The Cyclicality of the Wage Offer Distribution

Junjie Guo

University of Wisconsin-Madison

Center Bank Macro Modelling Workshop 2020
Introduction

- Well documented that the number of vacancies v is pro-cyclical, e.g. Shimer (2005)
- Much less is known about the cyclicality of the wage offer distribution F: CDF of wages across vacancies
 - Is the creation of high-wage vacancies more or less cyclical than the creation of low-wage vacancies?
- This paper
 - provides new evidence suggesting that the creation of high-wage vacancies is more cyclical
 - quantifies a new theory that accounts for the evidence by allowing unemployed workers to receive multiple offers simultaneously
An increase in productivity y_t is associated with an increase in the share of vacancies posted by high-wage industries $v_j,t/v_t$

$$\Delta \log \left(\frac{v_j,t}{v_t} \right) = \eta_j \Delta \log y_t + \varphi_j + Q_t \beta_j + \zeta_{j,t}$$

The slope of the fitted line is 0.053 with a standard error of 0.023
An increase in productivity y_t has a larger impact on the upper end of the wage distribution of new hires from unemployment $w_{q,t}$

$$\Delta \log w_{q,t} = \eta_q \Delta \log y_t + \varphi_q + Q_t \beta_q + \epsilon_{q,t}$$

The slope of the fitted line is 0.013 with a standard error of 0.003.
Model: Overview

- DMP meet Burdett and Judd (1983)
- DMP: Discrete time; homogeneous workers and homogeneous firms; random meetings between unemployed workers and vacancies; no on-the-job search; exogenous job destruction
- Deviation: Each period, a worker can meet *multiple* vacancies, and vice versa.
 - Vacancies are created at the beginning of a period with a *posted* wage
 - The total number of meetings across all workers and vacancies is deterministic
 \[m(u, v) \]
 - The number of meetings at the individual level is random; Poisson with mean
 \[\lambda_j = \frac{m(u, v)}{j}, j \in \{u, v\} \]
 - At the end of a period, a vacancy makes an offer to *one* of the workers it meets, if any
 - A worker with one or more offers accept the one with the highest wage if it’s better than unemployment
- BJ: Multiple offers imply wage dispersion even with homogeneous agents on both sides
 - \(F \) is endogenous and non-degenerate
Comparative Statics

\[
\frac{\partial P_M}{\partial y} > 0 \quad \text{and} \quad \frac{\partial P_M}{\partial u} < 0 \quad \text{with} \quad P_M \quad \text{being the fraction of workers with multiple offers among those with at least one offer}
\]

- Consistent with Guo (2020)

- Let \(w^q_F \) be \(q \)th percentile of the wage offer distribution \(F \). We have, for any \(0 \leq q_1 < q_2 \leq 100 \)

\[
\frac{\partial w^{q_2}_F}{\partial y} > \frac{\partial w^{q_1}_F}{\partial y} > 0
\]

Intuition: an increase in productivity \(y \) raises the market tightness \(\theta \) and the offer arrival rate

- Unemployed workers are more likely to receive multiple offers
- Low-wage offers are more likely to be rejected
- In response, firms post a larger share of high-wage vacancies

Same for \(G \), the wage distribution of new hires from unemployment.
Calibration: Steady State

- Calibrated in the spirit of Hagedorn and Manovskii (2008)

\[
\frac{\partial \log w_j^q}{\partial \log y} \quad \text{for } j \in \{F, G\}
\]
Simulation: Dynamics

- Same qualitative predictions for the cyclicity of F and G
- Fit for other non-wage labor market moments (volatility, auto and cross correlations for u, v and y): no worse than standard DMP

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>y</th>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Panel B: Standard DMP Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.127</td>
<td>0.133</td>
<td>0.233</td>
<td>0.013</td>
<td></td>
<td>0.257</td>
<td>0.174</td>
<td>0.267</td>
<td>0.013</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.882</td>
<td>0.920</td>
<td>0.905</td>
<td>0.774</td>
<td></td>
<td>0.823</td>
<td>0.586</td>
<td>0.759</td>
<td>0.760</td>
</tr>
<tr>
<td>Correlation matrix u</td>
<td>-0.899</td>
<td>-0.897</td>
<td>-0.316</td>
<td></td>
<td></td>
<td>-0.567</td>
<td>-0.662</td>
<td>-0.699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.937</td>
<td>0.456</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation matrix θ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.996</td>
</tr>
</tbody>
</table>

Panel C: Model in This Paper

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>0.106</td>
<td>0.147</td>
<td>0.186</td>
<td>0.013</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>0.795</td>
<td>0.695</td>
<td>0.761</td>
<td>0.761</td>
</tr>
<tr>
<td>Correlation matrix u</td>
<td>-0.702</td>
<td>-0.748</td>
<td>-0.732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td></td>
<td>0.981</td>
<td>0.978</td>
</tr>
<tr>
<td></td>
<td>θ</td>
<td></td>
<td></td>
<td>0.999</td>
</tr>
</tbody>
</table>