrates weaknesses in regula-

tory stress-testing that the SCSA approach is designed to address. Section 3 explains the SCSA

methodology. Section 4 illustrates the SCSA methodology for some stylized trading portfolios that

are exposed to interest-rate and stock market risk. A final section concludes.

2 Weaknesses in current regulatory stress testing.

This section provides more detail on why current approaches to regulatory stress-testing may fail to

achieve systemic risk objectives. The missing variables problem is straightforward. Therefore, the

exposition below focuses on missing directions, and the requirement that banks must also create

their own bank specific scenarios.

Missing Stress-Test Directions

This section illustrates that if stress-scenarios are created without accounting for the directions

in which banks take risk, the stress-testing exercise may fail to require banks to hold capital against

potentially very significant risk exposures. If, in addition, the direction of missed risk is common

across banks, the fact that the stress-scenario missed the risk-taking can itself be a source of systemic

risk. These points are simple to illustrate in a univariate setting. For example, suppose all banks

write call options on the S&P 500 stock index, and that is the only asset position that they have. In

this setting banks are only subject to the risk that the stock market moves in an upward direction.

11An alternative approach chooses the most likely scenario that generates losses of a given amount [Glasserman,
Kang, and Kang (2015)].
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Because all banks have a common exposure, the chance of large upward movements represents a

systemic risk. If there is only one regulatory scenario and it posits that stock prices move down,

it would have chosen the wrong stress direction, and not required banks to hold additional capital

despite the systemic risk of their positions.

The example of missing directions when there is only one asset is contrived and unrealistic.

But, analogous problems exist in higher dimensional settings. To illustrate, I assume the banking

system consists of M banks (m = 1, . . .M) of equal asset size that invest in a riskfree asset with

gross-return normalized to 1 and N risky assets whose net returns are denoted by the N × 1 vector

R. The amount each bank m invests in risky assets (its exposure) is denoted by the N × 1 vector

δm, and hence the gain or loss in value of each banks portfolio at the end of the stress horizon is

δ′mR.

I assume the time horizon for the stress-test is one period. There is a single stress scenario

denoted by the N × 1 vector R̃ that specifies the returns of each asset over the horizon. By

elementary linear algebra, R̃ has an N − 1 dimensional null space with a matrix of basis vectors

v (= [v1, ...vN−1]).12 Furthermore, each banks exposure vector can be represented as a linear

combination of R̃ and the vectors in its null space. For example, δ1 can be written as

δ1 = θ1R̃+
N−1∑
k=1

γkvk.

= θ1R̃+ e1,

where e1 =
∑N−1

k=1 γkvk represents the part of δ1 in R̃’s null space.

The value of bank 1’s assets at the end of the stress scenario is δ′1R̃. Using the decomposition,

these losses are given by θ1R̃
′R̃. If θ1 is negative, then bank 1 experiences losses in the stress

scenario. Note that bank 1’s losses in the stress scenario do not involve e1 since that part of bank

1’s exposures are in the null-space of the stress scenario vector R̃. Put differently, the exposure

component e1 is a missing risk direction for bank 1 since it represents bank 1’s risk-taking in

directions other than the stress-scenario.

To illustrate the potential consequences of the risks the stress-scenario misses for bank 1, suppose

the missing risks of banks m = 2, . . . ,M are in the same missing risk directions as bank 1, but

scaled up, so their exposure vectors are given by:

δm = θ1R̃+ (10m) ∗ e1 (1)

If each banks capital adequacy was judged on the basis of the single stress scenario R̃, then

12Vectors in R̃’s null space are orthogonal to R̃
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since all of the banks will lose the same amounts in the stress scenario, they will be judged equally

despite the fact their e1 risks differ by arbitrarily large amounts as M → ∞. This failure to

distinguish among huge differences in banks risks represents a microprudential failure of stress-

testing. Additionally, the stress-test fails to detect systemic risk. Recall that systemic risk is the

probability of events that banks experience low capital together. Without loss of generality in this

example, assume the bulk of bank’s risk taking is captured in the second-term of the decomposition

for their exposures. Because in this example, the second terms are all proportional to e1, the

commonality of their exposures are an important source of systemic risk that is missed by the

stress test.

To put the results from this stress-test in perspective, recall that in CCAR regulatory stress-

testing a handful of stress-scenarios are used in the trading book, but tens of thousands of variables

are shocked. In this setting, the dimensionality of the risks missed by any single stress-scenario can

be very high if banks exposures are not accounted for in choosing the scenario.13

Bank Specific Stress Tests

As noted in the introduction, a possible method to address the missing stress direction problem

is to allow each bank to conduct its own tailored bank-specific stress-test based on its own exposures.

Regulatory guidance encourages banks to significantly stress all of its material exposures, which

can cause overconservatism. To illustrate, assume for simplicity that the return on each asset is

independent and normally distributed with a mean of 0 and a variance of 1, and that each element

of δm is 1. Under this circumstance each bank’s portfolio return is distributed N (0, N), where N

is the number of assets in the bank’s portfolio. Assume a tailored stress scenario moves the return

on each asset by 2 standard deviations in a direction that is unfavorable to the bank. The loss to

the bank in the stress-scenario is 2N .

The question is whether this stress scenario is too severe. To see that it probably is, note that

the probability the bank experiences losses that are the same or exceed losses in the stress scenario

are Φ(−2
√
N), where Φ(.) is the CDF of the standard normal distribution. If we assume banks

are exposed to 9 independent sources of risk, this is Φ(−6) or about 10−9. This means requiring

banks to stress themselves in this way against 9 independent sources of risk in the example would

require the bank to hold enough capital so that the probability that losses exceed capital is one in

a billion. Or if the stress horizon is a year, a stress test of this form would require banks to hold

so much capital that losses would exceed capital only about once every billion years.14 While this

example is a very simple illustration of overconservatism, it is also trivial to illustrate it in more

general settings.

13An additional concern is if banks can anticipate the specification of the scenario, they are incented to load up
on risk exposures in its null space to avoid regulatory capital charges. This is a potential concern because results in
Glasserman and Tangirala (2015) suggest that stress-test results and hence perhaps scenarios have been predictable
from year-to-year.

14As N , the number of independent risk sources increases, this approach becomes even more conservative.
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The main lesson is if banks stress every exposure substantially, then it is quite possible that

the capital called for is excessive by any reasonable standard. For this reason, it is unlikely that

banks, when choosing their own scenarios, would choose scenarios that would require them to hold

this amount of capital. But, it then becomes unclear what level of capital adequacy is achieved if

banks each choose their own scenario in a way to avoid excessive capital requirements. A separate

issue is if banks choose their own scenarios, it is very possible that they will not focus on scenarios

where banks have common exposures. Hence, the individual bank scenarios will not ensure that

the banking system as a whole is well capitalized against systemic risk.

In sum, this section has illustrated in detail why the current approach to regulatory stress-

testing may miss important stress-directions, and why bank specific scenarios are not a solution to

the shortcomings of regulatory scenarios.

3 The SCSA methodology

As noted above, current regulatory stress-scenario selection has four main shortcomings:

1. Banks exposures are not formally used in scenario selection.

2. The wrong variables may be utilized in scenario formulation.

3. The variables may be stressed in the wrong directions.

4. The stress-scenarios are not explicitly designed to achieve a systemic risk objective.

The SCSA methodology helps to address all four problems. It is based on three principles:

Principle 1 The value of banks positions (assets, liabilities, and derivative securities) depends on

a large number of variables including interest rates, FX rates, stock returns, implied volatilities, etc.

The large number of variables in turn depend on a much smaller number of underlying potentially

latent economic factors.

Principle 2 Systemic impairment is the event that too many banks become financially distressed

during the same period of time. Systemic risk is the probability that systemic impairment occurs.

One way systemic impairment can occur is if banks are exposed to common economic factors and

those factors move in ways that are unfavorable at the same time.

Principle 3 Regulatory stress scenarios should be chosen so that if the banking system is well

capitalized against the stress-scenarios, then systemic risk is low with high probability.
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Principles 1 and 2 suggest that systemic impairment can occur if the common factors that

banks are exposed to move against them by enough to cause financial distress at the same time.

This suggests, by principle 3, that stress-scenarios should be designed based on movements in the

factors.

The remaining analysis is divided in two parts: section 3.1, provides economic and statistical

theory to identify the factors; section 3.2 provides details on how to use the identified factors to

choose stress scenarios, and if feasible to ensure systemic risk is low.

3.1 Identifying Systemic-Risk Factors using SCSA

The goal of this section is to illustrate how to estimate common factors that affect the value of

banks portfolios based on the set of tangible variables that banks included in a stress test use to

model their assets, plus additional tangible variables that regulators may use to use value banks

assets.15 The total set of variables is denoted by the 1×N vector X.

By principle 1, it is assumed that X is driven by a factor structure,

Assumption 1

X = G(FA, FB, U) (2)

where FA and FB are 1×KA and 1×KB vectors of potentially latent economic factors, and U is

a 1×N vector of idiosyncratic risks that are independent of the factors.

