International Reserves, Risk Tolerance, and Crisis Risk

Weining Xin International Monetary Fund

September 25, 2020

The views expressed in this presentation are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or IMF management

Predicting Crises is Important, yet Inglorious

Bloomberg Businessweek

April 15, 2009, 9:00 PM PDT

What Good Are Economists Anyway?

• Why they failed to predict the global economic crisisand why their help is still crucial to a recovery

- Since Mexican crisis, early-warning models have been developed
 - Use a set of indicators X to forecast crisis risk $\pi(X)$
 - Aim to catalyze policy actions for crisis prevention and mitigation
- Early-warning problem and policy-making problem are interconnected
 - $\circ\,$ Yet ignored in the literature following Kaminsky et al. (1998)

- Research question
 - $\circ\,$ How to embed early-warning problem into policy-making problem?
- Propose a two-stage framework
 - $\circ\,$ First stage: early-warning problem is solved for crisis risk
 - $\circ\,$ Second stage: policy-making problem is solved for optimal policy action
- Provide empirical implications
 - $\circ~\mbox{Explain}$ the buildup of international reserves in emerging markets
 - $\circ~$ Conduct counterfactual analysis on level of reserves

A Two-Stage Framework

Road Map

- Literature
- A Two-Stage Problem
- Implementation Method
- Estimation and Performance
- Empirical Implications
- Conclusion

Literature

- Welfare-based trade-off of international reserves holdings e.g. Aizenman & Lee (2007), Durdu et al. (2009), Alfaro & Kanczuk (2009), Jeanne & Ranciere (2011)
 - $\circ\,$ This paper sheds light on suboptimality of policy decisions caused by imperfect crisis risk estimates
- Early-warning models e.g. Kaminsky et al. (1998), Alessi & Detken (2011)
 - $\circ~$ This paper bridges the gap between policy objective and econometrics specification
 - Shows structurally welfare-based error asymmetry between false alarms and missed crises
- Reserves adequacy e.g. Jeanne & Ranciere (2011), Bianchi et al. (2016)
 - $\circ\,$ This paper presents empirical evidence of time-varying risk tolerance of policymakers
 - $\circ~$ Provides a new perspective to explain the buildup of reserves in emerging countries

From Early-Warning to Policy-Making

Probability of a sudden stop

Early-warning Problem:

Solved for probability of a sudden stop

Policy-making Problem:

Solved for optimal level of reserves

A Welfare-Maximizing Problem for Reserves

- An insurance framework developed by Jeanne and Ranciere (2011)
 - $\circ~$ Non-crisis periods: Government pays a premium X
 - $\circ~$ Sudden stops: Government receives a payment R
 - $\circ~$ Can be replicated by issuing perpetuity in a dynamic framework
- Given the probability of a sudden stop, $\{X, R\}$ solves

$$\max_{\{X, R\}} \pi_t u(C_t^s) + (1 - \pi_t)u(C_t^n)$$

s.t. $C_t^n = Y_t^n + L_t - (1 + r)L_{t-1} - X_t$
 $C_t^s = (1 - \gamma)Y_t^n - (1 + r)L_{t-1} + R_t - X_t$
 $L_t = \lambda Y_t^n$
 $Y_{t+1}^n = (1 + g)Y_t^n$
 $X_t = \frac{\bar{\pi}}{\bar{\pi} + p(1 - \bar{\pi})}R_t$

 γ : output loss in a sudden stop; λ : size of a sudden stop p: the relative price of a non-crisis dollar in terms of a crisis dollar; g: the growth rate; r: risk-free rate

Welfare Derived from Risk Estimate

- Optimal insurance contract payment (X, R) = (X(π), R(π)), and level of reserves-to-GDP ratio ρ ≡ R/Yⁿ = ρ(π)
- π is not observable: policymakers have to estimate the probability of a sudden stop and then choose the contract payment based on the estimate $\hat{\pi} \Rightarrow (X, R) = (X(\hat{\pi}), R(\hat{\pi}))$
- Let $\overline{U}^{\text{real}}(\pi, \hat{\pi})$ be the expected real welfare derived from $(X(\hat{\pi}), R(\hat{\pi}))$,

Welfare Cost Incurred by Imperfect Risk Estimate

Lemma 1.

