Macro Uncertainty and Unemployment Risk

Joonseok Oh Anna Rogantini Picco

Freie Universität Berlin Sveriges Riksbank

CBMMW
October 2020

The views in these slides are solely those of the authors and should not be interpreted as reflecting the views of the Sveriges Riksbank
Motivation

Question: ‘How does uncertainty affect the macroeconomy?’

+ **Empirical evidence:** Identified macro uncertainty shock reduces
 - Output, Consumption, Investment, Employment, Inflation

+ **Existing models:** Unable to match empirical evidence
 - RANK: Response of macro variables muted
 - Inflation increases
Households’ heterogeneity key for uncertainty propagation

+ **VAR evidence** using both aggregate and household-level data:
 ▶ Macro uncertainty shock acts like aggregate demand shock
 ▶ Households in bottom 60% of income distrib. most responsive to uncertainty

+ **HANK model** with SaM and Calvo:
 ▶ Unemployment risk reinforces precautionary savings of uninsured HHs
 ▶ Uncertainty generates drop in prices & amplifies responses to match data
Empirical Evidence
VAR Evidence

- Data: US quarterly, 1982Q1-2015Q3
 - Macro uncertainty: Jurado et al. (2015)
 Common variation in macro indicators' unforecastable factors
 - Macro data: National Income and Product Account
 - Household-level data: Consumer Expenditure Surveys

- Identification: Cholesky ordering
 - Macro uncertainty ordered first:
 [Macro uncertainty, GDP, Job finding rate, Separation rate, Unemployment rate, Consumption, Inflation, Policy rate]
 - Constant and two lags
VAR Evidence: Micro Data

Robustness

Bottom 60% Income

Top 40% Income

Bottom 60%/Top 40%

Percentage Point

Bottom 60% Income

Top 40% Income

Bottom 60%/Top 40%
Model
Feedback Loop

Uncertainty \uparrow

$C^{Imp} \downarrow$ \rightarrow AD \downarrow \rightarrow AD \downarrow & AS \downarrow

Savings of imp. insured HHs \uparrow

Y \downarrow

IMRS \uparrow \rightarrow Unemployment risk \uparrow \rightarrow job finding rate \downarrow, separation rate \uparrow
HANK: IRFs to 1SD Technology Uncertainty Shock

- Calibration
- Different Ω
- Robust

Output:
- HANK (solid blue line)
- RANK (dashed red line)

Consumption:
- HANK (solid blue line)
- RANK (dashed red line)

Unemployment Rate:
- HANK (solid blue line)
- RANK (dashed red line)

Vacancy:
- HANK (solid blue line)
- RANK (dashed red line)

Job Finding Rate:
- HANK (solid blue line)
- RANK (dashed red line)

Real Wage:
- HANK (solid blue line)
- RANK (dashed red line)

Inflation:
- HANK (solid blue line)
- RANK (dashed red line)

Policy Rate:
- HANK (solid blue line)
- RANK (dashed red line)
Consumption Heterogeneity

![Graph showing consumption heterogeneity over quarters. The graph displays the percentage change in consumption for different scenarios. The x-axis represents quarters, and the y-axis represents percent change. The graph includes lines for 'Imp. Insured HHs', 'Perf. Insured HHs', and 'Aggregation.' The graph illustrates the varying trends and implications of consumption heterogeneity.]
Conclusion

Households’ heterogeneity important to uncertainty propagation

1. Macro uncertainty \(\uparrow\) → consumption, inflation, policy rate \(\downarrow\)

2. Most responsive HHs: Bottom 60% of income distrib.

3. HA + Calvo + SaM
 - Uncertainty reduces AD and AS
 - Uninsured unemployment risk reinforces prec. savings (AD)
 - Responses in line with data

Calvo vs Rotem
Appendix
Consumer Expenditure Surveys

CEX: Rotating panel data

▶ Consumption: Non-durable
 Food and beverages, tobacco, apparel and services, personal care, gasoline, public transportation, household operation, medical care, entertainment, reading material, and education

▶ Income: before tax
 Wages, salaries, business and farm income, financial income, and transfers

▶ Real per capita: divide by number of family members, deflate by CPI-U series, and seasonally adjust by X-12-ARIMA
Literature

- **HANK**
 McKay and Reis (2016), Kaplan et al. (2018)