In this setting, the factors FB denote factors that all banks hedge against, while FA represent

factors that banks remain exposed to. To avoid difficulties with missing variables, it is important

not to create a stress-test based on FB: since all banks are hedged against FB nothing would be

learned about banks systemic risk by stressing FB. Conversely, FA represents common factors that

banks remain exposed to; by principle 2 stress-tests should be based on those factors. Each bank i’s

remaining idiosyncratic risk after hedging is represented by εi. Mathematically, this implies Vi(X),

the value of bank i’s portfolio as a function of X, reduces to a function of FA and εi,

Vi(X) = Vi(FA, εi), (3)

which stacked across banks has form

V (X) = V (FA, ε). (4)

15Intangible variables include a loan officers judgment.
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Equations (4) and (2) are useful for thinking about the types of risks that systemic stress-tests

may be designed to control. One form of risk is that banks exposures to common unhedged factors

as captured by FA in equation (4) cause them to become financially impaired at the same time.

A second type of systemic risk is that banks hedging strategies may fail for some reason such as

a counterparty default in which the party that is providing a hedge against factor such as FB

cannot provide it when required to do so. The second type of systemic risk is in the process of

being addressed through policy reforms that control counterparty credit risk.16 The scope of this

paper is limited to the first type of systemic risk, the risk of systemic impairment due to common

factor exposures, where systemic impairment is written as SysImpair(V (X)) because it depends

on V , the vector of the values of banks net worth. Systemic impairment will also be written as

SysImpair(FA, ε) to emphasize its dependence on common factors and residual risks.

The relevant factors FA for creating stress tests are FA. The challenge is how to “identify” those

factors, where formally identification of the factors means the identification of the space spanned

by the factors.17

To identify the factors, I assume an approximation of the mapping between the variables X and

the value of each banks portfolio Vi(.) is known, or knowable to regulatory authorities:

Assumption 2 Regulators have approximations of Vi(X) that are sufficient to identify the factors.

The assumption that regulators have approximations of Vi(X) is increasingly realistic. For

example, in the case of stress-tests for market risk, the Federal Reserve collects risk sensitivities for

approximately 30,000 X variables, where each sensitivity measures how the value of the portolio

changes for small to medium-size changes in individual X variables. Similarly, for positions in the

banking book, the Federal Reserve receives detailed information on banks loan portfolios, including

for example information on each wholesale C&I loan that has value of at least 1 million dollars.

This banking book information is used to analyze how movements in economic variables are likely

to affect the value of the loans. If the value of the approximations depends on the factors FA,

then under additional regularity conditions discussed below, it is also likely that the factors will be

identifiable, as discussed further below.

The steps used to identify the factors are the following:

1. Draw X from its distribution.

2. Compute V (X).

16These reforms include the migration of bilateral derivatives positions to CCPs and higher margin requirements
on bilateral derivatives trades.

17If ψ is KA×KA and has full rank, then ψFA and FA contain same statistical information about V (.). Therefore,
the factors FA can only be identified up to a rotation matrix ψ.
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3. Compute SysImpair[V (X)]

4. Repeat steps 1-3 Ndraws times.18

5. Use the simulated values of SysImpair(V (X)) and X in Sliced Inverse Regression (SIR)

factor analysis to identify the space spanned by the factors FA.

Intuition for why this approach can identify the factors FA comes from the steps. In step 1,

X depends on FA, FB, and U . In step 2, because FB is hedged, V (X) only depends on FA and

ε. Therefore, in step 3, systemic impairment is only a function of FA and ε: SysImpair[V (X)] =

SysImpair(FA, ε). In step 5, sliced inverse regression projects the simulated values of the X vari-

ables onto the simulated values of SysImpair(FA, ε). If the X variables are independent of banks

remaining idiosyncratic risk ε, then the projected values of the X variables, E[X|SysImpair(FA, ε)]
will only be functions of FA. Under certain regularity conditions described below, it will then be

possible to use the fitted values to identify factors that lie within a subspace of the space spanned

by FA; under some conditions the identified factors will span the same space as FA. Moreover, the

identified factors will turn out to be principal components that are ranked by their ability to explain

systemic impairment. Because the relationship between the principal component factors and the

X variables can be estimated, changes in the factors can be used to find the size and direction of

movements in the X variables that are most likely to contribute to the risk of systemic impairment.

Steps 1-4 provide an ideal setting to apply SIR in step 5. For step 5, the following assumptions

are made to identify the space spanned by factors:

Assumption 3 There are KA factors FA that affect systemic impairment. Each of the KA factors

FA,k is expressible as a linear combination of the X variables.

FA,k = Xβk, k = 1, . . . ,K, (5)

where each of the βk vectors is N × 1.

Assumption 4 The X variables are distributed independently of the vector of banks residual risks

ε.

Assumption 5 For every N × 1 vector b, there exist constants ck(b), k = 0, . . .KA such that

E(Xb|Xβ1, . . . XβK) = c0(b) +
K∑
k=1

ck(b)Xβk (6)

18The draws of X should be made from the conditional distribution of X viewed as appropriate for the stress-test
exercise. The draws of X should be i.i.d.
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Assumption 3 is equivalent to assuming that the information in the factors that generate sys-

temic risk are expressible as linear combinations of the X variables that affect the banks.19 It

therefore follows that systemic impairment has the functional form

SysImpair(FA, ε) = SysImpair(Xβ1, Xβ2, . . . XβK , ε). (7)

Assumption 4 has the implication that idiosyncratic risk at the portfolio level (εi) for each bank

i cannot be used to forecast the variables X. This assumption cannot literally be true because

ε for each bank depends on the idiosyncratic risk of the variables X, but the assumption holds

approximately since the forecasting power of the residuals approaches zero in diversified portfolios.20

Put differently, assumption 4 should be interpreted as an assumption that the large banks to which

stress-testing is applied hold diversified portfolios.

Assumption 5 states that the expected value of linear combinations of the X variables given the

systemic risk factors is a linear combination of the systemic risk factors. This assumption will be

satisfied if the X variables are elliptically distributed. As discussed in Li (1991), the methodology

for uncovering the factors also works well even if this assumption holds approximately.

In step 5, the systemic risk factors are identified using the Sliced Inverse Regression (SIR)

method of Li (1991) as refined using the Correlation Pursuit (COP) methodology of Zhong et al

(2012). The main intuition for how SIR identifies the space spanned by the systemic risk factors

will be presented in this subsection. Further information on SIR and COP is presented in the

appendix.

SIR relies on inverse regression in which each of the simulated X variables is nonparametrically

regressed on the simulated measure of systemic impairment SysImpair(FA, ε), to compute the

fitted value E[X|SysImpair(FA, ε)]. By assumption 4, the fitted value does not depend on the

banks portfolios’ idiosyncratic risk ε, it only depends on FA. To recover the space spanned by the

factors FA, SIR performs a principal components analysis based on the fitted values.

To economize on notation below, SysImpair(FA, ε) will be denoted Y (Xβ1, . . . XβKA
, ε), or

simply as Y . The factors FA will be used interchangably with Xβ1, . . . XβK . ΣXX denotes the

variance covariance matrix of X and ΣE(X|Y ) denote the variance covariance matrix of the fitted

values:

19This is similar in spirit to factor-mimicking portfolios that are often used in empirical asset pricing studies.
20For example, suppose X = f + U , where U is i.i.d., and bank i’s portfolio has exposure of 1/N to each of the

X variables. Then the portfolio’s return, Ri is given by Ri = f + (1/N)
∑
Ui), where the term in parenthesis is εi.

The covariance between any element of X such as Xj and εi is (1/N)σ2(U), which vanishes with N , showing that
the residual return of the portfolio has very little power to forecast Xj . By contrast the covariance between Xj and
the systematic component of the portfolio returns is σ2(f), which does not vanish with N . This shows the portfolio’s
return has power to forecast the elements of X because of the portfolios exposure to the factor risk; the idiosyncratic
part of the portfolio’s return, by contrast, has essentially no forecasting power.
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ΣXX = E
{

[X − E(X)]′ × [X − E(X)]
}

Σ(E(X|Y ) = E
{

[E(X|Y )− E(X)]′ × [E(X|Y )− E(X)]
}

Sliced Inverse Regression identifies a subspace of the space spanned by the factors as the vectors

Xbk where the bk vectors are solutions to the problem:

Maxbk b
′
kΣE(X|Y )bk (8)

subject to the constraint

b′kΣXXbk = 1,

and subject to the condition that the bk vectors are orthogonal b′kbj = 0 for j 6= k.

When SIR is used to estimate the bk coefficients, it does so using sample estimates of ΣXX

and ΣE(X|Y ). The analysis in this section illustrates the information that SIR recovers about the

factors when ΣXX and ΣE(X|Y ) are known. Distribution theory for the bk coefficients is contained

in Li(1991), Chen and Li(1998), and Zhong et al (2012).