The insurance contract payment $(X(\hat{\pi}), R(\hat{\pi}))$ based on any estimated sudden stop risk $\hat{\pi}$ is not optimal under the true risk π , unless $\hat{\pi} = \pi$.

Hence, welfare cost of any risk estimate $\hat{\pi}$ under true risk π is defined as $\bar{U}^{\rm real}(\pi,\pi)-\bar{U}^{\rm real}(\pi,\hat{\pi})$

$$\begin{split} \bar{U}^{\text{real}}(\pi,\pi) - \bar{U}^{\text{real}}(\pi,\hat{\pi}) &= \pi U\Big(\frac{C^{s}((X(\pi),R(\hat{\pi})))}{Y^{n}}\Big) + (1-\pi)U\Big(\frac{C^{n}((X(\pi),R(\pi)))}{Y^{n}}\Big) \\ &- \pi U\Big(\frac{C^{s}((X(\hat{\pi}),R(\hat{\pi})))}{Y^{n}}\Big) + (1-\pi)U\Big(\frac{C^{n}((X(\hat{\pi}),R(\hat{\pi})))}{Y^{n}}\Big) \geq 0. \end{split}$$

• Define a Welfare Loss denoted by $L_W(\hat{\pi}, \pi)$, as the welfare costs of a probability estimate $\hat{\pi}$ under true probability π

$$L_{\mathsf{W}}(\hat{\pi},\pi) = ar{U}^{\mathsf{real}}(\pi,\pi) - ar{U}^{\mathsf{real}}(\pi,\hat{\pi})$$

- The objective function is thereby $\mathbb{E}\left[L_{\mathsf{W}}(\hat{\pi},\pi)\right]$
- Rewrite as a binary classification problem

Binary Classification Problem

- Let y and \hat{y} denote the true binary crisis realization and the predicted binary crisis flag respectively, both taking 1 to indicate crisis and 0 to indicate non-crisis
- Mapping:

$$\circ \pi(X) = \mathbb{P}(y = 1|X)$$

 $\circ \hat{y} = \mathbb{1}(\hat{\pi} > c)$ for some optimal threshold

• Outcome matrix

		True realizations	
		non-crisis	crisis
Predicted	non-crisis	True negative ($\hat{y}=$ 0 & $y=$ 0)	Missed crisis ($\hat{y}=0$ & $y=1$)
flags	crisis	False alarm ($\hat{y} = 1 \& y = 0$)	True positive ($\hat{y}=1$ & $y=1$)

С

Asymmetric Welfare-Based Errors

• Written as a binary classification problem, the objective function to minimize

$$\omega_{FA} \cdot \underbrace{\mathbb{P}(\hat{y} = 1 | y = 0)}_{\text{the percentage of false alarms}} + \omega_{MC} \cdot \underbrace{\mathbb{P}(\hat{y} = 0 | y = 1)}_{\text{the percentage of missed crises}}$$

Proposition 1.

Welfare-based weight on the percentage of missed crises is larger than that on the percentage of false alarms, as long as consumers are risk averse. That is

 $\omega_{MC} > \omega_{FA}$

if
$$u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$$
 and $\sigma > 0$.

• However, the literature following Kaminsky et al. (1998) ignores the welfare-based adjustment and uses $\mathbb{P}(\hat{y} = 1|y = 0) + \mathbb{P}(\hat{y} = 0|y = 1)$

Implementation: Neyman-Pearson Paradigm

• Neyman-Pearson paradigm (Cannon et al., 2002) characterizes the objective function as

 $\begin{array}{l} \min \ \mathbb{P}(\hat{y}=1|y=0) \\ \text{s.t.} \ \mathbb{P}(\hat{y}=0|y=1) < \alpha \end{array} \end{array}$

Proposition 2.

Solving the objective function under Neyman-Pearson paradigm with $\alpha < 0.5$ is equivalent to minimize an objective function characterized as $\omega_{FA} \cdot \mathbb{P}(\hat{y} = 1 | y = 0) + \omega_{MC} \cdot \mathbb{P}(\hat{y} = 0 | y = 1)$ with some $\omega_{MC} > \omega_{FA}$.

