Inequality, the risk of secular stagnation and the increase in household debt

Ansgar Rannenberg

The views expressed here are those of the author and not necessarily those of the National Bank of Belgium or the European System of Central Banks.

Central Bank Macromodeling Workshop, 08/10/2020
Ansgar Rannenberg

r^* decline in US coincided with increase in income inequality

Labor share and bottom 90% income share

r^* estimate of Laubach and Williams (2016) vs. model simulation
This paper: Effect of rising income inequality in an economy with two types of households: Top 10% and the rest.

Top 10%: Capitalist-Spirit-Preferences (CSP) over all their assets (e.g. Bakshi and Chen (1996), Carrol (2000)).

CSP: Permanent-income MPS > 0, in line with evidence of Dynan et al. (2004), Kumhof et al. (2015).

Rich own physical capital stock, bank deposits.

All households own houses. Bottom 90% borrow from rich via bank, using house as collateral.
Permanent wage inequality increase

Feeding the 1980-2016 income inequality increase into the model broadly matches decline in LW r^*, the upward trends in bottom 90% debt, the value of the residential housing stock and mortgage debt relative to GDP. See slide 6 below or the paper for details.

Ansgar Rannenberg
My paper links observed inequality ↑ with r^* ↓ & household indebtedness ↑ & house prices↑.

Papers linking perm. wage inequality increase and natural rate:

Inequality and household debt via CSP: Kumhof et al. (2015).
Historical simulation over 1980-2016 period

- Replicate: Decline of the income share of the bottom 90% (World Inequality (WID) database). Sequence of negative permanent shocks to the relative labor productivity of non-rich.
- ...and decline of labor share: Sequence of permanent shocks to the price markup.
- Model variants:
 - CSP: \[C_{S,t}^{1-\sigma_S} + \frac{\phi_{H,S} H_{S,t}^{1-\sigma_H,S}}{1-\sigma_H} + \frac{\phi_b b_{S,t}^{1-\sigma_b}}{1-\sigma_b} + \frac{\phi_K (Q_t K_t)^{1-\sigma_K}}{1-\sigma_K}, \]
 \[b_{S,t} : \text{Bank deposits and gov. bonds}, K_t : \text{Non-residential physical capital.} \]
 - Equal curvature CSP: \(\sigma_b = \sigma_K \).
 - CSP+ Bottom 90% “Consumption Cascade” (CC): Non-rich utility from housing increases in rich households total consumption (Bertrand and Morse (2016)).
 - CSP+CES PF, \(EOS = 0.3 \) (Gechert et al. (2019)).
 - CSP+CES PF+CC.

Ansgar Rannenberg
Simulation: Bottom 90% LTV/Debt-to-income
Simulation: Housing-stock and mortgage debt-to-GDP ratio

Ansgar Rannenberg
Simulation: Capital-output-ratio

Private non-residential-capital-stock-to-annual-GDP-ratio

- Data
- Model
- Model, $\sigma_k = \sigma_K$
- Model, CES
- Model, cascades
- Model, CES, cascades