**CEMAC-GLOBAL** : Introducing a macroeconomic model for a small open monetary union of oil-exporting developing countries - by Patrick-Nelson D. ESSIANE (Bank of Central African States)

Aim of the paper : To introduce a multi-country semi-structural macroeconomic model for policy analysis and forecasting in CEMAC called CEMAC-Global

## Key features of the Model :

- ▶ (i) Hysteresis effect (for long run analysis of stabilization policies);
- (ii) Real-financial linkages with CB liquidity management and credit cycle
- (iii) Distinction between oil sector and non-oil sector
- (iv) Explicit modelling of the unconventional exchange rate regime of CEMAC

# Why focus on CEMAC Economies?



- Small Open Monetary union of Developing Countries (contrary to Eurozone)
- Unconventional hard peg with Euro (no exchange rate targeting by the Central Bank)
- CEMAC countries are oil exporters (except Central African Republic)
- Low financial development (Stock market capitalization = 0.4% of GDP) Credit channel more pertinent for MP transmission analysis
- Poor fiscal policy management (procyclicality, debt overhang, frequently in programs with the IMF...)

| Key indicators on CEMAC economy |          |             |                |                |             |               |                |           |                |
|---------------------------------|----------|-------------|----------------|----------------|-------------|---------------|----------------|-----------|----------------|
|                                 |          |             |                |                |             |               |                | GDP per   |                |
|                                 | Real GDP | Inflation   |                |                |             | Industrial    | Oil and Gas    | capita    | Credit to      |
| (Values on 2010-                | Growth   | (annual     | Public debt (% | Fiscal balance | Net exports | production (% | Exports (% of  | (Constant | private sector |
| 2018)                           | (%)      | average, %) | of GDP)        | (% of GDP)     | (% of GDP)  | of GDP)       | total exports) | USD)      | (% of GDP)     |
| Mean                            | 2,7      | 2,1         | 21,8           | -1,9           | 3,9         | 8,6           | 79,7           | 1854,9    | 13,0           |
| SD                              | 2,6      | 1,0         | 9,6            | 4,0            | 8,4         | 1,2           | 7,3            | 283,4     | 2,9            |

#### ESSIANE (2020)

## Contribution and relevance of the paper

- First paper analysing the spillover effects of economic and policy shocks in a monetary union of developing countries with a general equilibrium framework
- Explicit modelling of the unconventional monetary policy regime of CEMAC
- Relevant for monetary policy analysis and forecasting toolkit of the CEMAC's Central Bank (BEAC) (now only based on time series and Financial Programming and Policies (FPP) framework).



### Model Structure

ESSIANE (2020)

CEMAC-GLOBAL : Introducing a macroeconomic model for a small open monetary union of oil-exporting developing countries

4/8

## Policy rules I : Monetary Policy

Central Bank sets **nominal interest rate** according to 3 objectives : (i) Non-oil sector Output stabilization  $(\hat{Y}_t^{noil})$ , (ii) Inflation stabilization  $(\tilde{\pi}_t)$ , (iii) Foreign assets to short-term liabilities ratio  $(TCE_t)$  targeting (augmented Taylor Rule following Dieppe and al., 2017)

$$\begin{split} I_t^{POLICY} &= \alpha_1 I_{t-1}^{POLICY} + (1-\alpha_1) [\alpha_0 \widetilde{\pi}_{t+8} + \alpha_2 (\widetilde{\pi}_t - \overline{\pi}) + \alpha_3 (\widetilde{\pi}_t - \widetilde{\pi}_{t-1}) \\ \alpha_4 \widehat{Y}_t^{noil} + \alpha_5 (\widehat{Y}_t^{noil} - \widehat{Y}_{t-1}^{noil}) - \alpha_6 (TCE_t^{CEMAC} - \overline{TCE}^{CEMAC}) - \\ \alpha_7 \Delta TCE_t^{CEMAC}] + \sigma^{I^{POL}} \varepsilon_t^{I^{POL}} \end{split}$$

CB sets its **liquidity injections**  $INBCR_t$  in order to : (i) minimize the interbank spread and (ii) address bank stability issues.

$$INBCR_{t} = \tau_{0}INBCR_{t-1} + (1 - \tau_{0})[\tau_{1}(I_{t}^{INTERBANK} - I_{t}^{POLICY}) - \tau_{2}DL(STAB^{CEMAC})_{t}] + \sigma^{INBCR}\varepsilon_{t}^{INBCR}$$

ESSIANE (2020)

## Policy Rules II : Fiscal Policy

 Fiscal policy rule : (i) Countercyclical non-oil output stabilization (ii) Public debt gap minimization (following Dieppe and al. (2017)+ Expectations about future debt dynamic)

$$F_{it} = -[f_{1,i}^{ygap} \hat{Y}_{i,t}^{noil} + f_{2,i}^{ygap} DGAP_{i,t+1} + f_{3,i}^{ygap} DGAP_{i,t-1}] + \sigma_i^F \varepsilon_{i,t}^F$$

 Public debt gap dynamic depends on : (i) Fiscal margin (growth/real bond interest rate gap) (ii) Lagged fiscal impulse (inspired by Blanchard (1990))

$$DGAP_{i,t} = DGAP_{i,t-1} - d_i^{dgap} \Delta^4 DMARG_{i,t} + d_i^f(F_{it-1}) + \sigma_i^{DGAP} \varepsilon_{i,t}^{DGAP}$$
 with

$$DMARG_{i,t} = \Delta^4 Y_{i,t} - R^{bond}_{i,t}$$
 , and  $\Delta^4 X_{i,t} = X_{i,t} - X_{i,t-4}$ 

Selected results I : Monetary Policy tightening Monetary Policy still effective even with a hard peg regime (contrary to conventional results (Mundell, 1963; Swoboda, 1973; Frankel et al., 2004; Obstfeld et al., 2005; Rose, 2011; Bénassy-Quéré et al., 2012; Obstfeld et al. 2019)).



 $\Rightarrow$  (1)  $\searrow$  Domestic demand  $\Rightarrow \searrow$  Inflation (2)  $\searrow$  Domestic imports  $\Rightarrow \nearrow$  net exports  $\Rightarrow \nearrow$  Foreign assets

Effectiveness of MP with hard peg (No need to sterilize monetary policy interventions on the Forex.)

ESSIANE (2020)

# Selected results II : Asymetric reaction of Fiscal





Countercyclical Fiscal policy with a demand shock...

and procyclical with oil prices shock.



#### ESSIANE (2020)