The Tipping Point: Low Rates and Financial Stability^{a b}

Davide Porcellacchia

23rd Central Bank Macroeconomic Modelling Workshop, 7 October 2020

European Central Bank

^aLink to the paper's latest version on *www.dporcellacchia.com*.

^bThis paper represents my own views, not necessarily those of the European Central Bank.

Model ingredients:

- 1. Liquidity creation \implies crisis-prone banks.
- 2. Outside option for depositors \implies ZLB on deposit rate.

- Diamond and Dybvig (1983)
- 3. Eq'm net interest spread \implies franchise value of deposits (FVD).
- + Infinite horizon \implies easier to work with interest rates.

Methodological contribution: Recursive setting facilitates novel interpretation of Diamond and Dybvig (1983) in terms of net interest spread and FVD.

Results:

- 1. Two steady states: (1) Good SS with healthy banks, (2) Bad SS with failed banks.
- 2. Transition mechanism: low enough interest rate erodes FVD and tips the economy into bad SS.
- 3. *Tipping-point formula*: increasing in bank's net interest spread and decreasing in duration gap.

Technology, preferences and efficiency

Technology:

- Investment technology with per-period net return $\rho > 0$ and duration τ .
- One-period *storage technology* with net return 0.

Preferences:

- Idiosyncratic *liquidity shock*: with probability ϕ consumer becomes impatient and consumes.
- Coefficient of relative risk aversion $1/\alpha > 1$.

Social planner's problem:

$$\max_{\substack{\left\{C_{t}^{i}\right\}_{t=0}^{+\infty}}}\sum_{t=0}^{+\infty}\phi\cdot(1-\phi)^{t}\cdot u(C_{t}^{i})$$

$$\tag{1}$$

subject to:

$$\sum_{t=0}^{+\infty} \left(\frac{1-\phi}{1+\rho}\right)^t \cdot \phi \cdot C_t^i = \sum_{\tau=0}^{+\infty} \frac{\tilde{\mathcal{K}}_0(\tau)}{(1+\rho)^\tau} \equiv \mathcal{K}_0.$$
(2)

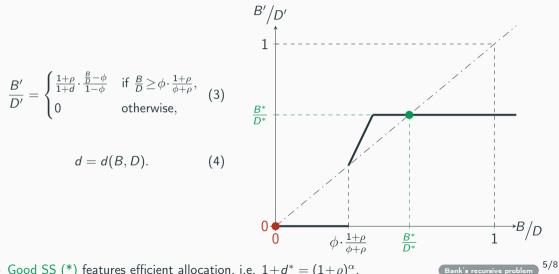
 \rightarrow First-order condition: $\frac{C_{t+1}^i}{C_t^i} = (1+\rho)^{\alpha}$.

Decentralised economy

Agents and key decisions:

- Consumer: deposit-withdrawal decision.
- Bank: deposit-rate decision.

Financial friction: Deposits.

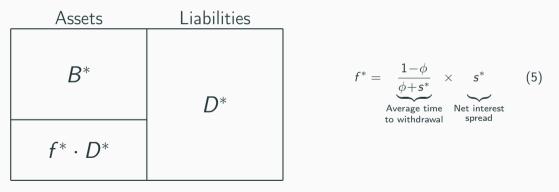

- Non-contingent unless bank fails.
- Convertible on demand.
 - If bank fails, pro-rata distribution of bank's resources.

Fundamental runs: as long as model-consistent, consumers are optimistic.

• No self-fulfilling expectations of banking crises.

Multiple steady states

0 $B \equiv$ bank's financial assets. $D \equiv$ bank's outstanding deposits. $d \equiv$ deposit rate.


• Good SS (*) features efficient allocation, i.e. $1+d^* = (1+\rho)^{\alpha}$.

Bank balance sheet in good SS

• $s \equiv \frac{1+\rho}{1+d}$, bank's net interest spread (NIS).

In good SS, deposits are partly backed by FVD ($\equiv f \cdot D$).

• Necessary for liquidity creation, i.e. $D^* > B^*$.

 $\rightarrow\,$ Erosion in FVD leads to negative equity and convergence to bad SS.

Tipping point $\underline{\rho}$

• Economy on good SS hit by unexpected permanent interest-rate shock: $\rho \rightarrow \rho'$.

Mechanism. $\rho \downarrow$ has two opposing effects:

- 1. *FVD erosion*: $f \downarrow$ because $d \ge 0$.
- 2. Asset revaluation: $B \uparrow$ because duration gap $\Delta > 0$.

Proposition

An economy starting on the good SS converges to the bad SS if and only if ho' <
ho, where

 $\underline{\rho} = s^* - \frac{1}{a} \cdot \Delta^*$

with

$$a = \underbrace{\frac{f^*}{1 - f^*}}_{\substack{\text{Incidence} \\ \text{of FVD}}} \times \underbrace{\frac{\mathrm{d}f^*/\mathrm{d}s^*}{f^*}}_{\substack{\text{Sensitivity of} \\ \text{FVD to NIS}}} \times \underbrace{\left[\ln\left(1 + d^*\right)\right]^{-1}}_{(\text{deposit rate})^{-1}} > 0.$$
(7)

(6)

Bank's recursive problem

 $\circ~$ For simplicity, case with no initial storage.

Value function:

$$V(B,D) = egin{cases} u(B) & ext{if } rac{B}{D} < \phi \cdot rac{1+
ho}{\phi+
ho}, \ \phi \cdot u(D) + (1-\phi) \cdot V\left(B',D'
ight) & ext{otherwise}, \end{cases}$$

subject to:

$$\frac{1-\phi}{1+\rho} \cdot B' = B - \phi \cdot D, \tag{9}$$

$$D' = [1 + d(B, D)] \cdot D.$$
(10)

• If bank's financial assets B too low, banking crisis takes place regardless of the deposit rate.

Policy function:

$$1 + d(B, D) = \max\left\{ (1+\rho)^{\alpha} \cdot \left(\frac{B}{D} - \phi\right) \cdot \frac{(1+\rho)^{1-\alpha} - (1-\phi)}{\phi \cdot (1-\phi)}, 1 \right\}.$$
 (11)

• Notice the ZLB on deposit rate. Bank wants to avoid triggering withdrawals.

8/8

Back

(8)