A Good Fit for Early-Warning Problem

- Model uncertainty: no agreement on a workhorse model of crises makes it impossible to pin down exact welfare costs
 - o Complexity and interaction of many variables
 - Infrequent but large global regime shifts
- Interpretability: upper bound on percentage of missed crises can be
 - $\circ~$ Set as forecasting goal by policymakers
 - $\circ~$ Modeled as risk tolerance by researchers
- Robustness: control on percentage of missed crises achieved on **population level** by Tong et al. (2018)
 - $\circ~$ Critical in forecasting

An Application to Predicting Sudden Stops

Crisis Definition

- Basu et al. (2019): Sudden stops in net private capital inflows
 - Net private capital inflows in year t (as % of GDP in year t-1) at least 2 percentage pts lower than that in t-1 and t-2
 - Or IMF programs > 500% of quota to capture counterfactual
- With growth impacts
 - In year t or t+1, deviation of growth from 5-year trend in lower 10th percentile
 - Or IMF programs > 500% of quota in year t+1 to capture counterfactual
- 53 EMs in 1980-2017: 82 sudden stops with growth impacts (4.1% of sample)

Explanatory Indicators

• Principle: capture different generations of theoretical models

Primary gap/GDP Inflation

First generation	Third generation: Debt shocks	Third generation: Bursting bubbles	Third generation: Medium-term (5-yr) building bubbles
Fiscal balance (% of GDP)	External debt/GDP	Q2-to-Q4 change in NEER	Private sector credit growth
5-year change in M2/GDP	External debt/exports	REER acceleration	Housing price growth
Reserves/M2 and Reserves/GDP	Private external debt/GDP	Real house price acceleration	Stock price growth
Dummies for hard peg and float	Bank external debt/GDP	Real stock price acceleration	REER growth
Dummy for parallel market	Cross-border bank-to-bank liabilities/GDP	Changes in all debt/GDP in debt shocks	Cross-border bank-to-bank liabilities to GDP growth
	Non-bank private external debt/GDP		External debt/GDP growth
Second generation	Total and external Public debt/GDP	Third generation: Global shocks	Contribution of finance to GDP
Change in unemployment rate	Private credit/GDP	FFR (level and growth)	Contribution of construction to GDP
Real GDP growth	Household liabilities/GDP	VIX	
	Foreign liabilities/Domestic credit	US NEER change	Current account shocks
Third generation: Flows and mismatch		US yield spread	Real growth in exports
Share of non-investment grade debt	Third generation: Buffers	TED spread	% change in ToT
Current account balance/GDP	EMBI spread (level and growth)		% change in non-fuel commodity TOT
Amortization	Corporate sector returns	Law of one price	Absolute oil balance/GDP
FX share of public debt	Default probability	5-year cumulative inflation	% change in oil price
Debt service/exports	Interest coverage ratio		
FX share of household and non- financial corporate credit	Price-earnings ratio	Contagion	
	Bank returns	Change in export partner growth re	lative to 5-year trend
Political shocks	Share of non-performing loans	Bank-to-bank Liabilities to AEs with	financial crisis/GDP
Political violence	Banks' capital-asset ratio	Frequency of banking crises in AEs	
Successful coup	Loan-to-deposit ratio	Similarity to last year's crises	

Signal-Extraction Model

• Signal-extraction model proposed by Kaminsky et al. (1998)

- $\circ \ {\sf Best \ performed}$
- Not data-hungry
- $\circ~$ Implemented for decades
- For each variable Z and a threshold Z^c
 - \circ 1 is given when $Z > Z^c$
 - \circ 0 is given when $Z \leq Z^c$
- Optimal threshold is chosen to minimize any given objective function
- All flags are aggregated across variables to yield an overall risk index using weights that are inverse of the attained minimum of objective function

Compare Two Objective Functions

	Literature	Neyman-Pearson paradigm
Objective	$\mathbb{P}(\hat{y}=1 y=0)+\mathbb{P}(\hat{y}=0 y=1)$	$\mathbb{P}(\hat{y}=1 y=0)$
function		s.t. $\mathbb{P}(\hat{y}=0 y=1)$
Threshold	augmin	augmin $\mathbb{P}(\hat{y} = 1 y = 0)$
	$\mathbb{P}(\hat{y}=1 y=0)+\mathbb{P}(\hat{y}=0 y=1)$	s.t. $\mathbb{P}(\hat{y}=0 y=1)$
Weight	$rac{1}{\mathbb{P}(\hat{y}=1 y=0)+\mathbb{P}(\hat{y}=0 y=1)}$	$\frac{1}{\mathbb{P}(\hat{y}=1 y=0)}$

