A Bayesian Phillips Curve

Josep Navarro

University of Barcelona

8th of October 2020 CBMMW

Introduction

- I propose a Hierarchical Bayesian panel data for traditional Phillips Curve estimation.
- I use data from 21 OECD Countries from 1985 to 2018.
- I use OECDs CPI as proxy for inflation.
- I use OECDs Imports of goods and services, deflator, National Accounts basis (PMGS) as imported inflation proxy.
- I use the OECDs unemployment rate and his NAIRU estimate as structural unemployment.
- I use the common assumption of lagged inflation as an estimator of expected inflation.

The Model

$$\pi_t = \alpha_t + \beta_1^C + \beta_2^C \pi_{t-1} + \beta_3^C (u_t - u_t^*) + \beta_4^C \pi_t' + \nu_t$$
(1)

- α_t a time varying intercept which absorbs the perturbations affecting all countries at the same time period.
- β_1^C a country intercept capturing all country particularities.
- β_2^{C} the country varying parameter for the lagged value of inflation.
- β_3^C the country varying slope of the unemployment gap.
- β_4^C the country varying slope of the imported inflation.
- $\bullet~\sigma$ the standard deviation of the model.

Priors

$$CPI_t \sim N(\alpha_t + \beta_1^C + \beta_2^C \pi_{t-1} + \beta_3^C (u_t - u_t^*) + \beta_4^C \pi_t^I, \sigma)$$
(2)

$$\begin{split} \sigma \sim exp(1), & \alpha \sim \mathcal{N}(\bar{\alpha}, \sigma_{\alpha}) \\ \begin{bmatrix} \beta_{1}^{C} \\ \beta_{2}^{C} \\ \beta_{3}^{C} \\ \beta_{4}^{C} \end{bmatrix} \sim \mathcal{M}\mathcal{N} \begin{pmatrix} \bar{\beta}_{1}^{C} \\ \bar{\beta}_{2}^{C} \\ \bar{\beta}_{3}^{C} \\ \bar{\beta}_{4}^{C} \end{pmatrix} \\ \Sigma = \begin{pmatrix} \sigma_{\beta_{1}} & 0 & 0 & 0 \\ 0 & \sigma_{\beta_{2}} & 0 & 0 \\ 0 & 0 & \sigma_{\beta_{3}} & 0 \\ 0 & 0 & \sigma_{\beta_{3}} & 0 \\ 0 & 0 & 0 & \sigma_{\beta_{4}} \end{pmatrix} \mathcal{R} \begin{pmatrix} \sigma_{\beta_{1}} & 0 & 0 & 0 \\ 0 & \sigma_{\beta_{2}} & 0 & 0 \\ 0 & \sigma_{\beta_{2}} & 0 & 0 \\ 0 & 0 & \sigma_{\beta_{3}} & 0 \\ 0 & 0 & 0 & \sigma_{\beta_{4}} \end{pmatrix} \\ & \bar{\alpha}, \bar{\beta}_{1}^{C}, \bar{\beta}_{2}^{C}, \bar{\beta}_{3}^{C}, \bar{\beta}_{4}^{C} \sim \mathcal{N}(0, 5) \\ & \sigma_{\alpha}, \sigma_{\beta_{1}}, \sigma_{\beta_{2}}, \sigma_{\beta_{3}}, \sigma_{\beta_{4}} \sim exp(1) \\ & \mathcal{R} \sim \mathcal{L}\mathcal{K}\mathcal{J}(2) \end{split}$$

Results

	Mean	sd	5 %	95 %	p-val	n eff	Ŕ
α	0.19	1.87	-2.88	3.23	0.46	1348	1
β_1	0.53	1.87	-2.52	3.60	0.39	1349	1
β_2	0.66	0.03	0.62	0.70	0	21962	1
β_3	-0.38	0.08	-0.51	-0.26	5.6e-05	22276	1
eta_{4}	0.11	0.01	0.09	0.14	0	31162	1
σ	1.05	0.03	1.00	1.10	0	35240	1

Figura 1: Time Trend

A Bayesian Phillips Curve

Figura 2: The Hierarchical Bayesian Phillips Curve

Josep Navarro (University of Barcelona)

A Bayesian Phillips Curve

- We find a negative relation between unemployment gap and inflation.
- The introduction of a Time intercept allow us to control the effects of external global events, like the 2008 recession, on inflation.
- We show how the introduction of a Bayesian Hierarchical Model could be the solution to solve the puzzle of the relationship of inflation and unemployment.

Thank You