The first order condition for choosing bk is:

ΣE(X|Y )bk = λkΣXXbk,

where λk is the Lagrange multiplier on the constraint. Rearrangement shows bk and λk are eign-

vectors and eigenvalues of Σ−1
XXΣE(X|Y ):

Σ−1
XXΣE(X|Y )bk = λkbk, (9)

and that the Xbk are therefore principal components constructed from Σ−1
XXΣE(X|Y ). Because

the bk coefficients are eigenvectors, they are orthogonal, and thus the orthogonality condition does

not constrain them. Following Zhong et al (2012), each bk vector is referred to as a principal

direction. The number of principal directions is the number of positive eigenvalues from equation

(9).

The principal components are not the systemic factors, but they lie within a subspace of the

space spanned by the factors. When the number of principal directions is equal to the number of

factors, then the principal components and the factors FA span the same space. An advantage of

focusing on the principal directions for modeling systemic impairment is that the eigenvalues mea-

sure the principle components based on their ability to statistically explain systemic impairment,
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with the larger eigenvalues corresponding to more explanatory power.21

The proposition and corollary that follow show that the principal components are spanned by

the factors, and when both have the same dimension they span the same space.

To illustrate that the Xbk vectors that are identified in the maximization problem 8 are

spanned by the factors, note that any Xbk can be decomposed into its projection on the fac-

tors (=
∑K

k=1 ckXβk) and into a component Xb⊥ that is orthogonal to the factors. Because the

projection component is spanned by the factors, it suffices to show that b vectors that solve equa-

tion 8 cannot contain an orthogonal component b⊥. The theorem and proof of this result is based

on Li (1991).

Proposition 1 For the bk coefficients that satisfy equation 9, each principal component Xbk is

spanned by the factors Xβk, k = 1, . . .KA..

Proof: See the appendix. 2.

The main step in the proof shows that Var[E(Xb⊥|Y )] = 0 (= b⊥′ΣE(X|Y )b
⊥ = 0), or equiva-

lently, that E(Xb⊥|Y ) is a constant that does not vary with Y .22 To see that it is a constant, note

that the information contained in Y is ε and the factors Xβk, k = 1, . . .KA. By assumption 4, the

ε coefficients have no power for forecasting E(Xb⊥). By assumption 5, E(Xb⊥|Xβk, k = 1, . . .KA)

is linear in the Xβk, but also by definition Xb⊥ is uncorrelated with each of the Xβk. It follows

that E(Xb⊥ does not change with the Xβk, and therefore that E(Xb⊥|Y ) does not vary with Y .

This means any Xbk that solves equation (9) is spanned by the factors.

Corollary 1 If the number of principal directions is equal to the number of factors, then the factors

and the principal components span the same space.

Proof : Let B denote the matrix (b1, b2, . . . bKA
) and β denote the matrix β1, . . . βKA

. Since b and

β are nonsingular and β spans the elements of B, B = βΠ for some nonsingular Π. Therefore

β = BΠ−1,and therefore β is also spanned by B and both span the same space. 2.

The corollary shows that SIR will identify the space spanned by the factors provided that the

rank of Σ−1
XXΣE(X|Y ) has the same rank as the number of factors. Although SIR can be used

to identify large parts of the factor space that are important to systemic risk, it is important to

emphasize it can fail to identify factors in cases when E(X|Y ) does not change with Y , even though

a factor affects Y . For example, if the factor is just X1 and Y is a symmetric function of X1 such

21See appendix B for details.
22If E(Xb⊥ is a constant that does not vary with Y , then it follows that ΣE(X|Y )b

⊥ = 0. The proof then show
thats any bk that solves equation (9) must have as its b⊥ component b⊥ = 0.
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as Y = bX2
1 , and X1 is standard normal, then E(X1|Y ) = 0 and therefore SIR could not detect X1

as a factor in this simple example.

When using SIR, identification of the space spanned by the factors relies on estimates of the

matrix Σ−1
XXΣE(X|Y ) When X is high dimensional and the time series on X is short, then estimates

of ΣXX and its inverse are likely to be inaccurate. As noted in Zhong et al (2012), this problem,

if not addressed, will reduce the accuracy of SIR when the number of potential X variables is

large. The Correlation Pursuit (COP) methodology of Zhong et al (2012) is designed to address

this difficulty. The underlying assumption in Zhong et al is that a relatively sparse subset of the

X variables, denoted x, contains the essential information on the factors. Conditional on x the

information on Y contained in the other X variables is assumed to be redundant. The COP

methodology chooses the relevant variables x based on their ability to create principal components

that explain Y . For this paper, the elements of x are chosen based on their ability to explain systemic

impairment. COP selects the relevant x variables by starting with a candidate set of active variables

x0 ∈ X; it then scrolls through the remaining variables in X and performs variable addition and

deletion steps that add (delete) variables to (from) the active set if they statistically improve (don’t

improve) explanatory power for Y . Zhong et al show that under a set of regularity conditions as

the size of the sample of X and Y variables approaches infinity, COP consistently chooses the set

of x variables that are relevant for determining the factors that explain Y . Although Zhong et al

provide asymptotic theory for choosing x consistently, they emphasize that the asymptotics treat

KA as known when it is not, and also the asymptotics for adding and deleting variables make strong

assumptions, and only hold asymptotically. Therefore, for finite samples they recommend choosing

KA based on the BIC criterion; and they choose the critical values for determining whether to add

or delete variables using cross-validation. Further details on how to implement SIR and COP are

provided in the appendix.

In summary, this subsection has illustrated an approach using SIR and COP to identify the

relevant factors that explain systemic impairment given how banks hedge and it has presented an

approach for identifying the variables x that explain these factors. The next section provides details

on how to use the identified variables and factors to create stress tests for systemic risk.

3.2 Choosing Stress Scenarios for Systemic Risk

This section uses the principal components extracted in the last subsection to create stress scenarios

and resulting capital injections to ensure the financial system is resilient against systemic risk with

high probability. To implement the methodology, three elements are required. First, a measure of

systemic impairment is needed to serve as the Y variable in the last section, as well as to measure

systemic risk. Second, a method is needed to define stress scenarios in terms of movements in

the systemic risk factors. Third, a method is needed to choose stress scenarios such that if banks
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are well capitalized against the scenarios considered, then they will be well capitalized with high

probability against systemic impairment; i.e. systemic risk will be low. Below,each of these elements

is provided in turn.

Measuring systemic impairment

Recall that systemic impairment is the event that too many banks become financially distressed

together, and hence cannot provide needed financial intermediation services to the real sector.

Financial distress is measured based on banks equity capital (net worth) relative to its risk. For

example, if the stress horizon is one year, and at the end of that year a banks capital is low, while

the volatility of capital is high, then the bank is likely to become insolvent shortly thereafter. It

will therefore not be able to raise funds to intermediate loans, and hence its financial distress will

be high.

The analysis on systemic impairment measurement is based on Pritsker (2013). Without loss

of generality, banks are stress-tested at date 0, and the stress-test horizon is normalized to be one

period. There are J financial intermediaries j = 1, . . . J . At date 0, each financial intermediary has

has equity Ej , and liabilities Lj that finance assets Aj( = Ej + Lj by the balance sheet identity).

Bank j’s asset portfolio has return Rj between date 0 and date 1. Additionally, the gross return

earned by its liability holders is R̄l,j . Thus, bank j’s capital ratio at date 0 is Cj(0) =
Ej(0)
Aj(0) , and

its capital ratio at date 1 is Cj(1) = Max[
Ej(1)
Aj(1) , 0]. The capital ratio for bank j at date 1 can be

written as a function of its initial capital ratio and the return on its assets:

Cj(1) = Max(
Ej(1)

Aj(1)
, 0)

= Max(
Aj(1)− Lj(1)

Aj(1)
, 0)

= Max(1−
Lj(0)R̄l,j
Aj(0)Rj

, 0)

= Max(1−
(1− Cj(0))R̄l,j

Rj
, 0)

As a result of the stress-test conducted at date 0, banks may be required to inject more equity

into the bank. I assume this equity is invested at the risk free rate, and earns a gross return of

Rf . If the equity injected at date 0 is equal to a fraction CIj of initial assets, then assets at date 1

become Aj(0)Rj +Aj(0)CIjRf . Making this substitution, bank j’s capital ratio at date 1 is given

by

Cj(1) = Max

(
1−

[1− Cj(0)]R̄l,j
Rj + CIjRf

, 0

)
(10)
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The volatility of bank j’s date 1 capital ratio as of date 1 is denoted σ(Cj(1)). Bank j’s

financial distress at date 1 is modeled as a decreasing function of its capital ratio normalized by

its volatility: Dj(
Cj(1)

σ(Cj(1))). This ratio is inversely related to default likelihood after period 1, and

therefore distress goes down as the ratio goes up. For convenience distress is parameterized to lie

between zero and one (Dj ∈ [0, 1]).