- **HANK and SaM**

- **Uncertainty**
HANK with SaM and Uncertainty

- Unit mass of **Households**
 - Share $1 - \Omega$ perfectly insured against unemployment risk
 \Rightarrow Assets and C do **not** depend on employment status

 - Share Ω imperfectly insured against unemployment risk
 \Rightarrow Subject to borrowing limit tighter than natural
 \Rightarrow Assets and C **do** depend on employment status
ASSUMPTION: Borrowing limit binding after 1 period unemp. (Challe et al. (2017))

- Three corresponding types of imperfectly insured households:
 1. Employed
 2. Unemployed for 1 period
 3. Unemployed for > 1 period

- Three consumption levels

- Two asset levels
 1. Assets for the employed impatient
 2. Borrowing limit

With 3 types of imperfectly insured, no need to keep track of whole distribution
HANK with SaM and Uncertainty

+ **Firms** ▶ More
 - Search and matching frictions
 - Calvo pricing

+ **Monetary authority**
 - Taylor rule

+ **Uncertainty** in technology process

\[
\begin{align*}
 \log z &= \rho_z \log z_{-1} + \sigma^z \varepsilon^z \\
 \log \sigma^z &= (1 - \rho_{\sigma^z}) \log \bar{\sigma}^z + \rho_{\sigma^z} \log \sigma^z_{-1} + \sigma^{\sigma^z} \varepsilon^{\sigma^z}
\end{align*}
\]

+ Third-order perturbation method
 (Fernandez-Villaverde et al., 2011)
RANK: IRFs to 1SD Technology Uncertainty Shock
Direct Effect of Increased Uncertainty (RANK)

- **Households: Precautionary savings**

 \[U \uparrow \rightarrow C \downarrow \because \text{Risk aversion} \]

 \[\rightarrow \text{Nominal marginal cost} \downarrow \rightarrow \text{Price} \downarrow \rightarrow \text{Markup} \uparrow \because \text{Sticky prices} \]

 \[\Rightarrow Y \downarrow, P \downarrow \because \text{AD} \downarrow \]

- **Firms: Precautionary pricing**

 \[U \uparrow \rightarrow P \uparrow \rightarrow \text{Markup} \uparrow \because \text{Risk aversion} \]

 \[\Rightarrow Y \downarrow, P \uparrow \because \text{AS} \downarrow \]

- **P \uparrow \text{since AS} \downarrow > \text{AD} \downarrow**
Indirect Effect: Uninsured Unemployment Risk (HANK)

- Uncertainty ↑
 1. Precautionary savings: AD↓
 2. Precautionary pricing: AS↓

- Y↓ → Vacancy↓ → Job finding rate↓ → Separation rate↑

- Unemployment risk↑ → Imperfectly insured HHs’ savings ↑

- C′↓ → AD↓
Perfectly Insured Households

\[V^p (a^p, n^p, X) = \max_{a^{p'}, c^p} \left\{ u (c^p) + \beta^p E \left[V^p (a^{p'}, n^{p'}, X') \right] \right\} \]

subject to:

\[c^p + a^{p'} = w^p n^p + (1 + r) a^p + \Pi \]

Perfect insurance \(\Rightarrow \) \(a^{p'} \) & \(c^p \) do not depend on employment status
Imperfectly Insured Households

ASSUMPTIONS:
1. Partial risk sharing
2. Borrowing limit tighter than natural

- Cross-sectional distribution $\mu(a, N)$ over:
 - Assets $a \in \mathbb{R}$
 - Length of unemployment spell $N \in \mathbb{Z}_+$

- Becomes with countable and finite support

- Can be summarized by:
 - Assets: $a^i(N)$
 - Associated number of HHs: $n^i(N)$
Imperfectly Insured Households

\[V^i \left(a^i (N), n^i (N), X \right) = \]

\[\max_{\{a''(N), c'(N)\} \in \mathbb{Z}_+} \left\{ \sum_{N \geq 0} n^i (N) u \left(c^i (N) \right) + \beta^i \mathbb{E}_\mu, X \left[V^i \left(a'' (N), n'' (N), X' \right) \right] \right\} \]

subject to:

- Borrowing constraint
 \[a'' (N) \geq a \]

- Budget constraint if employed, \(N = 0 \)
 \[a'' (0) + c^i (0) = (1 - \tau) w + (1 + r) A \]

