The Cyclicality of the Wage Offer Distribution

Junjie Guo

University of Wisconsin-Madison

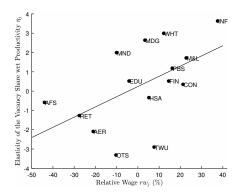
Center Bank Macro Modelling Workshop 2020

Junjie Guo (Wisconsin)

Wage Offer Distribution

Center Bank Macro Modelling Workshop 2020 1/8

• □ > • @ > • E > •

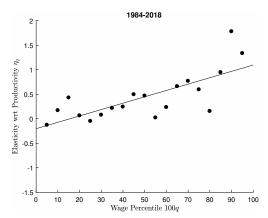

- Well documented that the number of vacancies *v* is pro-cyclical, e.g. Shimer (2005)
- Much less is known about the cyclicality of the wage offer distribution *F*: CDF of wages across vacancies
 - Is the creation of high-wage vacancies more or less cyclical than the creation of low-wage vacancies?
- This paper
 - provides new evidence suggesting that the creation of high-wage vacancies is more cyclical
 - quantifies a new theory that accounts for the evidence by allowing unemployed workers to receive multiple offers simultaneously

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evidence 1

• An increase in productivity y_t is associated with an increase in the share of vacancies posted by high-wage industries $\frac{v_{j,t}}{v_t}$

$$\Delta \log \left(rac{v_{j,t}}{v_t}
ight) = \eta_j \Delta \log y_t + arphi_j + Q_t eta_j + \zeta_{j,t}$$



• The slope of the fitted line is 0.053 with a standard error of 0.023

Junjie Guo (Wisconsin)

Evidence 2

• An increase in productivity y_t has a larger impact on the upper end of the wage distribution of new hires from unemployment w_{a,t}

$$\Delta \log w_{q,t} = \eta_q \Delta \log y_t + \varphi_q + Q_t \beta_q + \varepsilon_{q,t}$$

The slope of the fitted line is 0.013 with a standard error of 0.003.

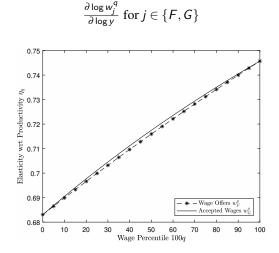
Junjie Guo (Wisconsin)

- DMP meet Burdett and Judd (1983)
- DMP: Discrete time; homogeneous workers and homogeneous firms; random meetings between unemployed workers and vacancies; no on-the-job search; exogenous job destruction
- Deviation: Each period, a worker can meet *multiple* vacancies, and vice versa.
 - Vacancies are created at the beginning of a period with a posted wage
 - The total number of meetings across all workers and vacancies is deterministic m(u, v)
 - The number of meetings at the individual level is random; Poisson with mean $\lambda_j = \frac{m(u,v)}{i}, j \in \{u,v\}$
 - At the end of a period, a vacancy makes an offer to *one* of the workers it meets, if any
 - A worker with one or more offers accept the one with the highest wage if it's better than unemployment
- BJ: Multiple offers imply wage dispersion even with homogeneous agents on both sides
 - *F* is endogenous and non-degenerate

イロト イポト イヨト イヨト

• $\frac{\partial P_M}{\partial y} > 0$ and $\frac{\partial P_M}{\partial u} < 0$ with P_M being the fraction of workers with multiple offers among those with at least one offer

- Consistent with Guo (2020)
- Let w_F^q be *q*th percentile of the wage offer distribution *F*. We have, for any $0 \le q_1 < q_2 \le 100$


$$\frac{\partial w_F^{q_2}}{\partial y} > \frac{\partial w_F^{q_1}}{\partial y} > 0$$

- Intuition: an increase in productivity y raises the market tightness θ and the offer arrival rate
 - Unemployed workers are more likely to receive multiple offers
 - Low-wage offers are more likely to be rejected
 - In response, firms post a larger share of high-wage vacancies
- Same for G, the wage distribution of new hires from unemployment.

イロト イポト イヨト イヨト

Calibration: Steady State

• Calibrated in the spirit of Hagedorn and Manovskii (2008)

Simulation: Dynamics

- Same qualitative predictions for the cyclicality of F and G
- Fit for other non-wage labor market moments (volatility, auto and cross correlations for *u*, *v* and *y*): no worse than standard DMP

		и	v	θ	у	и	v	θ	у
		Panel A: Data				Panel B: Standard DMP Model			
Standard deviation		0.127	0.133	0.233	0.013	0.257	0.174	0.267	0.013
Autocorrelation		0.882	0.920	0.905	0.774	0.823	0.586	0.759	0.760
Correlation matrix	и		-0.899	-0.897	-0.316		-0.567	-0.662	-0.699
	v			0.937	0.456			0.890	0.909
	θ				0.362				0.996

		Panel C: Model in This Paper						
Standard deviation	0.106	0.147	0.186	0.013				
Autocorrelation		0.795	0.695	0.761	0.761			
Correlation matrix	и		-0.702	-0.748	-0.732			
	v			0.981	0.978			
	θ				0.999			