To model systemic impairment, I make the following assumptions:

Assumption 6 1. Each banks maximal financial intermediation capacity is proportional to its

assets: FICapacity(j) = γAj with a constant of proportionality γ that is the same for all

banks.

2. The fraction of a banks maximal intermediation capacity that is lost in a scenario is propor-

tional to its distress in that scenario:

Loss of j’s capacity = Dj

(
Cj(1)

σ(Cj(1))

)
γAj .

3. Systemic impairment occurs when the fraction of the economy’s maximal intermediation ca-

pacity that is lost exceeds a threshold ζ.

These assumptions capture the ideas the larger banks, measured by the size of their balance

sheets, have more intermediation capacity, and that therefore more intermediation capacity is lost

when larger banks are more financially distressed. It is assumed that when a little intermediation

capacity is lost, other banks can step in and fill the capacity that is lost. But, when too much

maximal capacity is lost, it becomes too large for others to fill in, resulting in systemic impairment.

Under assumption 6, the fraction of maximal intermediation capacity that is lost given a re-

alization of banks return vector R1, ...RJ , and given the Capital Injections received by banks, is

denoted System Assets in Distress, abbreviated SAD:

SAD(R1, . . . RJ , CI1, . . . CIJ) =

∑J
j=1Dj(

Cj(1)
σ(Cj(1)))γAj∑J

j=1 γAj
=

J∑
j=1

wjDj(.) (11)

Note, that the arguments of the capital ratios that are made explicit on the left hand side of the

expression for SAD are for simplicity suppressed on the right hand side, and will be suppressed

whenever it is convenient to do so.

The constant of proportionality γ drops out of the expression for SAD. As a result, it reduces

to a weighed average of each banks distress function where each banks weight is its assets as a

fraction of all banks assets.
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Systemic risk is a function of the distribution function of systemic impairment. For simplicity,

in this paper systemic risk, denoted ψ(0, T ) is defined as the probability that systemic impairment

occurs at the end of the time horizon T of the stress-test:

ψ = Prob[SAD(T ) ≥ ζ].

Creating Stress Scenarios

A stress scenario specifies values for all of the X variables. As noted in the introduction, choosing

an appropriate scenario to achieve regulatory objectives is difficult when X is high dimensional.

To reduce dimensionality, this paper defines stress-scenarios in terms of the identified factors, and

then sets the X variables in the scenario to their expected values given the factors.

Definition 1 A Systemically Chosen Stress Scenario is a specification of realizations for the sys-

temic risk factors FA and a specification for the expected realizations of the other relevant X vari-

ables for determining the value of banks conditional on FA.

To compute the expected value of the X variables, consistent with assumption 5, the X variables

are modeled as a linear function of the factors, and take a form that can be estimated by OLS

through regressing the simulated values of the X variables on the simulated value of the factors23,24

:

Xi = αi + FAθi + εi (12)

where αi is the N × 1 regression intercept, θi is KA× 1 vector of regression coefficients and εi is an

N × 1 residual.

Using the definition and equation (12), if the chosen factor realizations are F̃A, then the stress-

scenario is given by:

Xi = αi + F̃Aθi, Xi ∈ X (13)

To assure that banks have enough capital on the basis of a stress test, it is also necessary to

know how each banks financial distress is related to the factors. To model this, for simplicity I

23Assumption 5 implies E(X|FA) is a linear function of FA. This is consistent with the OLS regression specification
in equation 12.

24Recall the identified risk factors are FA,k = xbk, k = 1, . . .KA. Because the X variables and the x variables are
simulated and the bk’s are estimated, the simulated risk factors are “observable” in the simulation, as are the X
variables. This makes it possible to estimate the relationship between the X variables and the risk factors.

19



assume banks liabilities are unaffected by stress, that each bank’s asset returns are linearly related

to the X variables with βi,j representing the sensitivity of Rj to Xi, and that the realizations of

the X variables fully explain banks returns.25 With this formulation, for each bank j, Rj can be

expressed as a linear function of the systemic factors, and a residual term that will be correlated

across banks because many banks are exposed to common X variables:

Rj = α0,j +
∑
i

βi,jXi

= α0,j +
∑
i

βi,j(αi + FAθi + εi)

= αj + FAθj + εj (14)

Formulating Stress Scenarios based on a Systemic Risk Objective

The main result in the paper is if SAD is approximated by ASAD, a variant of SAD that linearizes

the relationship between SAD and Rj + CIjRf , then if regulators objective function is defined in

terms of ASAD, then there is a stress-scenario and resulting capital injections that assures systemic

risk is low. This is formally stated in the following proposition:

Proposition 2 If SAD is linearly approximated by ASAD26:

ASAD = C0 +
∑
j

Dj(Rj + CIjRf ), (15)

and the return on each bank j’s portfolio, Rj, satisfies equation (14), and if regulators systemic risk

objective is to ensure that

Prob(ASAD ≥ ξ) ≤ ψ,

then there is systemic risk factor shock F ∗A such that when the stress scenario is Xi = αi + F ∗Aθi

for all Xi, and banks inject capital equal to the present value of their losses in the stress scenario,

then after the capital is injected, Prob(ASAD ≥ ξ) ≤ ψ.

Proof : See the appendix.

25These assumptions can be relaxed to allow the liabilities to be affected by X, to allow the X variables to
nonlinearly affect banks asset returns and liabilities, and to allow the value of assets and liabilities to fluctuate for
reasons other than the X variables. However, relaxing these assumptions significantly complicates the modeling.

26The parameters of the linear approximation to SAD, C0 and the Dj ’s, can be derived from a first-order Taylor
series for SAD, or they can be estimated by linearly regressing simulated values for SAD on simulated values of
(Rj + CIjRf ).
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To provide intuition for the proposition note that equation (15) for ASAD and equation (14)

together imply that ASAD has a linear stochastic component that depends on the factors FA and

non-factor risks, and a linear component in terms of the capital injected by banks:

ASAD = C0 +
∑
j

Dj(αj + FAθj + εj + CIjRf ) (16)

= C0 + α+ FAθ + ε+ CIE, (17)

where Dj is negative since more capital reduces banks financial distress. The expression shows

the magnitude of ASAD can be controlled by capital injections, summarized by the CIE term.

The first part of the proof finds the least negative value of CIE, denoted CIE∗, that just satisfies

regulators objective for systemic risk.27

CIE∗ = CIE : Prob(C0 + α+ FAθ + ε+ CIE ≥ ξ) = ψ.

The second part of the proof finds values of the systemic factor F ∗A that satisfy the condition

that if the stress-scenario is

Xi = αi + F ∗Aθi

for all i, then if banks inject enough equity capital to cover their losses (measured from their net

returns), then the resulting capital injections ensure CIE = CIE∗, thus achieving the systemic

risk objective.28 The condition for F ∗A is the equation

F ∗Aθ = −CIE∗ − α+
∑
j

Dj . (18)

When θ is a nonzero scalar this equation has one solution. When θ is a vector, then there

are multiple solutions for F ∗A, which means there is room to choose FA∗ to satisfy equation (18),

while also satisfying other side criteria. Two criteria are considered here, maximum likelihood and

minimum cost.

The maximum likelihood criterion chooses the value of F∗
A

to satisfy equation (18) and have

maximal likelihood. To solve for the maximum likelihood F ∗A, note that FA has mean 0 since each

element of X is normalized to have mean 0, and FA has variance I since FA is a matrix of principal

component factors. Under the auxiliary assumption that FA is also multivariate Gaussian, then it

27Solving for CIE∗ requires knowledge of the CDF of FAθ + ε, denoted H(.). Finding this CDF is relatively
straightforward because although H(.) is not known, it is relatively easily estimated since FAθ+ ε is a single random
variable, simulated values of FA are available from COP/SIR, and simulated values of ε can be constructed using
estimated versions of equations (12), and (14), with the Dj coefficients from equation (15).

28Banks capital injections equal the present value of their losses in the stress-scenario discounted at the risk-free
rate. Since the capital is assumed to be invested riskfree, it produces enough capital to cover losses at date 1 in the
stress scenario.
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is straightforward to show that the maximum likelihood value for F ∗A, denoted F ∗A(Maxlik), is:

F ∗A(MaxLik) =
(−CIE∗ − α+

∑
j Dj)θ

′

θ′θ
. (19)

An alternative criterion for choosing F ∗A is to find the stress scenario that minimizes banks

capital costs while at the same time satisfying the constraint in equation (18). F ∗A is chosen

inefficiently if the ensuing capital requirements from the stress scenario inject large amounts of

capital into banks for which the marginal systemic risk benefits are small, while injecting too little

capital in banks with high marginal benefits. The following problem for choosing FA minimizes the

costs of injecting capital while choosing a stress scenario that satisfies the constraint in (18), where

λ is the marginal cost of injecting equity capital.

