HIGHER-ORDER INCOME RISK OVER THE BUSINESS CYCLE

Christopher Busch^a Alexander Ludwig^b

^aUniversitat Autònoma de Barcelona, MOVE, Barcelona GSE

^bGoethe University Frankfurt, CEPR

CBMMW, Oct 8, 2020

Motivation

Idiosyncratic income risk important:

Welfare

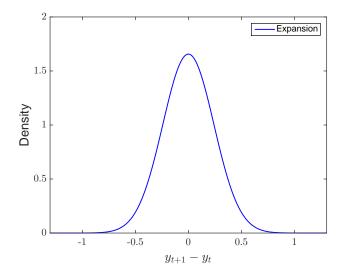
...

- Individual choices and macro aggregates
- Design of tax and transfer policies

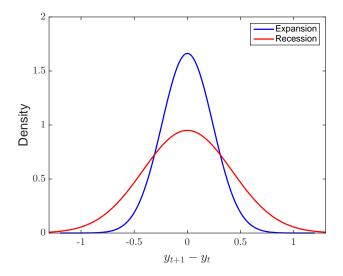
- Modelling benchmark: shocks with Normal distributions
- Recent empirical work: deviations from 'Normality'
- \Rightarrow Question: does this matter?

This paper

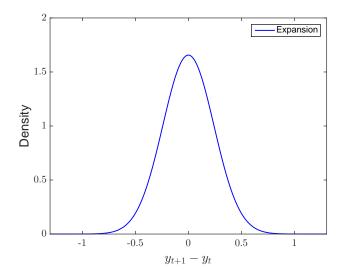
- 1. Characterize idiosyncratic income risk over business cycle
- 2. Show higher-order risk matters for:
 - Welfare: losses for strong risk attitudes
 - Costs of cycles: higher for strong risk attitudes
 - Self-insurance: worse even though more precautionary savings

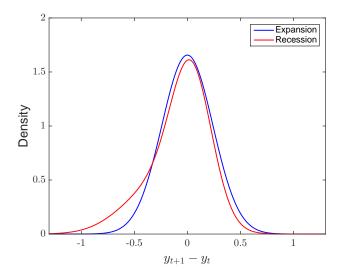

Approach

- 1. PSID: Household income risk over business cycle
 - Residual income (pre- and post-government)
 - Parametric approach: GMM estimation
- 2. Macroeconomic implications
 - Life-cycle model, exogenous income
- 3. Intermediate steps
 - Intuition with simple model
 - Transparent shock discretization method (moment-based)


Summary of Empirical Findings

- GMM estimator of 2nd-4th moments of transitory and (cyclical) persistent component of income process
- US (PSID) household income:
 - Variance of persistent shocks countercyclical
 - Skewness of persistent shocks procyclical
 - Highly leptokurtic shocks
- Role of government taxes and transfers?
 - Dampen shocks
 - Reduce left-skewness of persistent shocks
 - Increase kurtosis of persistent shocks


2nd Moment Shock: Symmetric Risk?


2nd Moment Shock: Symmetric Risk?

3rd Moment Shock: Asymmetric Risk?

3rd Moment Shock: Asymmetric Risk?

6 / 8

Overview of Quantitative Model

- J-period lived households
- Working and retirement phase, retirement at age j_r
- Endowments:
 - Exogenous: estimated income process; discretized
 - Different scenarios of shock distributions
 - Zero borrowing constraint
- Across Scenarios: Pension budget clears
- ▶ Preferences: Epstein-Zin-Weil: RA θ and IES γ
 - Risk attitudes matter for effect
 - Here: θ pins those down

Summary of Macroeconomic Implications

Left-skewed and Leptokurtic Distribution vs. Normal Distribution

- Cyclical) higher-order risk welfare implications:
 - $\theta = 1$: welfare gain of approx. .4%
 - $\theta = 4$: welfare losses of approx. 12.5%

Quantitatively relevant for welfare costs of business cycles:

- For $\theta = 1$, welfare cost of fluctuations lower by .2%p
- For $\theta = 4$, welfare cost of fluctuations larger by 6.4% *p*
- Worse consumption insurance
 - More savings out of positive shocks
 - Negative shocks pass through more
 - Give higher "insurance coefficient" (a la Blundell, Pistaferri & Preston 2008) —> Careful in interpreting coefficient!

Robust to GE, CRRA