- 24-month forecasting horizon
 - \circ Use data up to end of year t to forecast crisis risk in year t+2
- Evaluation: replicate real-time forecasting practice
 - \circ Estimate a model using data up to year t and then apply it to data in next two years

NP Delivers Better Prediction Performance

- Sum of errors: $\mathbb{P}(\hat{y} = 1 | y = 0) + \mathbb{P}(\hat{y} = 0 | y = 1)$
- Neyman-Pearson paradigm will deliver even better prediction performance with respect to welfare-maximizing criterion

	A. Literature			
Year	Missed crises (%)	False alarms (%)	Sum of errors (%)	
2007	30	20	50	
2009	100	25	125	
2011	100	17	117	
Mean	77	21	98	
	B. Neyman-Pearson paradigm with $lpha=$ 0.4			
Year	Missed crises (%)	False alarms (%)	Sum of errors (%)	
2007	17	63	80	
2009	0	64	64	
2011	25	51	76	
Mean	14	59	73	

From Policy-Making to Early-Warning

Risk Tolerance Modeled by NP

- Measure risk tolerance of policymakers by their control on percentage of missed crises (α):
 α ↑, risk tolerance ↑
- Calibration procedure: $\alpha \Rightarrow \hat{\pi} \Rightarrow \rho(\hat{\pi}, \lambda, \gamma, g, \bar{\pi}, \delta)$
 - \circ Use data up to year t to forecast crisis risk in year t+2
 - \circ Reserves accumulated in year t + 1 is to insure against crisis risk in year t + 2
 - $\circ\,$ Hence, α in year t is calibrated to match reserves level in year t+1
- Other parameters are calibrated with reference to historical data up to year t
 - country's own history: size of sudden stops (λ), output loss (γ), potential output growth (g), unconditional probability of a sudden stop ($\bar{\pi}$)
 - \circ global history: term premium (δ)

Time-Varying Risk Tolerance

- Higher risk tolerance precedes two major waves of sudden stops: Asian financial crises and global financial crises
- Explanation: high risk tolerance ⇒ low crisis risk estimates ⇒ level of reserves too low to prevent real consequences

Counterfactual: Asian Financial Crises

- What if lower risk tolerance was imposed before Asian financial crises?
 - $\circ~$ Choose alternative $\alpha=$ 0.4
- Reserves-to-GDP: $11.5\% \Rightarrow 19.5\%$
- Competition from US, credit growth and hot money would be more predictive, while CA and TED spread were less predictive

Variable	Change
Export Partner Growth	5 th 介 2 nd
5yr Broad Money Growth	$7^{th} \Uparrow 4^{th}$
5yr External Debt Growth	$9^{th} \Uparrow 6^{th}$
Current Account Balance	$1^{st} \Downarrow 8^{th}$
TED Spread	$4^{th} \Downarrow 10^{th}$
Reserves-to-GDP	11.5% \Uparrow 19.5%

Counterfactual: Global Financial Crises

- What if lower risk tolerance was imposed before global financial crises?
 - $\circ~$ Choose alternative $\alpha=$ 0.4
- Reserves-to-GDP: $21.3\% \Rightarrow 38.5\%$
- Change in global financing condition would be more predictive, while domestic credit growth was less predictive

Variable	Rank
US Term Premium	$7^{th} \Uparrow 1^{st}$
Current Account Balance	$6^{th} \Uparrow 2^{nd}$
Fed Rate Change	10 th ↑ 3 rd
Private Credit Growth	$1^{st} \Downarrow 6^{th}$
5yr Private Credit Growth	$2^{nd} \Downarrow 9^{th}$
Reserves-to-GDP	21.3% 🕆 38.5%

Conclusion

- Building upon a two-stage framework
 - $\circ\,$ Suboptimality of policy decisions caused by imperfect crisis risk estimates
 - $\circ\,$ Welfare-cost asymmetry between false alarms and missed crises
- Bringing in new paradigm
 - $\circ~$ Better prediction performance with respect to werlfare-maximizing criterion
 - $\circ~$ Time-varying risk tolerance of polcymakers accounting for reserves buildup
- Policy implication: commitment mechanism

Thank you!