F ∗A(effic) = ArgminFA
− λ

∑
j

AjMin(−1 + F ′Aθj + αj , 0) (20)

such that

∑
j

DjMin(−1 + F ′Aθj + αj , 0) = −CIE∗

Note, in this optimization problem the “Min” operator on the right hand side of equation (20)

rules out negative capital injections. These are ruled out because if they are allowed, then the

optimization problem becomes a linear objective function with linear constraints, and thus would

not have a bounded solution.

To the best of my knowledge, this is one of very few papers (the only ?) that have derived

stress-tests with the explicit goal that the resulting capital injections satisfy an explicit systemic

risk objective, and that moreover are designed to guarantee that if the banking system is well

capitalized against the scenario, it is well capitalized against other plausible scenarios with a high

likelihood that is chosen by the regulator.

Several qualifiers regarding proposition 2 are important. First, because ASAD approximates

systemic impairment, satisfying regulators systemic risk objectives based on ASAD will not nec-

essarily satisfy the objectives based on SAD. This suggests using the ASAD approximation with

side conditions (equations (19) and (20) ) to find the direction in which to move the systemic risk

factor vector. Then, the amount by which the factors are moved in the appropriate direction is

chosen until the resulting stress scenario achieves a systemic risk objective based on SAD.29 As

29For example, if there are two systemic risk factors FA(1) and FA(2), the chosen direction might specify that FA(1)
should increase 1.5 times as quickly as FA(2). Given this direction, increases in FA(1) and FA(2) can be solvved for
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shown in the next section, this often works well in practice.

Second, there are circumstances when the capital injections required to achieve a systemic risk

objective are unattainable on the basis of a single stress scenario. As a simple illustration of such

circumstances, if banks only asset holdings are positions in a stock index, then the index is the

factor FA. If half the banks have identical long positions in the factor, while the other half have

identical short positions, then absent capital injections, too much systemic impairment can occur

if the factor takes very high values or very low values. This example is an extreme failure in which

ASAD is approximated as a linear function of the factor but SAD is strongly non-linear. The

consequence of the failure is that a single stress scenario in which the index drops can ensure that

half the banks are well capitalized against that scenario, but, it cannot ensure that the other half

of the banks are also well enough capitalized against stocks rising. Hence, in the example a single

stress scenario is not sufficient to attain the objective. An advantage of the approach advocated

in this paper is that part of choosing the stress scenario would entail checking whether the SAD

objective is attainable, and indicating when it is not. This is a major advance over current stress

testing because it would indicate whether its objectives are attainable. Moreover, it would indicate

methods that might help to attain the objective through for example requiring that banks are well

capitalized against more than one stress-scenario.

In addition to these qualifications, there are areas where there is scope to further extend the

SCSA approach. These include:

• Modeling the effects of interbank credit exposures.30,31

• Incorporating the modeling of banks liabilities and income as part of the analysis.

• Using the methodology for other measures of impairment, such as Systemic Expected Short-

fall.

The next section of the paper illustrates the use of the SCSA methodology when applied to

interest-rate positions.

4 SCSA applied to rates positions

The analysis in this section is preliminary. To study how well SCSA performs in generating systemic

risk stress-scenarios, in this section it is applied for 6 hypothetical banks whose assets for simplicity

such that the resulting capital injections in the stress scenario achieve the systemic risk objective for SAD.
30The importance of accounting for interbank credit may be dimininshing if CCP clearing requirements cut such

risks enough, but could become very important if CCPs get into trouble.
31For potential directions to incorporate them See Ota (2013),Pritsker (2014).
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solely consist of positions in the zero coupon bonds of 8 countries (Australia, Canada, Germany,

Japan, Sweden, Switzerland, Great Britain, and the United States). The tenors used in the analysis

ranged from short maturity to 15 years for all countries, but was as long as 30 years for the US.32

Data on zero coupon yields for all countries other than the US was generously provided by the

International Finance Division at the Federal Reserve Board. Zero coupon yield data for the U.S.

is based on the methodology from Gurkaynak et. al.(2006). The data spans the period from

February 2006 to October 2013.

In the preliminary analysis, ten sets of portfolios are simulated for the hypothetical banks.

For each set of portfolios, each banks exposures to the yield curves are chosen randomly from the

same distribution function. This generates a set of portfolio weights in the assets that are i.i.d.

among zero coupon yields and among the 6 hypothetical banks. In the current simulations, two

distribution functions for exposures are considered. In the first, banks exposures to holdings of

each zero can be short or long, but they are biased towards long holdings. In the second set of

simulations, exposures can be long or short and are not biased to be long or short on average.33

To implement the SCSA methodology, for each set of banks portfolios, it is necessary to simulate

the systemic impairment measure over the stress horizon and then select variables to create factors

that covary with systemic impairment. For simplicity, the stress horizon is one-month. Systemic

Impairment over this horizon is measured by SAD. The shocks to SAD are changes in zero coupon

yields. For simplicity in this version of the paper the shocks are simulated using simple historical

simulation. With this methodology, it is assumed the distribution of future shocks to the yield

curve is the unconditional distribution based on history. The shocks are the time series of 165

non-overlapping monthly changes in 83 zero-coupon yields that occurred over the time span of the

data. Because banks exposures are to yield curves with different currencies, logically international

fixed income positions are sensitive to both interest-rate risk and foreign exchange risk. In this

exercise, I for now assume foreign exchange risk has been hedged out, and that interest-rate risk

can be treated separately from foreign exchange risk.

Recall that SAD is the weighted average of banks distress functions. In equation (11), the

functional form of banks distress functions is left unspecified. In the analysis we used distress

functions that have a logit form for each bank j.

32For the United States the yield tenors in years are 1,2,3,4,5,7,8,10,12,15,20,25,30. For the other countries the
tenors in years are 0.25,.5,.75,1,2,3,5,7,10,15.

33Using the first choice of distribution functions, the exposures are randomly simulated by choosing DV01s for each
yield from a N(−.5, 1) distribution, where DV01’s are measured as change in dollar value of an exposures due to a
one-basis point increase in yield. After DV01s for each currency and yield curve are chosen, the DV01’s are inverted
to produce the amount invested in each zero coupon bond to produce its corresponding DV01. These investments
are then converted into portfolio weights that sum to 1. For the second choice of distribution function, the exposures
are randomly simulated by choosing DV01s for each yield from a N(0, 1) distribution, where DV01’s are measured as
change in dollar value of an exposures due to a one-basis point increase in yield.
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Dj(.) =
1

1 + Exp(aj + bjCj(1)/σ(Cj(1)))
, (21)

where Cj(1) is bank j’s capital ratio at date 1 and σ(Cj(1)) is the standard deviation of the

capital ratio as of date 1. The expression Cj(1)/σ(Cj(1)) is bank capital divided by a measure of

risk of the capital, and hence can be interpreted as risk weighted capital since for a given capital

ration, the greater is the risk the lower is the effective risk-weighted capital.34

The distress function measures the fraction of a banks’ maximal intermediation capacity that

is lost when the bank becomes undercapitalized. The parameters aj and bj should ideally be

calibrated so that the distress function for each bank roughly captures the relationship between

the banks intermediation capacity and its risk-weighted capital. For the purposes of this paper the

parameters are not calibrated; instead they are set so that aj = 0 and bj = .95 for all j. Because

capital ratios span from 0 to 1, with this specification, distress for each bank has a lower bound of

0, which is approached as the volatility of capital goes to 0. The upper bound for distress is 0.5

which is approached as capital goes to 0. This means an insolvent bank loses half of its maximal

financial intermediation capacity. the other parameter that needed to be calibrated as part of the

analysis was the choice of banks initial capital ratios. For the analysis here this ratio was chosen so

that banks have a two-percent chance of bankruptcy over the stress horizon. This is not a realistic

choice, but was made for convenience and should be altered in the future.35

Given the distress functions, and banks portfolio weights in the bonds, for each set of randomly

generated portfolios, SIR and COP are used to perform dimension reduction by choosing which

variables best explain SAD, and by summarizing the information in those variables through the

creation of systemic risk factors that are created based on their ability to explain SAD. The number

of relevant systemic risk-factors is determined by sequential hypothesis testing: beginning with no

risk factors: additional risk factors are added sequentially until it is determined that the explanatory

power from adding additional factors cannot be distinguished from random noise (Li, 1991). The

number of factors identified in the simulations when systemic impairment is measured by SAD is

equal to one in the most recent simulations. However, as discussed below we expect more systemic

factors may be identified when the approach for choosing banks portfolio weights is modified.

For the 10 sets of random portfolios (labeled Simulation 1 - Simulation 10 in the figures) when

the exposures are long on average, SAD and correlation pursuit uncover a very strong relationship

between SAD and a single systemic risk factor. In the case of Simulation 1, a scatter plot of SAD

34An alternative approach could use Basel risk-weights. An advantage of the approach in this paper is that Basel
risk-weights for simplicity assume risk scales linearly, but in fact this is not descriptive of how risk scales.