- Budget constraint if unemployed for \(N \geq 1 \) periods
 \[a^i (N) + c^i (N) = b^u + (1 + r) a \]
Tilde variables correspond to beginning of labor transition stage.

\[X = \{ \tilde{\mu}(.), a^p, a^i(0), R_{-1}, \Delta_{-1}, \tilde{n}, z, \sigma^z \} \]
If \(N = 0 \)

\[
A' = \frac{1}{n''(0)} \left[(1 - s') a''(0) + f' \sum_{N \geq 1} a''(N) n'(N) \right]
\]

\[
n''(0) = (1 - s') n'(0) + f' (1 - n'(0))
\]

If \(N \geq 1 \)

\[
a^i(N) = a''(N-1)
\]

\[
n''(1) = s' n'(0) \text{ and } n''(N) = (1 - f') n'(N-1) \text{ if } N \geq 2
\]
Monetary Policy and Unemployment Insurance Scheme

▶ Taylor rule

\[
\frac{1 + R}{1 + \bar{R}} = \left(\frac{1 + R_{-1}}{1 + \bar{R}} \right)^{\rho_R} \left(\frac{1 + \pi}{1 + \bar{\pi}} \phi_\pi \left(\frac{y}{y_{-1}} \phi_y \right)^{1-\rho_R} \right)
\]

▶ Balanced unemployment insurance scheme

\[
\tau_w n^i = b^u \left(1 - n^i \right)
\]
\[
\tau_w^p n^p = b^{up} \left(1 - n^p \right)
\]
Firms

1. Final goods firms: Perfectly competitive

2. Intermediate goods firms: Face Calvo pricing

3. Wholesale goods firms: Perfectly competitive
 ▶ Use technology $y_m = z\tilde{n}$

4. Labor intermediaries: Hire both types of households
 ▶ Job finding rate
 \[f = \frac{m}{u} = \frac{\mu u^x v^{1-x}}{u} \]
 ▶ Period-to-period job loss rate
 \[s = \rho (1 - f) \]
 ▶ Wages set according to rule
Final Goods Firms

- Solve

$$\max_y y - \int_0^1 p_i y_i \, di$$

subject to

$$y = \left(\int_0^1 y_i^{\frac{\epsilon - 1}{\epsilon}} \, di \right)^{\frac{\epsilon}{\epsilon - 1}}$$

- Solution: final goods firms' demand of intermediate good

$$y_i (p_i) = p_i^{-\epsilon} y$$
Intermediate Goods Firms I

- Linear technology with fixed cost: $y_i = x_i - \Phi$

- Produce intermediate goods sold at price p_m

- Earn profit: $\Xi = (p_i - p_m)y_i - p_m\Phi$

- Value if reset prices:
 \[
 V^R(X) = \max_{p_i} \left\{ \Xi + \theta \mathbb{E}_X \left[M^{P'} V^N(p_i, X') \right] + (1 - \theta) \mathbb{E}_X \left[M^{P'} V^R(X') \right] \right\}
 \]

 - Set optimal price:
 \[
 p^* = \frac{\varepsilon}{\varepsilon - 1} \frac{p^A}{p^B}
 \]

 \[
 p^A = p_m y + \theta \mathbb{E}_X \left[M^{P'} \left(\frac{1 + \pi'}{1 + \bar{\pi}} \right)^\varepsilon p^{A'} \right]
 \]

 \[
 p^B = y + \theta \mathbb{E}_X \left[M^{P'} \left(\frac{1 + \pi'}{1 + \bar{\pi}} \right)^{\varepsilon - 1} p^{B'} \right]
 \]
Intermediate Goods Firms II

- Inflation law of motion:
 \[\pi = \frac{\theta(1 + \bar{\pi})}{(1 - (1 - \theta)p^*^{1-\varepsilon})^{\frac{1}{1-\varepsilon}}} - 1 \]

- Price dispersion:
 \[\Delta = (1 - \theta) p^*^{1-\varepsilon} + \theta \left(\frac{1 + \pi}{1 + \bar{\pi}} \right)^\varepsilon \Delta_{-1} \]

- Value if do not reset prices:
 \[\mathcal{V}^N(p_i_{-1}, X) = \Xi + \theta \mathbb{E}_X [M^{P'} \mathcal{V}^N (p_i, X')] + (1 - \theta) \mathbb{E}_X [M^{P'} \mathcal{V}^R (X')] \]

