Inflation Expectations, Interest Rates, and Consumption Behavior

Ricardo Nunes¹ Donghyun Park¹

¹University of Surrey

2020 CBMMW (Norges Bank), 6th October 2020

Motivation

- Consumption is a central part of macro models.
- Real interest rates are important determinants of consumption expenditure.
 - However, results from empirical studies are not conclusive.
- In the last decade, the response of private consumption to inflation expectations came to the forefront in modern macro due to the zero-lower-bound on nominal interest rates.

What We Do

Consumption function in the cross-sectional data:

$$C_{j,t} = C(r_{j,t}, Y_{j,t}^{d}, R_{j}, V_{j})$$
(1)

where j denotes j-th household.

- It is crucial to control for the effect of $i_{j,t}$ on $C_{j,t}$.
 - In normal times: Taylor principle: $i_t = \phi_\pi \mathbb{E}_t \pi_{t+1}$ with $\phi_\pi > 1$

$$\mathbb{E}_{t}^{j}\pi_{t+1}\uparrow \Rightarrow i_{j,t}\uparrow\uparrow \Rightarrow r_{j,t}\uparrow \Rightarrow C_{j,t}\downarrow$$

- In ZLB: $i_t = \overline{i} \approx 0$ If $i_{j,t} = \overline{i}$, then $\mathbb{E}_t^j \pi_{t+1} \uparrow \Rightarrow r_{j,t} \downarrow \Rightarrow C_{j,t} \uparrow$
- Focusing only on ZLB period is problematic.
 - Short sample
 - What if $\mathbb{E}_t^j \pi_{t+1} \uparrow$ implies an exit of ZLB $\Rightarrow i_{j,t} \uparrow$?

- Test consumption theory using micro-level household data with detailed decomposition of inflation expectations and nominal interest rate expectations (annual BoE/TNS Inflation Attitude Survey, February 2011 - February 2020).
 - Isolate the effect of inflation expectations on consumption behavior controlling for **quantitative** individual interest rate expectations (which allows to test consumption theory regardless of ZLB period).
 - Consider both durable and nondurable consumption.
 - Link the empirical findings to a macro model.
- Investigate heterogeneity in intertemporal substitution of consumption due to differences in economic knowledge.
- Test discounting in the Euler equation (micro level data test of Gabaix (2020) model).

- Higher inflation expectations:
 - stimulates current durable consumption,
 - decreases nondurable consumption.
- This is consistent with a model:
 - Durables are more sensitive to real interest rates and go up.
 - Nondurables react but are less sensitive to real interest rate, and go down due to an eroding effect of inflation on nominal income.
 - Extensive tests based on a macro model and find that the model and the data are consistent.
 - Nominal income erosion and wage growth expectations are key.
- Other findings:
 - Economically informed households are more responsive in intertemporal substitution of durable goods to real interest rates than less informed households.
 - The consumption Euler equation has discounting.

Table: Baseline: Cut Back Spending

Table: Baseline: Durables

	(1) Avg. marginal effects	(2) Avg. marginal effects		(1) Avg. marginal effects	(2) Avg. marginal effects
$\mathbb{E}_t \pi_{t,t+1}$	0.015 ^{***} (-) (0.002)	0.016*** (-) (0.004)	$\mathbb{E}_t \pi_{t,t+1}$	0.003*** (+) (0.001)	0.004 ^{**} (+) (0.002)
$\mathbb{E}_t i_{t,t+1}$	0.024** (+) (0.012)	0.041 ^{**} (+) (0.020)	$\mathbb{E}_t i_{t,t+1}$	0.008 (-) (0.005)	0.003 (-) (0.009)
$\mathbb{E}_t(w_{t+1}-w_t)/w_t$. ,	-0.012** (-) (0.006)	$\mathbb{E}_t(w_{t+1}-w_t)/w_t$		0.002 (+) (0.003)
Control variables	Yes	Yes	Control variables	Yes	Yes
Observations	6327	2680	Observations	6327	2680
Pseudo R ²	0.052	0.033	Pseudo R ²	0.042	0.065

Explaining Baseline Empirical Results

- Higher inflation expectations:
 - increase the willingness to bring forward durable goods
 - increase the willingness to cut back spending
- This sounds counterintuitive, but it is not contradictory to the theory.
 - One can increase current durable consumption and cut back nondurable consumption.

• $\frac{u_C(C_t, X_t)}{u_C(C_{t+1}, X_{t+1})} = \beta \frac{1+i_t}{\Pi_{t+1}}$: higher Π_{t+1} increases the **ratio** of current nondurable consumption to future nondurable consumption.

- Ourrent nondurable consumption level can decrease because higher Π_{t+1} could erode the values of nominal assets and/or future nominal income.
- 3 $\frac{u_X(C_t, X_t)}{u_C(C_t, X_t)} = 1 (1 \delta) \frac{\prod_{t+1}}{1 + i_t}$: higher \prod_{t+1} increases the ratio of current durable consumption to nondurable consumption.
- This is often missed when we just look at consumption Euler equation, $c_t = \mathbb{E}_t c_{t+1} - \sigma(i_t - \mathbb{E}_t \pi_{t+1} - r_t^n)$, without considering changes in income and two types of goods.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Infinite-horizon Model

• Household's lifetime utility function

$$U = E_0 \left[\sum_{t=0}^{\infty} \beta^t u(C_t, X_t, L_t) \right]$$
(2)

with period utility function:

$$u(C_{t}, X_{t}, L_{t}) = \frac{1}{1 - \frac{1}{\sigma}} \left[\left(\psi(C_{t} - \lambda_{c} C_{t-1})^{\frac{\eta-1}{\eta}} + (1 - \psi)(X_{t} - \lambda_{x} X_{t-1})^{\frac{\eta-1}{\eta}} \right)^{\frac{\eta}{\eta-1}} \right]^{1 - \frac{1}{\sigma}} \exp\left(\frac{\frac{1}{\sigma} - 1}{1 + \nu_{l}} L_{t}^{1 + \nu_{l}}\right)$$
(3)

subject to the flow budget constraint

$$P_t C_t + P_t \{ X_t - (1 - \delta) X_{t-1} \} + B_t \le P_t Y_t^R + W_t L_t + (1 + i_{t-1}) B_{t-1}$$
(4)

• Household's expectations:

$$\log(\Pi_t) = (1 - \rho_{\Pi})\log(\Pi_{ss}) + \rho_{\Pi}\log(\Pi_{t-1}) + \epsilon_{\Pi,t-1}$$
(5)

$$\log(1+i_t) = (1-\rho_i)\log(1+i_{ss}) + \rho_i\log(1+i_{t-1}) + \epsilon_{i,t-1}$$
(6)

$$\log(\tilde{w}_t^R) - \log(\tilde{w}_{t-1}^R) = (1 - w_{index})(\Pi_{ss} - \Pi_t) + \epsilon_{w,t-1}$$

$$(7)$$

$$\operatorname{og}(\tilde{y}_{t}^{R}) - \operatorname{log}(\tilde{y}_{t-1}^{R}) = \epsilon_{y,t-1}$$
(8)

where $W_t^R = \frac{W_t}{P_t}$ and $\tilde{a}_t = \frac{A_t}{\gamma^t}$ (detrended variable)

page 7/8

Simulation: IRFs to Inflation Expectations Shock

Figure: Wage Expectations set to 0.034 ($w_{index} = 0.034$) of Inflation Expectations

Figure: Wage Expectations set to 0.95 ($w_{index} = 0.95$) of Inflation Expectations

page 8/8