35This seems like a high but defensible choice of unconditional insolvency risk over a year, but not over a month.
It is set to be high in the analysis so that the choice of capital can be calibrated on the basis of the historical bond
returns during our short sample of 165 months. A more realistic default probability per month is perhaps .0017, or
a bit less than two in a thousand. A sample of 165 months cannot be used to calibrate the amount of capital needed
to cover losses with such a low probability. Instead a parametric model of returns in the tail would need to be fit to
the data.
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(labeled DV01 SAD, or DV01 for short) versus the factor shows a strong monotone relationship

between SAD and the factor (Figure 1). The Correlation Pursuit and Sliced Inverse Regression

Statistical procedures identify the factors (the space spanned by the factors), but do not identify

the precise relationship between SAD and those factors. Nonparametric regression of SAD on the

factors is utilized to explore the relationship between the expected value of SAD and the factors,

and also to give an eyeball view of how much SAD deviates from its expected value conditional on

the factors (Figure 2).36 The regressions show that the relationship between expected SAD and

the factor (the red curve labeled kernel) is slightly nonlinear (as it must be since SAD has a range

of 0 to 0.5). In addition, the nonparametric fit is not excellent, but it is very good.

While the nonparametric regression curve is suggestive of how much information is likely to

be statistically captured by the factor, it does not establish how SAD will actually respond to

a stress-test based on the factor because that relationship depends on how the factor is mapped

to returns and then to SAD as part of the stress-testing procedure. Those mapping procedures

are not accounted for as part of the nonparametric regressions; if the mapping procedures are not

appropriate, then a stress-test based on the factor may fail to capture SAD well even if the factor

is strongly statistically related to SAD. The extent to which mapping errors are an issue can be

examined by stressing the factor, applying the mapping used in the stress test, and then comparing

the mapped values to the nonparametric estimates and to the scatter plots. The results in the

cases considered shows that SAD that results from stress tests based on the factor (labeled S.T.

and plotted in green) track the nonparametric estimates of SAD fairly well (Figure 3) when the

portfolio exposures are on average long. The results using all 10 simulated sets of long-on-average

portfolios are similar (Figure 4).

The results for the 10 sets of portfolios appear to be very encouraging for finding systemic-risk

factors that can be successfully used as the basis for a stress test. However, a more reasonable

interpretation is that the method should work quite well for the case considered because in the

case considered interest-rate factors should have significant explanatory power for SAD. To see

why note that for the method used to construct banks portfolio weights expected DVO1s at each

tenor on each yield curve are positive and the same. If banks portfolios are not too far from what

is expected, their expected portfolios are sensitive to parallel yield curve shifts, which is known to

be an important factor in yield curve modeling. Put differently, it is encouraging that the method

appears to find a factor when it should. However, a more stringent test of the usefulness of the

approach would be if banks portfolio compositions were more heterogeneous. The analysis of this

case has only been done so far for portfolios that are on average neither long nor short. Intuitively,

a portfolio that has long and short positions will have exposure to changes in the slope of the yield

curve as well as changes in the level, and if portfolios differ in their mix of exposures to the two

types of factors, then a one-factor model will not fit as well when modeling systemic impairment.

36The regressions use Nadaraya-Watson kernel regression with a Gaussian kernel. The kernel bandwidth h was
chosen as h = σ(f)N−1/5, where N is the number of time-series observations of f . h was not optimally chosen.
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This intuition is borne out from the simulations for all neither long nor short portfolios (Figure 5).

Although the fit is worse, it is still very good. More detailed analysis is need to examine this issue

further.

4.1 Solving for CIE and stress-scenarios

CIE and the stress-scenarios were investigated in two settings. The first used linear approximation.

By construction, the stress-scenarios and capital injections solved for based on linear approximation

satisfy the ASAD objective function exactly. It is appropriate to investigate whether they also

satisfy the objective function of keeping SAD low with high probability. The answer in the cases

investigated so far is that choosing stress scenarios using the expression for ASAD and equation

(30) does not work well for SAD as parameterized because SAD is too nonlinear be sufficiently well

approximated along the length of its range. As an example for simulated portfolio 1, a QQ-plot

of SAD versus ASAD shows that ASAD is well below SAD for high values of SAD (Figure 6)

This implies that the capital injection required to reduce ASAD to the target level chosen by the

regulator can often be too small to reduce SAD by enough to achieve regulatory targets for SAD. In

other words, the size of the stress scenario based on ASAD will tend to be too small, and therefore

the size of the stress scenario needed to achieve the systemic risk objective needs to be solved for by

other means. The approach I have pursued in the empirical analysis is just a slight modification of

the linear approach with multiple factors. In particular, from equation (19), F ∗ is a scalar multiple

of θ, which is written below as:

F ∗(MaxLik) = κΘ.

Let CI(κ) be banks required capital injections if the stress scenario is κΘ. Then I solve for κ such

that if the required capital injections are CI(κ), then the Prob(SAD(CI(κ)) ≥ ζ) ≤ ψ). This step

is not difficult since it simply involves simulating SAD with different levels of capital injections. For

our preliminary analysis of 10 simulations of banks interest rate portfolio positions, this approach

usually succeeded in generating a reasonable stress scenario and resulting capital injections that

satisfied the systemic risk objective that P (SAD > .05) ≤ .05 An example of the scenarios is

provided in figure 7. In this case, only one systemic risk factor was identified, and hence changes

in yields are proportional to that factor. In this case the movements in stress scenario can best be

described as an upward shift in the yield curve that increases curvature.

Although in most of the portfolios considered a single reasonable stress scenario was sufficient

to ensure the banks were sufficiently capitalized, in some portfolios the method could not achieve

the systemic risk objective using a single stress scenario. Recall that this could occur if half the

banks were very distressed for high values of a factor, and the other half very distressed for low

values of a factor, since in that setting a scenario with high and low values of the factor were needed

to ensure all banks were well capitalized against movements in the factor. An advantage of the

methodology in this paper is that it also helps to identify when multiple stress-scenarios are needed
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to achieve a systemic risk objective, and provides guidance on how such scenarios should be chosen

if needed.

4.2 Supplemental Analysis

The analysis above illustrates the potential for using SCSA to choose scenarios. The analysis in

this subsection investigates three supplementary topics:

1. Out of Sample-Fit of Correlation Pursuit and Sliced Inverse Regression.

2. Additional evidence for the importance of choosing scenarios using exposure data.

3. How symmetry biases factor identification in SIR, and how to fix the bias.

Out of Sample Fit

A potential issue with Correlation Pursuit and SIR is that it may choose variables and factors

that over-fit the in-sample data and consequently fit poorly out-of sample. The out of sample fit

could be poor because of over-fitting or because the distribution of the variables being simulated is

mis-specified. The latter problem is not due to SIR or COP. To abstract from the latter problem,

I assume that the true distribution of interest-rates in 10 countries are known, and follows the

DTSM model of Wright (2011) as modified in the next subsection. Given this process, 5,000

two-year sample paths of returns were generated, and banks portfolios were constructed to be

perfectly correlated with one of the first three principal components of yield curve changes. Then,

using these portfolio weights, COP/SIR were used to identify the factors in-sample. Then, using

additional observations from the same DGP, COP/SIR was used to again identify the factors in

the out of sample data. If the data is severely over-fit in either sample, then the extracted factors

in the two subsamples will not be highly correlated, but in fact they are pretty highly correlated,

providing preliminary evidence that over-fitting is not a severe problem (Figure 8).37 That said,

the magnitude of overfitting should depend on the complexity of banks portfolios and the number

of observations used to identify the factors in the two samples. A more complete investigation of

this topic will be in the next version of the paper.

Additional Evidence for the Importance of choosing scenarios using exposure data.

This subsection further examines the importance of using exposure data to choose stress-scenarios.

Recall that section 2 presented special cases in which stress-scenarios that are not chosen while

37The out-of-sample data used 200, 500, or 1,000 observations.
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accounting for positions can miss substantial risks in banks’ portfolios. This section illustrates the

same underlying idea by examining how the factors that SCSA identifies as important in stress-

testing change as portfolio composition changes. To examine this question, the analysis contrasts 6

banks with identical portfolios that only invest in the bond-market with 6 banks that are identical

and invest 50% of their assets in the bond market and the rest in the stock market. For all of the

analysis in this part, the return series for banks portfolios are modeled via historical simulation, in

which it is assumed that the distribution of returns in the future on bonds and stocks is the same

as was experienced based on past history.

The effect on the extracted factors is measured by how the factor shocks affect yield curves

and stock returns. In the case of interest rate portfolio, SIR only extracts a single interest-rate

factor. One standard deviation shocks to this factor primarily change the curvature of the yield

curve for most of the 8 countries analyzed in the historical simulation analysis, suggesting that

this particular randomly chosen set of 6 bond portfolios (one for each firm) is mostly exposed to

a curvature factor (Figure 9). For the portfolio that represents a 50-50 mixture of stocks and

zero coupon bonds, two factors are extracted. The most important factor (factor 1) steepens most

yield curves and depresses stock market returns (Figure 10). The second factor, which is much

less important, appears to capture yield curve curvature. These results together illustrate, not

surprisingly that the important scenarios to consider for systemic risk purposes depend on banks

portfolio composition, and therefore it is important to account for this composition when deriving

stress scenarios to achieve systemic risk objectives.

