AGGREGATE DYNAMICS AND MICROECONOMIC HETERGENEITY: THE ROLE OF VINTAGE TECHNOLOGY

Giuseppe Fiori
Board of Governors

Filippo Scoccianti
Bank of Italy

CBMM Workshop - Oslo

The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System (or of any other person associated with the Federal Reserve System) or Bank of Italy.
After the Great Recession slow recovery of Southern European countries

- Prolonged slump in aggregate investment
- Stagnant aggregate productivity

Lack of investment often blamed for the poor performance of productivity

- Logic: technology adoption through investment

Empirical evidence on vintage technology is scant
We study the role of investment for productivity dynamics

- **Microeconomic** evidence on vintage effects
 - Census of incorporated Italian firms

- **Macroeconomic** implications: structural model
 - Firm heterogeneity à la Khan and Thomas (ECMA, 2008)
 - Technology adoption decision
This Paper

Results

- **Investment leads to TFP gains at the firm level**
 - Firms with lower investment age have higher productivity
 investment age is the time elapsed since the last large investment episode
 - Investment age/vintage effects account for $\sim 15\%$ of productivity heterogeneity across firms

- **Macroeconomic relevance of the link investment-productivity**
 - Vintage technology amplifies dynamics following aggregate shocks
 - Investment slowdown accounts for over $1/3$ of missing productivity growth in the Italian economy
Empirical Analysis

Microeconomic Data

- Census of incorporated Italian firms
 - Balance-sheet data from 1986 to 2015 (~80% of total value-added)

- Investment is a large and infrequent, or *lumpy*, episode
 - In an average year, 18% of firms exhibits an investment rate over 20% (or spikes, 61% of total investment)

- Empirics: Spikes as a signal of technology adoption
Vintage Effects in the Data

Empirical Specification

\[
\log(TFP_{f,t}) = \alpha + \sum_{j=1}^{7+} \beta_j \text{Inv.Age}_{j,f,t} + \text{Controls}_{f,t} + \epsilon_{f,t}
\]

- \(\text{Inv.Age}_{j,f,t}\): time elapsed since the last investment spike \((ik_{f,t} \geq 0.20)\) computed using:
 - All spikes in the sample
 - Controlling for reverse causality: using only spikes predicted by Logit Model (Two-stage approach)

- **Controls**: firm-, industry-, year-effects, firm’s age and size dummies
INVESTMENT LEADS TO TFP GAINS

TFP GAP RELATIVE TO THE FRONTIER: ESTIMATED β_j’S

A. All Spikes

B. Two-Stage Approach

RBC with Endogenous TFP Dispersion

◊ **Firms:**

- TFP has two components εz

 - ε exogenous temporary idiosyncratic shock

 - z permanent productivity vintage

- Adopting latest technology z is subject to a fixed cost

 - (S, s) technology adjustment rules - action/inaction region

 - Different TFP vintages coexist (distribution is non-degenerate)

 - Aggregate TFP is *endogenous* to firms’ adoption decision

- The model disciplined by microeconomic data on capital accumulation

◊ **Standard Representative household**
APPLICATION TO ITALY: MODEL VS DATA
SHOCKS THAT DEPRESS INVESTMENT LEAD TO STAGNANT TFP

Financial Shock - TFP Response

<table>
<thead>
<tr>
<th>Year</th>
<th>TFP DATA</th>
<th>TFP VINTAGE</th>
<th>TFP RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>-1.27%</td>
<td>-0.42%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2013</td>
<td>-1.08%</td>
<td>-0.57%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2014</td>
<td>-1.15%</td>
<td>-0.31%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2015</td>
<td>-0.89%</td>
<td>-0.26%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Notes: TFP responses following an increase in the price of investment goods. Each entry is in percent relative from trend values.