- Index price
 \[p_i = \frac{1 + \bar{\pi}}{1 + \pi} p_i_{-1} \]
Wholesale Firms

- Perfectly competitive, use linear technology: $y_m = z^n$

- Solve:
 \[
 \max_{n^d} \left\{ p_m z^n - Q^n \right\}
 \]

- Q is real unit price of labor services n, given by FOC:
 \[
 Q = p_m z
 \]
Labor Intermediaries

- Beginning of period exogenous separation rate ρ

- Skill premium ψ for patient households

- Value of match with impatient and patient

 \[
 J^i = Q - w + E_X [(1 - \rho') M^{ii} J^{ii}]
 \]

 \[
 J^p = \psi Q - \psi w + E_X [(1 - \rho') M^{pp} J^{pp}]
 \]

- Free entry condition where λ is job filling rate

 \[
 \lambda \left(\Omega J^i + (1 - \Omega) J^p \right) = \kappa
 \]

- Wage rule

 \[
 w = w_{-1} \gamma_w \left(\bar{w} \left(\frac{n}{\bar{n}} \phi_w \right) \right)^{1-\gamma_w}
 \]
Uncertainty

\[\log z = \rho_z \log z_{-1} + \sigma_z^z \varepsilon_z^z \]

\[\log \sigma^z = (1 - \rho_{\sigma^z}) \log \bar{\sigma}^z + \rho_{\sigma^z} \log \sigma_{-1}^z + \sigma_{\sigma^z}^z \varepsilon_{\sigma^z}^z \]

- Third-order perturbation method
 (Fernandez-Villaverde et al., 2011)
Market Clearing

▶ Labor market

Beginning of period \(\tilde{n}^p = \tilde{n}^i = \tilde{n}^p = \tilde{n}^i = \tilde{n} \)

End of period \(n^p = n^i = n^p = n_i = n \)

\[\Omega n^i + (1 - \Omega) \psi n^p = (\Omega + (1 - \Omega) \psi) n = \tilde{n} \]

▶ Asset market

\[\Omega (A + (1 - n) a) + (1 - \Omega) a^p = 0 \]

▶ Goods market

▶ Final

\[c + \kappa \nu = y \]

▶ Intermediate

\[\Delta y = y_m - \Phi \]

▶ Wholesale

\[\int_0^1 x_i di = y_m = z \tilde{n} \]
Quarterly Calibration 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Target/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>Share of imperf. households</td>
<td>0.60</td>
<td>Challe et al. (2017)</td>
</tr>
<tr>
<td>a</td>
<td>Borrowing limit</td>
<td>0</td>
<td>Challe et al. (2017)</td>
</tr>
<tr>
<td>σ</td>
<td>Risk aversion</td>
<td>2.00</td>
<td>Standard</td>
</tr>
<tr>
<td>β^l</td>
<td>Discount factor of imperf. households</td>
<td>0.917</td>
<td>21% consumption loss</td>
</tr>
<tr>
<td>β^P</td>
<td>Discount factor of pat. households</td>
<td>0.993</td>
<td>3% annual real interest rate</td>
</tr>
<tr>
<td>b^u</td>
<td>Unemployment benefits</td>
<td>0.27</td>
<td>33% replacement rate</td>
</tr>
<tr>
<td></td>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>Elasticity of substitution btw goods</td>
<td>6.00</td>
<td>20% markup</td>
</tr>
<tr>
<td>Φ</td>
<td>Production fixed cost</td>
<td>0.22</td>
<td>Zero steady-state profit</td>
</tr>
<tr>
<td>θ</td>
<td>Price stickiness</td>
<td>0.75</td>
<td>4-quarter stickiness</td>
</tr>
</tbody>
</table>
Quarterly Calibration 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Target/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>Matching efficiency</td>
<td>0.72</td>
<td>71% job filling rate</td>
</tr>
<tr>
<td>χ</td>
<td>Matching function elasticity</td>
<td>0.50</td>
<td>Standard</td>
</tr>
<tr>
<td>ρ</td>
<td>Job separation rate</td>
<td>0.23</td>
<td>73% job find. & 6.1% job loss rates</td>
</tr>
<tr>
<td>κ</td>
<td>Vacancy posting cost</td>
<td>0.037</td>
<td>1% of output</td>
</tr>
<tr>
<td>ψ</td>
<td>Skill premium</td>
<td>2.04</td>
<td>Bottom 60% cons. share (42%)</td>
</tr>
<tr>
<td>γ_w</td>
<td>Wage stickiness</td>
<td>0.75</td>
<td>Challe et al. (2017)</td>
</tr>
<tr>
<td>ϕ_w</td>
<td>Wage elasticity wrt employment</td>
<td>1.50</td>
<td>Challe et al. (2017)</td>
</tr>
<tr>
<td>Monetary Authority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\pi}$</td>
<td>Steady-state inflation</td>
<td>1.005</td>
<td>2% annual inflation rate</td>
</tr>
<tr>
<td>ρ_R</td>
<td>Interest rate inertia</td>
<td>0</td>
<td>Standard</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Taylor rule coefficient for inflation</td>
<td>1.50</td>
<td>Standard</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>Taylor rule coefficient for output</td>
<td>0.20</td>
<td>Standard</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
<td>Target/Source</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Persistence of technology shock</td>
<td>0.95</td>
<td>Standard</td>
</tr>
<tr>
<td>σ^z</td>
<td>Volatility of technology shock</td>
<td>0.007</td>
<td>Standard</td>
</tr>
<tr>
<td>ρ_{σ^z}</td>
<td>Persistence of uncertainty shock</td>
<td>0.85</td>
<td>Katayama & Kim (2018)</td>
</tr>
<tr>
<td>σ_{σ^z}</td>
<td>Volatility of uncertainty shock</td>
<td>0.37</td>
<td>Katayama & Kim (2018)</td>
</tr>
</tbody>
</table>
Different Degrees of Heterogeneity