Symmetry and SIR

As illustration in section 3.1, if the Y variables used in SIR are a symmetric function of the risk-

factors, then SIR and COP may fail to detect the factors. To investigate this issue when Y is the

SAD function, I created examples in which there are 6 banks and the banks have portfolios whose

stochastic components are long or short the same portfolio of zero coupon bonds. In this setting the

factor is the return on the portfolio, and if it happens that 3 banks are long and 3 banks are short,

then SAD is a symmetric function of the factors. This is a situation when SIR/COP should have a

difficult time identifying the factors. Figure 11 illustrates the problem. The figure is analogous to

Figure 5 except that there is symmetry. As a result, the single factor is sometime poorly identified.

For example, in the second case of simulated banks, there are 3 long and 3 short banks, which is

near perfect symmetry. As a result, the factor does a poor job of tracking SAD, and the stress-

scenario created based on the factor also tracks SAD very poorly. Because SAD is constructed as

a sum of each banks distress function, it is possible to identify the factor by pre-analyzing banks

individual distress functions. For example, if scatter plots of banks simulated distress functions

against each other, show that some banks are highly positively correlated while others appear to

be highly negatively correlated the factors can be identified by performing SAD and COP on the
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banks whose distress functions are posively correlated. Then the factor can be used to examine

how well it tracks SAD across all banks, as well as how stress-scenarios based on the factor would

track true SAD. Figure 12 performs this analysis for the banks in simulation 2 from Figure 11. The

figure shows that this approach has potential to overcome some of the problems that symmetry can

pose when using SIR and COP.

5 Conclusions

Current supervisory stress-testing has been criticized for being too microprudentially oriented, for

having the potential to miss important directions of banks risk taking, and for not ensuring the

financial system will be well capitalized against other plausible stress-scenarios. This paper has

presented a new approach for choosing stress scenarios based on dimenstion reduction techniques.

The approch has the potential to improve supervisory stress-tests along all of these dimensions.

First, the paper chooses stress-scenarios to ensure that a measure of systemic risk is low. Hence,

the approach is macro-prudential by design, and could be used to help make regulatory stress-

testing more macro-prudential. Second, the paper uses information on banks risk exposures when

constructing stress scenarios. This reduces the likelihood that important directions of banks risk-

taking will be missed in constructing the stress-scenario. Finally, the methodology in the paper is

designed to ensure the banking system is well capitalized against a wide variety of stress-scenarios,

and not just the scenarios used in stress-testing.

It is important to emphasize that the main innovations in this paper, using simulations to

identify risk factors based on their ability to explain systemic risk, and then using the identified

factors to develop systemic risk stress-tests are both new ideas. There is tremendous scope to

further refine methods for how these ideas can be applied in practice.
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A Proofs

Proposition 1:For the bk coefficients that satisfy equation 9, each principal component Xbk is

spanned by the factors Xβk, k = 1, . . .KA..

ProofSuppose b is an eigenvector that satisfies equation (9) with positive eigenvalue λ. b can be

written as the sum bspan + b⊥, where bspan is from Xb’s projection onto the factors (Xbspan =∑KA
k=1 ckXβk) and b⊥ where Cov(Xb⊥, Xβk) = b⊥′ΣXXβk = 0 for all k = 1, . . .KA. Equation (9)

then implies that

Σ−1
XXΣE(X|Y )[b

span + b⊥] = λ[bspan + b⊥] (22)

If ΣE(X|Y )b
⊥ = 0, then

Σ−1
XXΣE(X|Y )[b

span] = λ[bspan + b⊥], (23)

which implies bspan + b⊥ cannot be an eigenvector as in equation (9) unless b⊥ = 0. Therefore, to

show solutions to (9) are spanned by the factors Xβk, k = 1, . . .KA it suffices to show:

ΣE(X|Y )b
⊥ = 0. (24)

If [E(X|y)−E(X)]b⊥ = 0, then b⊥′[E(X|y)−E(X)]′[E(X|y)−E(X)] = 0 and E(b⊥′[E(X|y)−
E(X)]′[E(X|y)−E(X)]) = b⊥′ΣE(X|y) = ΣE(X|Y )b

⊥ = 0. Therefore, it suffices to show E(Xb⊥|y)−
E(Xb⊥) = 0.

By the law of iterated expectations and the arguments of Y ,

E(Xb⊥ − E(Xb⊥)|y) = E
(
E{[Xb⊥ − E(Xb⊥)]|Xβ1, . . . XβKA, ε}|y

)
.

By assumption 4 ε is independent of X, thus it suffices to show

E
(
E{[Xb⊥ − E(Xb⊥)]|Xβ1, . . . XβKA}|y

)
= 0.

It therefore is sufficient to show E{[Xb⊥ − E(Xb⊥)]|Xβ1, . . . XβKA
} = 0, or equivalently to show

E
(
E{[Xb⊥ − E(Xb⊥)]|Xβ1, . . . XβKA

}
)2

= 0

By assumption 5, E(Xb⊥|Xβ1, . . . XβKA) = α0 +
∑KA

k=1 αkXβk. Therefore,

E
(
E{[Xb⊥ − E(Xb⊥)]|Xβ1, . . . XβKA

}
)2

=
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= E[b⊥′(X − E(X))′(α0 +

KA∑
k=1

αkXβk)]

= b⊥′α0E(X − E(X))′ +

K∑
k=1

αkb
⊥′ΣXXβk

= 0. (25)

Therefore, b⊥ = 0, and b that satisfy equation (9) are spanned by Xβ1, . . . XβKA
. 2

Proposition 2:If SAD is linearly approximated by ASAD:

ASAD = C0 +
∑
j

Dj(Rj + CIjRf ) (26)

where Rj satisfies equation (14), and if regulators objective function takes the form

Prob(ASAD ≥ ξ) ≤ ψ

, then there is systemic risk factor shock F ∗A such that when the stress scenario is Xi = αi + F ∗Aθi

for all Xi, and banks inject capital equal to the present value of their losses in the stress scenario,

then after the capital is injected Prob(ASAD ≥ ξ) ≤ ψ.

Proof: Under the conditions of the proposition

ASAD = C0 +
∑
j

Dj(Rj + CIjRf )

= C0 +
∑
j

Dj(alphaj + FAθj + εj) +
∑
j

DjCIjRf (27)

= C0 + α+ FAθ + ε+ CIE,

In the first line of equation (27), SAD is approximated as the sum of a constant C0 and linear

sensitivities Dj to (Rj + CIjRf ). The Dj coefficients are negative since when the banks asset

portfolio has higher returns, the banks networth increases and its distress goes down. In the last

line, α, ε, and CIE (capital injection equivalents) group terms involving αj, εj, and CIj respectively.

In the above expression, FAθ + ε is a single random variable. Let H(.) denote its CDF.

The rest of the proof has two steps. The first step solves for the minimum CIE, denoted CIE∗

such that if banks inject enough capital to achive CIE∗, then Prob(SAD ≥ ξ) ≤ ψ. The second

step solves for a stress scenario that requires banks to inject enough capital to achieve CIE∗.

Step 1: Solve for CIE∗.
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Manipulation of equation (27) shows

Prob(SAD ≥ ξ) = 1−H(ξ − C0 − α− CIE). (28)

The CIE∗ that solves

1−H(ξ − Coα− CIE∗) = ψ,

will be the smallest CIE that satisfies the condition Prob(SAD ≥ ξ) ≤ ψ. Manipulating the above

equation, it is given by:

CIE∗ = C0 + α− ξ −H−1(1− ψ). (29)

Note that since Dj(.) < 0 in equation 27, if more capital needs to be injected into the banking

system, then CIE∗ < 0.

Step 2: Solve for FA and the stress-scenario.

If the systemic risk factors are set to value F ∗A, then in the resulting stress-scenrario, each banks

gross return is R∗j = αj + F ∗Aθj. The amount of capital banks need to raise in the scenario is equal

to their losses −Aj(R∗j − 1) less any excess capital that was previously held. The excess capital

just adds constant terms to the analysis. For simplicity, excess capital is assumed to be zero. As a

fraction of its initial assets Aj, each bank requires additional date 1 capital ∆Capj = −(R∗j − 1).

