The Tipping Point: Low Rates and Financial Stabilitya b

Davide Porcellacchia

23rd Central Bank Macroeconomic Modelling Workshop, 7 October 2020

European Central Bank

aLink to the paper’s latest version on www.dporcellacchia.com.
bThis paper represents my own views, not necessarily those of the European Central Bank.
How low can the interest rate go without a banking crisis?

Model ingredients:

1. Liquidity creation \implies crisis-prone banks.
2. Outside option for depositors \implies ZLB on deposit rate.
3. Eq’m net interest spread \implies franchise value of deposits (FVD).

+ Infinite horizon \implies easier to work with interest rates.

Methodological contribution: Recursive setting facilitates novel interpretation of Diamond and Dybvig (1983) in terms of net interest spread and FVD.

Results:

1. **Two steady states**: (1) Good SS with healthy banks, (2) Bad SS with failed banks.
2. **Transition mechanism**: low enough interest rate erodes FVD and tips the economy into bad SS.
3. **Tipping-point formula**: increasing in bank’s net interest spread and decreasing in duration gap.
Technology, preferences and efficiency

Technology:
- Investment technology with per-period net return $\rho > 0$ and duration τ.
- One-period storage technology with net return 0.

Preferences:
- Idiosyncratic liquidity shock: with probability ϕ consumer becomes impatient and consumes.
- Coefficient of relative risk aversion $\frac{1}{\alpha} > 1$.

Social planner’s problem:

$$\max \left\{ \sum_{t=0}^{+\infty} \phi \cdot (1-\phi)^t \cdot u(C_t^i) \right\}$$

subject to:

$$\sum_{t=0}^{+\infty} \left(\frac{1-\phi}{1+\rho} \right)^t \cdot \phi \cdot C_t^i = \sum_{\tau=0}^{+\infty} \frac{\tilde{K}_0(\tau)}{(1+\rho)^\tau} \equiv K_0.$$

\rightarrow First-order condition: $\frac{C_{t+1}^i}{C_t^i} = (1+\rho)^\alpha.$
Decentralised economy

Agents and key decisions:
- *Consumer*: deposit-withdrawal decision.
- *Bank*: deposit-rate decision.

Financial friction: Deposits.
- *Non-contingent* unless bank fails.
- *Convertible* on demand.
 - If bank fails, *pro-rata* distribution of bank’s resources.

Fundamental runs: as long as model-consistent, consumers are *optimistic*.
- No self-fulfilling expectations of banking crises.
Multiple steady states

- $B \equiv$ bank's financial assets. $D \equiv$ bank's outstanding deposits. $d \equiv$ deposit rate.

$$\frac{B'}{D'} = \begin{cases} \frac{1}{1+d} \cdot \frac{B - \phi}{1 - \phi} & \text{if } \frac{B}{D} \geq \phi \cdot \frac{1}{\phi + \rho}, \\ 0 & \text{otherwise}, \end{cases} \quad (3)$$

$$d = d(B, D). \quad (4)$$

- Good SS (*) features efficient allocation, i.e. $1 + d^* = (1 + \rho)^\alpha$.
Bank balance sheet in good SS

- $s \equiv \frac{1+\rho}{1+\delta}$, bank’s net interest spread (NIS).

In good SS, deposits are partly backed by FVD ($\equiv f \cdot D$).
- Necessary for liquidity creation, i.e. $D^* > B^*$.

\[
\begin{array}{c|c}
\text{Assets} & \text{Liabilities} \\
\hline
B^* & D^* \\
\hline
f^* \cdot D^* & f^* = \frac{1-\phi}{\phi+s^*} \times s^* \quad (5)
\end{array}
\]

ϕ Average time to withdrawal

$\phi+s^*$ Net interest spread

→ Erosion in FVD leads to negative equity and convergence to bad SS.
Tipping point ρ

- Economy on good SS hit by unexpected permanent interest-rate shock: $\rho \rightarrow \rho^\prime$.

Mechanism. $\rho \downarrow$ has two opposing effects:

1. FVD erosion: $f \downarrow$ because $d \geq 0$.
2. Asset revaluation: $B \uparrow$ because duration gap $\Delta > 0$.

Proposition
An economy starting on the good SS converges to the bad SS if and only if $\rho' < \rho$, where

$$\rho = s^* - \frac{1}{a} \cdot \Delta^*$$

(6)

with

$$a = \frac{f^*}{1 - f^*} \times \frac{df^*/ds^*}{f^*} \times \left[\ln \left(1 + d^*\right)\right]^{-1} > 0.$$

(7)

Incidence of FVD
Sensitivity of FVD to NIS
(deposit rate)$^{-1}$
Bank’s recursive problem

- For simplicity, case with no initial storage.

Value function:

\[
V(B, D) = \begin{cases}
 u(B) & \text{if } \frac{B}{D} < \phi \cdot \frac{1 + \rho}{\phi + \rho}, \\
 \phi \cdot u(D) + (1 - \phi) \cdot V(B', D') & \text{otherwise},
\end{cases}
\] (8)

subject to:

\[
\frac{1 - \phi}{1 + \rho} \cdot B' = B - \phi \cdot D,
\] (9)

\[
D' = [1 + d(B, D)] \cdot D.
\] (10)

- If bank’s financial assets B too low, banking crisis takes place regardless of the deposit rate.

Policy function:

\[
1 + d(B, D) = \max \left\{ (1 + \rho)^\alpha \cdot \left(\frac{B}{D} - \phi \right) \cdot \frac{(1 + \rho)^{1-\alpha} - (1 - \phi)}{\phi \cdot (1 - \phi)}, 1 \right\}.
\] (11)

- Notice the ZLB on deposit rate. Bank wants to avoid triggering withdrawals.