- Output
- Consumption
- Unemployment Rate
- Vacancy
- Job Finding Rate
- Real Wage
- Inflation
- Policy Rate

Graphs show the impact of different degrees of heterogeneity on various economic indicators over a period of quarters.
Robustness Check 1
Robustness Check 2

Consumption

- $\gamma_w = 0$
- $\gamma_w = 0.35$
- $\gamma_w = 0.70$

Inflation

- $\phi_R = 0$
- $\phi_R = 0.35$
- $\phi_R = 0.70$

- $\phi = 1.3$
- $\phi = 1.5$
- $\phi = 2.0$

- $\phi = 0$
- $\phi = 0.25$
- $\phi = 0.50$
Precautionary Savings

- Risk averse households

\[\beta \left(\frac{c'}{c} \right)^{-\gamma} = \text{IMRS}' \]

- Jensen’s inequality \((0 < q < 1)\)

\[
\text{IMRS}_{\text{certainty}} = \beta \left(cc \right)^{-\gamma}
\]

\[
\leq q \beta \left(cc^l \right)^{-\gamma} + (1 - q) \beta \left(cc^h \right)^{-\gamma} = \text{IMRS}_{\text{uncertainty}}
\]
IMRS of Impatient Households

- \(N = 0 \)

- IMRS increasing in separation rate

\[
M_i^i(0) = \beta_i (1 - s') u_c^{i'}(0) + s' u_c^{i'}(1) \]

\[
u_c^{i'}(0) \]
Precautionary Savings

Stochastic Discount Factor vs. Relative Consumption
Precautionary Pricing

- Certainty

$$MP = \left((1 - \varepsilon) \left(\frac{P^*_\text{certainty}}{P} \right)^{1-\varepsilon} + \varepsilon mc \left(\frac{P^*_\text{certainty}}{P} \right)^{-\varepsilon} \right) Y$$

- Uncertainty: EMP > MP ⇒ Risk averse

$$EMP = q \left((1 - \varepsilon) \left(\frac{P^*_\text{uncertainty}}{P^l} \right)^{1-\varepsilon} + \varepsilon mc \left(\frac{P^*_\text{uncertainty}}{P^l} \right)^{-\varepsilon} \right) Y$$

$$+ (1 - q) \left((1 - \varepsilon) \left(\frac{P^*_\text{uncertainty}}{P^h} \right)^{1-\varepsilon} + \varepsilon mc \left(\frac{P^*_\text{uncertainty}}{P^h} \right)^{-\varepsilon} \right) Y$$
AS-AD: Firms

Graph showing the AD and AS curves with points P0, P1, P2, Y0, Y1, and Y2.
AS-AD: HHs’ Heterogeneity

Diagram showing AD0, AD1, AS1, and AS2 with various points labeled P0, P1, P2, and P3, and Y0, Y1, Y2, Y3 on the horizontal axis.