Substituting the date 1 capital raised as a fraction of assets into equation (27) for CIjRf shows the

capital raised alters SAD at date 1 by the amount

∆SAD = −
∑
j

Dj(R
∗
j − 1)

= −(α+ F ∗Aθ −
∑
j

Dj)

If F ∗A is chosen so that ∆SAD = CIE∗, then the resulting stress scenario will require that banks

inject enough capital for date 1 so that SAD at date 1 is reduced by the amount CIE∗. Therefore,

F ∗A must be chosen so that

F ∗Aθ = −CIE∗ − α+
∑
j

Dj . (30)

If there is only a single systemic risk factor, then θ is a scalar, and

F ∗A =
−CIE∗ − α+

∑
j Dj

θ
.
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If there are several systemic risk factors, then there are an infinite number of solutions for F ∗A,

all of which satisfy equation (30).

To verify that this is the correct solution, note that as a result of the stress scenario, at date 0

each bank j will be required to inject capital CIj =
−(αj+F ∗Aθj−1)

Rf
as a fraction of its date 0 assets.

Since the capital is invested in risk free assets, it will grow to −(αj +F ∗Aθj − 1) at date 1. Plugging

into SAD and summing across j, SAD is changed by the amount

∆SAD = −
∑

Dj(αj + F ∗Aθj − 1)

= −(α+ F ∗Aθ −
∑
j

Dj)

= −

α+

(−CIE∗ − α+
∑

j Dj

θ

)
θ −

∑
j

Dj


= CIE∗

B Sliced Inverse Regression (SIR) and Correlation Pursuit (COP)

The purpose of the following two subsections is to provide additional information on the statistical

interpretation of SIR, and details on the implementation of SIR and COP. A full description of the

SIR methodology is described in Li (1991), Chen and Li (1998), and COP is described in Zhong et

al (2012).

The R package dr contains a module for computing sliced inverse regression and related methods

[Weisberg (2014).38 AnR package for COP can be downloaded from “http://cran.r-project.org/web/packages/COP/”

[Zhong et al (2012)].

B.1 Sliced Inverse Regression

Section A shows that the principal components identified by SIR span a subspace of the space

spanned by the systemic risk factors. The purpose of this subsection is to illustrate the relationship

between the uncovered principal components and systemic risk. The exposition closely follows Chen

and Li (1998). They show SIR can be interpreted as solving for a first pincipal direction b1, that

maximize the squared correlation between X ′b1 and a possibly nonlinear transformation T (Y ) of

38See http://cran.r-project.org/web/packages/dr/vignettes/overview.pdf
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the Y variables:

max
T (Y ),b1

Corr(T (Y ), X ′b1)2.

For given b1,the transformation of Y that is most correlated with X ′b1 is E(X ′b1|Y ). The squared

correlation is given by (
Cov{[E(X ′b1)|Y ], Xb1}√
b′1ΣXXb1 × V ar[E(X ′b1|y)]

)2

=
b′1ΣE(X|Y )b1

b′1ΣXXb1

The correlation is homogenous of degree 0 in b1. Therefore, restricting b1 so that b′1ΣXXb1 = 1 is

without loss of generality. Solving for optimal b1 subject to the restriction then implies ΣE(X|Y )b1 =

λ1ΣXXb1. Substituting in for ΣE(X|Y )b1, the squared correlation can be written as

Corr(E(Xb1|Y ), Xb1)2 =
b′1ΣXXb1λ1

b′1ΣXXb1
= λ1.

Therefore Xb1 has maximal squared correlation λ1 with a transformation of systemic impairment.

Each additional principal direction bk is orthogonal to the preceding principal directions, and

maximizes Corr2(T (Y ), X ′bk).

To perform SIR, it is necessary to compute E(X|Y ). As noted by Li (1991), this could be done

by nonparametric regression, but to ease the computational burden, it is simply done by binning the

data and taking sample averages within bins. More specifically, let Z be an N × P + 1 partitioned

matrix of the data (Z = [Y,X] where Y is N × 1 and X is N × P ) that has been sorted by Y

and partitioned into M bins that each have S rows, with Zm = (Ym, Xm). The function E(X|Y )

is approximated by the sample average of the X’s in each bin:

X̄m =
1

S

S∑
s=1

Xm(s, .).

In addition, the unconditional expected value of X is estimated by X̄ = 1
M X̄m, and Var(E(X|Y )

by

Σ̂E(X|Y ) =
1

M

∑
(X̄m − X̄)′(X̄m − X̄),

and Var(X) is estimated by

ˆSigmaXX =
1

N

N∑
i=1

(Xi − X̄)′(Xi − X̄).

The principal component factors are found by plugging the sample estimates into equation (9) and

then solving for the eigenvalues and bk coefficients.

Li (1991) shows that SIR’s ability to identify the space spanned by the factors is robust to the
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size of the bin-size S. However, to choose the number of variables to use in SIR, Zhong et al (2012)

finds the number of slices matter for performance. They find that choosing S = 20 performs well.

For this reason in the analysis in this paper chooses S = 20 observations per slice.

B.2 Correlation Pursuit

Correlation pursuit chooses the variables to include in SIR to create factors. The universe of

variables considered is denoted X where X is an N × P matrix of N realizations of P random

variables. COP assumes that the number of factors is K. How K is chosen will be discussed below.

COP begins with a randomly chosen set of K+1 variables A ∈ X. The variables that are not in

A are denoted AC . To find the variables that are most suitable for creating factors to explain T (Y ),

COP then scrolls through all P variables, and in doing so performs either a variable addition step,

in which a variable is added to the set A, or a variable deletion step in which a variable is taken

away. For a given K, the procedure continues until no more variables can be added or deleted. The

final set of variables A(K) is the set of variables that is chosen under the assumption that there

are K factors.

Variable adddition step: To perform the variable addition step, let t denote a candidate X

variable being considered for addition to A. To determine if the variable should be added, COP

creates a test based on the scaled improvement in each of the K eigenvalues associated with the

principal components when variable t is added.

The scaled improvement in the i’th eigenvalue is denoted COPA+t
i given by

COPA+t
i = N

(λA+t
i − λAi )

1− λAi
, (31)

where the superscripts A and A+ t denote the sets of variables used in computing the eigenvalues.

Because the λi coefficients have the interpretation the R2 from using the i’th factor to explain

T (Y ), the COPA+t
i statistics resemble F -tests for whether the addition of the variable t statistically

improves the predictability attributable to a factor. The sum of these statistics is denoted COPA+t
1:K

(=
∑K

i=1COP
A+t
i ). The statistic

COP 1:K = maxt∈ACCOPA+t
1:K ;

and Xt̄ is a variable that attains this maximum if added to A. The variable Xt̄ is added to A if

COP 1:K > ce, where ce is a critical value for determining whether a variable should be added.

Variable deletion step: The variable deletion step is analogous to the the addition step. The

scaled deterioration in the explanatory power of factor i from deleting the variable t from the set
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A is given by

COPA−ti = N
(λAi − λ

A−t
i )

1− λAi
. (32)

The statistic COPA−t1:K =
∑K

i=1COP
A−t
i measures the deterioration in fit from deleting the variable

t. The statistic COP 1:K denotes:

COP 1:K = mint∈ACOP
A−t
1:K , (33)

and variable Xt attains this minimum. If COP1:K < cd, then variable Xt is deleted from A.

Zhong et al (2012) derive conditions under which as N goes to infinity with slice size (= bin

size) fixed, COP consistently chooses X variables that should be used for SIR and consistently

deletes variables that should not be used. When using COP in finite samples, they recommend

choosing the critical values ce and cd through five-fold cross-validation.

The above shows how to select the variables for a given number of factors K. To choose K,

Zhong et al (2012) used a BIC type information criterion based on Zhu et al (2006).

C Simulation of Interest Rate Changes Based on Wright (2011).

To be completed...

39



Figure 1: Scatter Plot of SAD versus extracted Systemic, Factor Long on Average Portfolio
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Figure 2: Nonparametric Regression of SAD versus extracted Systemic Factor, Long on Average
Portfolio
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Figure 3: Stress Tests Based on Systemic Factor: Relation to SAD, Long on Average Portfolio
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Figure 4: Stress Tests Based on Systemic Factor: Relation to SAD, Simulated Portfolio Sets 1 -
10, Long on Average Portfolio
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Figure 5: Stress Tests Based on Systemic Factor: Relation to SAD: Simulated Portfolio Sets 1 -
10, Neither Long Nor Short Portfolio
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Figure 6: QQ-Plot of Approximate SAD vs SAD: Simulated Portfolio 1
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Figure 7: Optimal Stress-Scenario: Simulated Portfolio 1
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Figure 8: Can SIR/COP detect the factors out of sample

For banks whose portfolios are highly correlated with one of the first 3 principal components of
simulated yield curve changes, the figure examines if the factor that COP/SIR identifies using one
subsample of the data with 5,000 observations (True F) is highly correlated with the COP/SIR
factor estimated using only 500 observations from the same data generating process (F-COP).
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Figure 9: The effect of one-standard deviation factor shock for a random bond portfolio
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Figure 10: The effect of one-standard deviation factor shock for a random portfolio of stocks and
bonds
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Figure 11: SIR Simulations with occasional symmetry
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Figure 12: SIR Simulation with symmetry: Scenario 2 – Corrected
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